우주발사체 하우징의 금속 적층제조 공정 시 과열 영역 예측 및 해결 방안
앤시스 워크벤치를 활용한 해석 성공 사례
이번 호에서는 태성에스엔이의 자회사로 적층제조(AM) 전문 CAE 기업인 원에이엠이 한국항공우주연구원 우주발사체 엔진의 개폐밸브 하우징에 대한 L-PBF 방식 금속 적층제조 공정 중 발생한 과열 문제를 앤시스 워크벤치 애디티브(Ansys Workbench Additive)를 통해 검토하고 해결한 사례를 소개하고자 한다.
■ 김재은
원에이엠 DfAM팀의 선임연구원으로 Ansys Additive 라이선스 및 다양한 적층제조 관련 교육을 담당하고 있으며, 적층제조 특화 설계를 통한 성공사례를 만들어가고 있다.
홈페이지 | www.oneam.co.kr
금속 적층제조 공정은 상대적으로 높은 설계 자유도 및 공정 자유도에 의해 항공우주, 모빌리티 등의 산업에서 고부가가치 제품의 생산 또는 개발 단계의 성능 검증과 제품 제작에 많이 이용된다. 특히 L-PBF(Laser-Powder Bed Fusion) 방식이 가장 널리 쓰이는데, L-PBF 방식의 금속 적층제조는 금속분말이 얇게 도포된 베드 위에 레이저로 고밀도의 에너지를 조사함으로써 제품을 생산하는 방법을 일컫는다. 균일한 두께로 얇게 도포된 금속 분말은 레이저에 의해 용융되고, 고화 및 분말 도포 과정이 반복되며 층별로 쌓임으로써 제품 형상을 구현한다.
이러한 생산 방식으로 인해 L-PBF 방식 금속 적층제조 공정에서는 필연적으로 열이 발생한다. 이 열을 안정적으로 해소하지 못한 경우 제품의 변형, 크랙(갈라짐) 등이 발생할 가능성이 높아지고, 심각한 경우 공정을 중단하는 사태에 이르게 될 수 있다. 따라서 제품의 개발 비용 손실 최소화 및 성능 만족 측면에서 적층제조 공정 중 문제를 일으킬 가능성이 높은 열 문제를 반드시 검토하고 해결해야 한다.
발사체 엔진 개폐밸브 하우징의 과열 탐색 필요성
한국항공우주연구원은 대한민국 항공우주 분야의 중심 연구기관으로, 항공기·인공위성·우주발사체의 종합 시스템 및 핵심 기술 연구 개발을 수행하고 있다. 최근에는 우리나라 최초의 달 궤도선 다누리의 개발과 국내 독자 기술로 개발한 한국형 발사체 누리호의 개발에 성공하였으며, 차세대 발사체 개발에 박차를 가하고 있다. 이러한 우주발사체의 추진력은 엔진의 점화와 연소 중단을 통해 얻는데, 이때 연소기 내에서 산화제(산소)와 연료의 공급/차단이 원활히 이루어지도록 하는 것이 개폐밸브이다.
개폐밸브는 액체산소(LOX)가 산화제로 사용되기 때문에 -183℃의 극저온 환경에서 안정적으로 작동하여야 하며 기밀, 열림 압력, 내구성 등 밸브 성능에 높은 신뢰성이 요구된다. 또한 밸브 크기 및 무게의 제한으로 인해 개발 요구조건 난이도가 높다. 이러한 개발 요구조건을 만족시키기 위해 개폐밸브 작동조건 및 환경을 고려한 설계와 함께, 극저온 취성을 포함한 우수한 성질의 소재로 제작하는 것이 필요하다.
앞선 요구조건을 만족하도록 연구개발 및 해석을 통해 개폐밸브 하우징은 위상최적화 기법을 도입하여 설계되었고(그림 1) 위상 구조가 복잡해짐에 따라 L-PBF 방식의 금속 적층제조 공정으로 제작이 결정되었다.
그림 1. 한국항공우주연구원의 개폐밸브 하우징
L-PBF 방식의 금속 적층제조 공정은 얇은 금속 분말 층을 레이저로 용융한 뒤 고화시키는 과정을 반복하여 쌓음으로써 제품을 생산한다. 때문에 금속 적층제조 공정 중에 필연적으로 열이 발생한다. 이렇게 발생된 열의 대부분은 전도를 통해 제품의 하단, 즉 베이스플레이트 쪽으로 이동하며 배출된다. 그런데, 이때 열을 충분히 해소시키지 못하는 경우 과열 문제가 발생할 가능성이 높다. 주로 베이스플레이트 쪽으로 열을 전도시키는 매개체가 부족하거나, 제품의 단면적 변화가 급격하여 열 전달의 병목 구간이 존재하는 경우 나타난다.
이러한 과열 및 적층 레이어 간의 높은 열 구배는 잔류응력을 유발하는데, 이는 제품의 과도한 변형 및 크랙(갈라짐)을 일으키거나 제조 공정이 중단되는 사태에 이르게 될 수 있다. 따라서, 금속 적층제조 공정에 들어가기 앞서 문제를 초래할 가능성이 있는 과열 영역에 대해 사전 검토가 필요하다.
그림 2. 과열에 의한 파트 변형 예
추가로, 금속 적층제조 공정에서 열 전도도가 낮아 열 배출이 용이하지 않은 소재를 사용할 경우 과열에 더 유의해야 한다. 대표적으로 철 합금, 니켈 합금, 티타늄 합금 등이 있는데, 이 소재들은 고강도, 극저온, 인체 적합성 등 특수한 사용 환경 및 조건에 의해 항공우주, 모빌리티, 의료 등의 분야에서 활용도가 높다.
그림 3. Ansys Additive Manufacturing Materials의 열전도도 비교
한국항공우주연구원의 개폐밸브 하우징도 마찬가지로 -183℃의 액체산소(LOX) 산화제를 사용하고 내압, 진동, 열변형을 견뎌야 한다는 운용 환경에 의해, 니켈 합금인 Inconel 소재로 금속 적층제조 공정을 수행하게 되었다. 따라서, 위상최적설계를 통해 형상 복잡도가 높아 열 배출이 어려워진 것에 더해, 열전도도가 낮은 Inconel 소재 적용으로 과열에 대한 위험성이 높아졌다. 또한 제품의 크기가 커서 대형 장비로 제작해야 되기 때문에, 소형 대비 제작 실패 시 발생 비용이 높다.
그러므로 개폐밸브 하우징은 금속 적층제조 공정 제작 난이도가 매우 높고 제작 실패 시 발생 비용이 크기 때문에, 사전 검토 단계에서 과열 영역 탐색을 도입하고 문제 발생 가능성이 높은 부분에 대해 예방할 필요가 있다. 따라서 이번 호에서는 앤시스 워크벤치 애디티브를 활용하여 해석적으로 과열 영역을 확인하고, 실제 제작된 제품과 비교함으로써 신뢰성을 확보하고자 하였다.
■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-07-04