[포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2024, 제조산업의 디지털 전환 전략과 사례 소개 (2)
‘PLM/DX 베스트 프랙티스 컨퍼런스 2024’가 지난 6월 13~14일 온라인으로 진행됐다. 한국산업지능화협회, 한국CDE학회, 캐드앤그래픽스가 공동 주최하는 이번 행사는 20주년을 맞아 이름을 바꾸었으며, 제품/제조 데이터와 프로세스를 통합 관리하는 PLM(제품 수명주기 관리)과 함께 제조산업의 혁신을 위한 디지털 전환(DX)에 대해 폭넓게 짚어보는 기회가 되었다. ■ 정수진 편집장
▲ 한국CDE학회 유병현 회장, SK경영경제연구소 김지현 부사장, 캐드앤그래픽스 최경화 국장
한국CDE학회 유병현 회장은 격려사를 통해 “지난 20년 동안 PLM 베스트 프랙티스 컨퍼런스는 국내 PLM 분야의 성공 사례를 공유하면서 제조업계의 경쟁력을 높이는 마중물 역할을 해왔다. 특히, 올해는 ‘PLM/DX 베스트 프랙티스 컨퍼런스’로 명칭을 변경하고 제조업계의 화두인 디지털 전환과 디지털 트윈, 생성형 AI의 도입을 통해서 변화하는 트렌드에 주목하고자 한다”고 전했다. 그리고 “생성형 AI와 소프트웨어 주도의 변화는 제조업계를 한 단계 도약시키는 큰 기여를 하게 될 것이며, 이러한 변화는 우리가 미래를 준비하는데 필수적인 요소가 될 것”이라면서, “지난 20년 동안 PLM 베스트 프랙티스 컨퍼런스를 공동 주최하면서 함께 성장해 온 한국CDE학회는 CAD/CAM부터 인공지능과 디지털 전환, 생성형 AI에 이르기까지 다양한 기술의 융합을 통해서 디지털 혁신을 선도하고자 한다”고 덧붙였다.
▲ 한국CDE학회 유병현 회장(한국과학기술연구원)
이번 행사에서는 ‘PLM 베스트 프랙티스 적용 사례 & DX 전략(6월 13일)’과 ‘디지털 전환을 위한 신기술과 솔루션(6월 14일)’이라는 두 개의 트랙에서 14편의 발표를 통해 다양한 내용이 소개됐다.
■ 함께 읽기 : [포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2024, 제조산업의 디지털 전환 전략과 사례 소개 (1)
AI가 가져 올 제조산업의 새로운 가치
행사 둘째 날인 6월 14일에는 SK경영경제연구소의 김지현 부사장이 ‘AI를 품은 제조업의 서비스 혁신’이라는 주제의 기조연설을 통해 “챗GPT(ChatGPT)로 대표되는 생성형 AI가 제조 공정의 혁신을 가져다 줄 수 있으며, 각종 디지털 디바이스가 생성형 AI와 결합될 때 새로운 고객 가치와 사용자 경험을 만들어낼 수 있다”고 짚었다.
기존에도 빅데이터나 AI 기술을 접목한 로봇은 존재했다. 하지만 생성형 AI의 차이점은 LLM(대규모 언어 모델)으로 사람의 말을 이해해 대화가 가능하고, LMM(대규모 멀티 모달 모델)을 통해 주변 상황을 인지할 수 있다는 것이다. 김지현 부사장은 “사람처럼 눈과 귀가 달려서 상황의 변화를 인식하고 사람의 말을 명확하게 이해해서 이를 기반으로 공장에서 작동하는 로봇이 향후 몇 년 사이에 확산된다면 제조 공정의 혁신을 더욱 가속화할 것”이라고 전망했다.
이런 제조 공정 혁신과 함께 디바이스 즉 하드웨어의 변화도 본격화될 것으로 보인다. 기존의 하드웨어가 AI를 품으면서, 이를 기반으로 하드웨어의 성능과 기능이 더욱 향상된다는 것이다. 김지현 부사장은 “AI 칩과 SLM(소형 언어 모델)이 내장된 디바이스는 더욱 다양한 사용자 경험과 편의, 새로운 가치를 제공한다. 하드웨어를 만드는 제조업체로서는 새로운 기술 혁신과 제품 혁신의 기회를 얻는다는 부분에 주목할 필요가 있다”고 말했다.
또한, 김지현 부사장은 “지난 30년간의 디지털 전환에서 아날로그와 디지털이 따로 놀았다면 앞으로의 디지털 전환은 디지털에서 구현된 것이 아날로그에서도 구현되고, 아날로그에서 반영된 것이 디지털로도 구현되면서 양쪽이 긴밀하게 결합되는 세상으로 바뀌고 있다”고 짚으면서, “제조업의 향후 과제는 공장을 어떻게 디지털 트윈이나 스마트 팩토리로 만들 것인가, 그리고 AI를 활용을 해서 어떻게 제품을 온디바이스 AI화할 것인가가 되었다고 본다”고 전했다.
▲ SK경영경제연구소 김지현 부사장
비전 AI 분야의 발전과 전망 소개
씨이랩의 이문규 책임리더는 ‘다양한 산업에서 적용되는 비전 AI의 현재와 미래’라는 주제의 기조연설에서 비전 AI의 현재와 미래, 그리고 제조 물류 분야에서 비전 AI 모델의 활용 방안에 대해 소개했다.
비전 AI(vision AI)는 컴퓨터가 시각적 세계를 해석하고 이해하는 부분에 관한 인공지능 분야이다. 비전 AI의 발전은 하드웨어, 빅데이터 알고리즘, 딥러닝 기술과 같이 진보했으며 다양한 산업에서 혁신을 이끌고 있다. 이문규 책임리더는 “비전 AI 시장은 연평균 21.5% 성장하고 있으며, 시장 규모는 457억 달러에 이를 것으로 추산된다. 비전 AI의 성장은 심층 학습, 딥페이크를 생성하는 대립 네트워크, 컴퓨터 비전의 자연어 처리 등의 기술 발전에 영향을 받고 있으며, 멀티 모달 AI 기술의 발전으로 새로운 응용 서비스가 꾸준히 나오고 있다”고 소개했다.
비전 AI 분야에서는 방대한 데이터셋, 광대규모의 데이터셋, 광범위한 데이터에 대한 증강, 모델 성능을 최적화하기 위한 훈련 체계 등의 기술이 꾸준히 발전하고 있다. 그리고, 대형 비전 모델의 발전은 이미지 객체의 탐지 및 인식뿐 아니라 복잡함 이미지를 인간 수준으로 이해할 수 있도록 가능성의 경계를 넓히는 도전을 하고 있다. 이런 기술 발전은 물류, 제조, 자율주행, 의료 이미지 분석, 감시 시스템 등 다양한 산업 분야로 비전 AI의 확장을 뒷받침하는 추세이다.
이문규 책임리더는 “씨이랩은 영상 분석을 전문으로 하는 회사로, AI 모델의 학습/추론 영역에서 GPU를 효율적으로 활용 및 관리하는 기술, 소량 또는 얻기 어려운 데이터에서 학습 데이터를 생성하는 기술을 활용해 비전 AI 모델을 만들고 실시간 영상 분석으로 인사이트를 만드는 연구에 집중하고 있다”고 소개했다.
▲ 씨이랩 이문규 책임리더
디지털 트윈부터 AI까지 기술 활용 방안 짚다
아이지피넷의 윤정두 차장은 ‘기업과 부서에서 3D 데이터 활용을 통한 3D 데이터 공유 및 디지털화 실현’이라는 주제로 발표를 진행했다.
많은 기업이 한 가지의 CAD만 갖고 있는 것이 아니라 멀티 CAD를 기반으로 하고 있다. 이는 제품 설계, 금형 설계, 해석, 가공 시뮬레이션 등 각 부서에서 사용하는 툴이 다양하기 때문이다. 그리고 OEM과 다른 CAD 환경을 구축한 경우도 있다.
윤정두 차장은 “이런 멀티 CAD 환경에서 3D 데이터를 잘 활용하기 위해서는 일방적인 변환이 아니라 각 부서에 맞게 데이터를 최적화할 필요가 있다. 이를 위해서는 중립 포맷 대신 이기종 CAD 환경에 맞춰 설계 의도와 의미를 유지할 수 있도록 데이터를 변환해야 한다. 또한 3D 데이터를 작성하는 과정에서 생길 수 있는 에러를 효과적으로 해결해서 품질을 확보하면 다운스트림 공정에서 데이터를 더욱 잘 활용할 수 있다”면서, 데이터 준비 및 최적화 작업의 시간 소모를 줄일 수 있는 툴이 중요하다고 설명했다. 또한 데이터 품질 체크, 자동 데이터 힐링 및 최적화, 속성 및 PMI 정보의 변환, 데이터 비교 리포트 작성 등 데이터 변환 툴에 필요한 핵심 기능을 소개했다.
▲ 아이지피넷 윤정두 차장
다쏘시스템코리아의 정유선 에노비아 브랜드 세일즈 부문 대표는 ‘멀티 CAD 환경에서의 협업 방안’에 대해 발표했다.
경쟁력 있는 제품을 만들기 위한 비용 절감뿐 아니라 새로운 소비자 경험을 제공하기 위한 혁신에 대한 요구가 늘면서, 제품 개발 환경의 어려움이 커지는 상황이다. 여기에 더해 최근에는 제품 개발에서 AI 적용에 대한 요구가 강화되고 있다. 기업이 제품을 개발할 때 AI 기술을 어떻게 적용할 것인지가 제품 개발의 새로운 이슈가 된 것이다.
정유선 대표는 “기업이 제품을 개발할 때 AI를 적용하기 위해서는 학습 모델이 필요하고, AI학습을 위한 양질의 데이터셋을 수집해야 한다”면서, “AI 학습을 위한 고품질의 데이터셋을 확보하기 위해 제품 개발 과정의 모든 데이터가 원활하게 연결되는 데이터 기반의 업무 환경을 조성하는 것이 중요해질 것으로 보인다”고 전했다.
다쏘시스템은 설계부터 검증/해석, 생산, 판매 이후 서비스 단계까지 모든 데이터를 연속성 있게 연결하는 플랫폼을 내세우고 있다. 정유선 대표는 “플랫폼 기반으로 협업을 하면 모든 데이터가 연결 구조를 갖기 때문에, 이슈를 빠르게 추적 및 조치할 수 있고 재사용도 쉬워진다. 결과적으로 개발 기간을 줄일뿐 아니라 인력이나 비용도 최소화할 수 있는 것이 장점”이라고 소개했다.
▲ 다쏘시스템코리아 정유선 에노비아 브랜드 세일즈 부문 대표
스노우플레이크의 박경호 영업대표는 ‘사례를 통해 알아보는 데이터 플랫폼 구축을 통한 비용 절감 및 비즈니스 성장 실현 방안’을 주제로 발표를 진행했다.
공급망 관리의 복잡성과 예측이 어려운 글로벌 환경 변화 등이 기업의 비즈니스 과제로 여겨지면서, 많은 기업이 이에 대응하기 위해 디지털 전환 및 디지털 트윈을 통한 기술 혁신을 추진하고 있다. 하지만, 이를 위한 데이터가 여러 시스템에 분산되어 있고 외부 데이터를 받아오는 데에 많은 비용이 드는 등의 어려움도 커졌다. 박경호 영업대표는 “새로운 데이터 원본을 통합하는 데에는 시간이 걸리고, 하드웨어와 소프트웨어를 갖추기 위해서는 대규모의 투자가 필요하다. 변화에 대응하기 어려운 레거시 파이프라인을 관리 및 유지하는 데에도 꾸준히 비용이 발생한다”고 짚었다.
또한 “스노우플레이크는 이러한 제조기업의 변화에 맞춰 유기적인 데이터 연계를 통해 제조 프로세스의 문제를 해결할 수 있는 시스템을 제공한다. 이를 통해 전반적인 프로세스 데이터를 관리하면서, 변화하는 제조업의 환경에 알맞게 데이터를 관리할 수 있다”고 전했다.
▲ 스노우플레이크 박경호 영업대표
팀솔루션의 서경진 상무는 ‘디지털 트윈을 위한 지능형 경량화/최적화 모델 생성 방안’에 대해 발표했다.
제조산업 및 엔지니어링 분야에서 디지털 트윈은 효율을 높이는 혁신적인 도구로 여겨지고 있으며, 이를 통해 기업은 제품 수명주기 전반에 걸쳐 더 나은 의사결정을 내릴 수 있다. 하지만, 기존의 수많은 3D CAD 모델을 디지털 트윈으로 변환하는 과정에서 많은 수작업과 개별 프로그래밍이 필요하기 때문에 비효율이 존재한다.
서경진 상무는 “3D 기반의 플랫폼에서 엔지니어링 및 제조 정보를 취합하고 활용 목적에 맞게 가공 및 전달하는 디지털 트윈을 가장 빠르게 구축하는 방법은 3D 캐드를 활용하는 것”이라면서, “이를 위해 3D 데이터를 경량화하고 묶어서 빠르게 사용자에게 보여주는 체계를 구축하는 것이 필요하다”고 짚었다. 또한, “경량화된 3D 데이터는 3D 엔진에서 가볍게 활용할 수 있도록 프레임을 높였으며, 웹과 VR/MR/XR 등 다양한 형태로 제공될 수 있다”고 덧붙였다.
▲ 팀솔루션 서경진 상무
연세대학교의 송경우 교수는 ‘생성형 AI 동향과 제조 엔지니어링 적용 방법’에 대해 발표했다.
GPT와 같은 대규모 언어 모델은 특정한 단어가 주어졌을 때 그 다음에 어떤 단어가 올 것인지를 예측하도록 학습된 모델이다. 이런 특성으로 번역을 하거나 이미지를 이해할 수 있지만, 정확한 답변을 요구하는 엔지니어링 영역에서도 이 언어 모델을 활용할 수 있을지에 대한 의문도 있다.
송경우 교수는 전문 용어가 많은 IT 개발 문서를 기반으로 GPT-4의 답변 테스트 내용을 소개하면서, “단순히 문서 내용을 기반으로 한 답변은 정확하지 않았지만, 여러 단계로 순차적인 질문을 할 때 답변의 신뢰도가 높아지는 알고리즘을 찾을 수 있었다”고 소개했다.
제조 엔지니어링이 특화된 언어 모델을 만들기 위해서 데이터 구축을 진행 중이라고 전한 송경우 교수는 “특정 작업에서 성능을 발휘할 수 있는 언어 모델을 만드는 데에는 생각보다 비용이 들지 않을 것으로 생각한다. 관건은 학습 데이터를 구축하는 것”이라고 전했다.
▲ 연세대학교 송경우 교수
한편, 5월 30일에는 엘타워에서 PLM/DX 베스트 프랙티스 VIP 간담회가 개최되었다. 이날 간담회에는 PLM/DX 업계를 리드하는 업계 관계자들이 참석, PLM 기술의 발전과 현재 상황, 그리고 발전을 위한 협력과 지원 방안에 대해 논의하는 자리를 가졌다.
기업의 핵심 요소인 PLM은 DX, AI와 결합하여 새로운 도전과제를 받고 있으며, 각 기업들은 차세대 시스템과 새로운 기술의 접목과 방향에 대해 소개했다.
관련기사 함께 보기
[포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2024, 제조산업의 디지털 전환 전략과 사례 소개 (1)
작성일 : 2024-07-02