• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "GM"에 대한 통합 검색 내용이 2,266개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
스노우플레이크, “제조업체의 데이터 협업 플랫폼 도입 2년 간 4배 이상 증가”
스노우플레이크는 자사의 ‘제조 산업을 위한 AI 데이터 클라우드(AI Data Cloud for Manufacturing)’가 자동차 산업에 특화된 설루션을 중심으로 확장하며 높은 성장세를 보이고 있다고 발표했다. 스노우플레이크에 따르면, 2023년 4월을 기준으로 2년간 전 세계 제조 산업군에서 데이터 애플리케이션 및 협업을 위해 스노우플레이크의 플랫폼을 도입한 비율은 416% 증가했고, 데이터 분석을 위해서는 185%, 고급 예측 모델링 및 AI 앱과 같은 데이터 사이언스 목적으로는 188% 늘었다.  이와 같은 제조업체의 데이터 기반 비즈니스 인사이트 확보에 대한 높은 수요에 따라, 스노우플레이크는 AI 데이터 클라우드를 자동차 산업의 특수한 요구사항을 충족할 수 있도록 정밀하게 조정하며 글로벌 제조업체의 디지털 전환 및 AI 혁신을 뒷받침하고 있다고 전했다. 커넥티드 및 소프트웨어 정의 차량(Software Defined Vehicle : SDV), 자율주행, 전기차, 인더스트리 4.0 등 자동차 산업 트렌드에 맞춰 스노우플레이크는 데이터 공유 및 AI 지원 기능으로 완성차 제조업체(OEM), 부품업체, 유통 및 서비스업체 전반의 협업과 생산 공정을 최적화하고 있다.     특히 스노우플레이크를 활용하는 자동차 관련 기업은 차량 설계부터 생산, 서비스, 보증에 이르는 전체 라이프사이클 데이터를 통합하고 사일로를 제거할 수 있게 된다. 이를 통해 운영 효율을 높이고 고객 경험을 향상시킨다. 또한 스노우플레이크 아키텍처로 SDV와 자율주행차에서 생성되는 방대한 커넥티드 데이터를 안정적으로 활용하고 확장할 수도 있다. 누적된 데이터는 스노우플레이크 마켓플레이스에서 판매할 수 있어 신규 수익원이 되기도 한다. 스노우플레이크 데이터 플랫폼은 조직 전반에서 AI·ML 기능을 손쉽게 활용할 수 있도록 해, 예측 모델 개발시간을 단축하고 차량 설계 및 유지보수의 새로운 패러다임을 주도할 수 있다. 공급망 전반의 실시간 가시성도 제공한다. 수요 예측의 정확도를 높이고 재고 관리와 비용 효율성을 높여 데이터 기반의 의사결정을 현실화할 수 있다. 스노우플레이크의 팀 롱(Tim Long) 제조 산업 부문 글로벌 총괄은 “커넥티드 및 자율주행 등 최신 차량은 방대한 데이터를 생성하고 있으며, 자동차 업계는 이를 효과적으로 처리하면서도 신뢰할 수 있는 AI 설루션이 필요해졌다”면서, “스노우플레이크의 자동차 산업 설루션은 제조 전문성을 바탕으로 자동차 기업이 데이터를 통합하고 커넥티드 차량 개발 계획을 확장하며, 시장 변화에 빠르게 대응할 수 있도록 지원한다”고 말했다. 지멘스와 같은 글로벌 기술 및 제조 기업은 스노우플레이크를 활용해 AI와 고급 분석으로 전사적 운영을 혁신하는 동시에 엄격한 보안 및 거버넌스 기준을 유지하고 있다. 전 세계 주요 완성차 제조업체(OEM)의 약 80%가 스노우플레이크 플랫폼을 활용 중이며, 닛산, 카맥스(CarMax), 콕스 오토모티브(Cox Automotive), 펜스케 로지스틱스(Penske Logistics) 등은 실시간 커넥티드 차량의 인사이트와 안전한 데이터 협업으로 운영 효율을 높이고 있다. 스노우플레이크는 이외에도 액센츄어, 아마존웹서비스, 딜로이트, EY 등 글로벌 파트너와 함께 자동차 산업에 특화된 AI 및 데이터 설루션을 확장하고 있으며, 지멘스 디지털 인더스트리 소프트웨어, 블루욘더(Blue Yonder), 랜딩AI(LandingAI), 멘딕스(Mendix), 시그마(SiGMa) 등 다양한 파트너사가 스노우플레이크 플랫폼에서 SDV 개발, AI 기반 품질 관리, 공급망 최적화 등 전문 설루션을 개발하며 생태계를 확장하고 있다고 밝혔다.
작성일 : 2025-05-07
지멘스, 모든 규모의 기업이 PLM을 활용할 수 있도록 팀센터 X 확장
지멘스 디지털 인더스트리 소프트웨어는 모든 규모의 조직이 SaaS(서비스형 소프트웨어) 기반 PLM(제품 수명주기 관리)을 활용하여 제조 산업 전반의 디지털 전환과 혁신을 촉진할 수 있도록 팀센터 X(Teamcenter X) 소프트웨어의 새로운 버전을 출시한다고 발표했다. 새로운 팀센터 X 제품군은 기계, 전기, 전자 개발을 아우르는 프로세스 관리 및 크로스 도메인 기능 등 다양한 고급 기능을 사전 구성된 형태로 제공한다. 팀센터 X는 기존 두 종류의 버전에 새롭게 두 가지를 추가해, 총 네 가지 버전으로 제공된다.     팀센터 X 에센셜즈(Teamcenter X Essentials)는 간편한 배포와 낮은 운영 비용을 고려하여 설계되었으며, 기계 설계에 집중하는 기업을 위한 데이터 관리 기능을 제공한다. CAD 데이터 관리, 제품 구조 및 리비전 관리, 사용 위치 검색, 체크인/체크아웃, 3D 보기 및 마크업 기능이 포함되어 있으며, 기업의 성장에 따라 확장성을 지원한다. 새롭게 출시된 팀센터 X 스탠더드(Teamcenter X Standard)는 에센셜즈 버전을 기반으로 단순 변경 관리, 프로젝트 일정 관리, 문서 관리, 보고서 생성 등 추가적인 PLM 기능을 포함한다. 모든 기능은 사전 구성된 형태로 제공되며, 고객의 요구에 맞게 조정할 수 있다. 역시 새롭게 출시된 팀센터 X 어드밴스드(Teamcenter X Advanced)는 제품 수명 주기 전반에 걸쳐 기계, 전자 및 전기 설계 간의 크로스 도메인 협업이 필요한 기업을 지원한다. 전기 및 전자 설계 통합 및 분류를 위한 데이터 관리 기능이 추가되었으며, 마찬가지로 사전 구성된 상태로 제공되고 필요 시 맞춤화할 수 있다. 팀센터 X 프리미엄(Teamcenter X Premium)은 클라우드 공급자를 선택할 수 있으며, 팀센터의 전체 기능을 활용하고자 하는 기업을 위한 포괄적 PLM 설루션이다. 엔터프라이즈 BOM, 비즈니스 시스템 통합, 모델 기반 시스템 엔지니어링(MBSE), 제조 계획, 품질 및 컴플라이언스 관리, 제품 비용 및 서비스 수명 주기 관리까지 포함한다. 또한 산업용 기계, 의료기기, 반도체 등 특정 산업군을 위한 사전 구성 설루션도 제공된다. 지멘스 디지털 인더스트리 소프트웨어의 프랜시스 에반스(Frances Evans) 라이프사이클 협업 소프트웨어 수석 부사장은 “팀센터 X의 이번 확장은 SaaS PLM을 모든 규모의 기업이 보다 쉽게 접근할 수 있도록 하려는 지멘스의 사명을 이어가는 것”이라면서, “새로운 팀센터 X의 기능은 더 많은 고객이 빠르게 PLM 도입을 시작하고, 이후 팀센터 포트폴리오 전반을 통해 비즈니스 과제를 확장해 나갈 수 있도록 돕는다”고 말했다.
작성일 : 2025-05-02
수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (3)   이번 호에서는 심센터 히즈(Simcenter HEEDS)를 사용하여 수집된 외부 데이터를 시각화하고 분석하는 데 초점을 맞추고, 데이터 시각화의 중요성과 분석 기법의 활용 방안을 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   데이터 분석의 중요성 오늘날 데이터는 우리의 일상과 비즈니스 운영에서 점점 더 중요한 역할을 하고 있다. 수집되고 측정된 데이터의 양이 증가하면서 이를 효과적으로 처리하고 분석하는 방법은 더욱 필요해지고 있다. 이러한 변화 속에서, 지멘스의 심센터 히즈는 강력한 데이터 분석 및 시각화 기능을 제공하여 다양한 산업 분야에서 최적의 해결책을 찾는 데 기여하고 있다. 이번 호에서는 히즈의 기능을 효과적으로 활용하여 어떻게 복잡한 데이터를 이해하고 의미 있는 인사이트를 얻을 수 있는지 살펴볼 것이다.   히즈의 데이터 분석 기능 히즈의 Discover(디스커버) 탭은 사용자가 데이터 사이의 관계 및 최적화 가능성을 탐구할 수 있도록 다양한 도구를 제공한다. Discover 기능은 주요한 데이터 분석 및 이해를 도와주는 여러 방법을 포함하고 있다.    그림 1   다음은 각각의 기능에 대한 설명이다.  Closest : 특정 데이터 포인트에 가장 가까운 변화를 식별한다. 이를 통해 최적화 과정에서의 데이터 민감성을 이해하고 결정에 도움을 줄 수 있다.  Similar : 사용자가 선택한 기준에 따라 유사한 데이터 집합을 찾는 기능이다. 이는 집합의 규칙 또는 모델을 파악하는 데 유용하다. Clusters : 데이터 세트를 서로 연관된 그룹으로 분류한다. 군집화 기법을 통해 데이터의 패턴을 식별하고 알고리즘에 의한 데이터 이해를 개선할 수 있다.  Trade-offs : 다수의 설계 목표 간의 상충 관계를 분석한다. 이를 통해 각각의 설계 대안이 어떻게 특정 목표를 달성하는지에 대해 명확하게 이해할 수 있다.  Patterns : 데이터 내의 반복되는 경향이나 구조를 발견하여 예측 및 모델링에 도움을 주는 기능이다. 패턴 인식은 정보의 신뢰도를 높이는 데 중요하다.  Preview History : 사용자가 수행한 변경이나 실행의 기록을 미리 보면서 데이터 분석의 이력을 관리할 수 있다.  Design Set : 여러 디자인 시나리오를 만들고 비교하여 최적의 설계를 도출하는 데 도움을 준다.  Performance & Plot : 데이터의 성능을 평가하고 시각적으로 플롯하여 분석 결과를 명확하게 표현한다.  Discover 탭의 이러한 기능은 히즈 사용자가 데이터를 깊이 이해하고 시뮬레이션 최적화 과정에서 효과적인 의사 결정을 내리도록 돕는다. 이를 바탕으로 보다 정확하고 신뢰성 있는 설계와 분석 결과를 도출할 수 있다.   데이터 분석을 위한 예제   그림 2    목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(&siGMa;) ≤ 200 MPa  최대 끝단 처짐(δ) ≤ 2 mm  설계 변수 Length : 5,000 mm  Load P : 6,500 N  E : 200 MPa  H : 50 mm ≤ H ≤ 100 mm  h1 : 5 mm ≤ h1 ≤ 30 mm  b1 : 50 mm ≤ b1 ≤ 100 mm  b2 : 5 mm ≤ b2 ≤ 50 mm 히즈의 Discovery Method를 사용하여 분석할 데이터는 우리가 지금까지 계속 예제로 사용한 외팔보의 처짐 문제를 기반으로 Adaptive Sampling Study(어댑티브 샘플링 스터디)에서 500개의 데이터를 생성하여 사용할 것이다. 아니면 독자들이 가지고 있는 데이터를 사용해도 괜찮다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
2025년 AI 산업 경제와 기술 트렌드 전망
이 글에서는 최신 자료와 연구를 바탕으로 2025년 AI 산업 경제와 주요 기술 트렌드를 전망하고자 하며, 이를 통해 AI가 제공할 기회와 해결해야 할 도전 과제를 균형 있게 분석하고자 한다.   2025년은 인공지능(AI)이 경제와 기술 전반에 걸쳐 혁신을 주도하며, 산업 구조와 일상생활에 깊은 영향을 미칠 것이며, 전 세계 산업 경제와 기술 혁신의 중심축으로 자리 잡는 해가 될 것이다. 코로나19 팬데믹 이후 가속화된 디지털 전환과 AI 기술의 융합은 사회 전반에 큰 변화를 가져왔다. 특히, 제조, 금융, 헬스케어, 물류, 교육 등 다양한 산업 분야에서 AI는 단순히 비용 절감 도구를 넘어 새로운 가치를 창출하고, 기존 비즈니스 모델을 재정의하고 있다. 최근 예측 자료에 의하며, AI 에이전트, 엣지 AI, AI 사이버 보안, AI 기반 로봇 등이 성장세에 위치하고 있다.    1. AI 산업 경제 전망 2025년은 경제 성장의 주도 동력으로서의 AI, 글로벌 AI 기술 ,그리고 AI가 가져올 고용과 직업의 변화 등에서 다양한 AI 산업 경제 변화를 예상해 볼 수 있다.  IDC의 보고서에 따르면, 2025년 전 세계 기업들의 AI 솔루션 지출은 약 3,070억 달러에 달할 것으로 예상되며, 이는 2028년까지 연평균 29.0%의 성장률로 6,320억 달러에 이를 것으로 전망하였다. 이러한 투자는 AI 기술이 다양한 산업 분야에서 핵심적인 역할을 할 것임을 시사한다.  글로벌 컨설팅 기업 PwC의 보고서에 따르면, AI는 2030년까지 세계 GDP를 약 15.7조 달러를 증가시킬 것이며, 이는 연평균 14% 이상의 성장률에 해당된다고 예측했다. 이는 AI 기술이 단순히 비용 절감 도구를 넘어 새로운 부가가치를 창출하는 데 중요한 역할을 하고 있음을 보여주는 예측이다.  PwC는 보고서에서 AI에 대해 몇 가지 강조한 점이 있는데, 첫째, AI는 글로벌 경제의 생산성과 GDP 잠재력을 변화시킬 수 있으며. 이를 실현하기 위해서는 다양한 유형의 AI 기술에 대한 전략적 투자가 필요하다고 하였다. 둘째, 노동 생산성 향상이 초기 GDP 증가를 주도할 것이며, 기업들은 AI 기술을 활용해 노동력의 생산성을 ‘증강(auGMent)’시키고 일부 작업과 역할을 자동화하려 할 것이라고 하였다. 셋째, 2030년까지 전체 경제적 이익의 45%는 제품 개선에서 비롯될 것이며, 이는 소비자 수요를 자극하게 되어 AI가 더 다양한 제품을 제공하고, 시간이 지남에 따라 개인화, 매력도, 경제성을 높이기 때문이라고 하였다. 넷째, AI로 인한 가장 큰 경제적 이익은 중국(2030년 GDP 26% 증가)과 북미(14.5% 증가)에서 발생할 것이며, 이는 총 10.7조 달러에 달해 전 세계 경제적 영향의 약 70%를 차지할 것으로 전망하였다. 특히, 스마트 팩토리, 자동화 물류 시스템, 지능형 고객 서비스 등이 AI 기술 적용의 대표적인 사례로 들 수 있다. 예를 들어, 독일의 Siemens는 자사의 스마트 팩토리에서 AI를 활용해 제조 공정을 최적화하여 생산성을 20% 이상 향상시켰으며, 물류 업계에서는 Amazon이 자율주행 로봇과 AI 기반 물류 분석을 통해 배송 시간을 단축시킨 바 있다.   ***상세 내용은 PDF로 제공됩니다.   조영임 교수 / 가천대 컴퓨터공학과
작성일 : 2025-04-18
근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (2)   연재를 통해 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 과정에서 심센터 히즈(Simcenter HEEDS)를 활용하는 방법에 대해 살펴보고자 한다. 이번 호에서는 최적화 기법 중에서 근사모델 기반 최적화와 직접 검색 기반 최적화에 대해 짚어보고, 심센터 히즈를 사용하여 근사 및 직접 최적화를 진행하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   최적화 기법의 중요성 최적화는 다양한 산업 분야에서 설계의 성능을 개선하고 자원을 효율적으로 활용하는 데 있어 필수 과정이다. 특히, 복잡한 공학 문제나 다목적 설계에서 최적화는 품질 향상과 비용 절감을 동시에 달성하는 핵심 도구로 활용된다. 현대 산업에서는 제품 개발 주기의 단축과 고성능 요구가 증가함에 따라, 신뢰성 있는 최적화 기법의 선택이 더욱 중요해지고 있다. 근사모델 기반 최적화와 직접 검색 기반 최적화는 이러한 요구를 충족하기 위해 자주 사용되며, 각 접근법은 문제의 특성과 목표에 따라 상이한 성능을 보인다.   근사모델 기반 최적화와 직접 검색 기반 최적화의 개요 근사모델 기반 최적화는 복잡한 시뮬레이션이나 계산 비용이 큰 문제에서 실험 데이터를 바탕으로 근사함수를 생성한 후, 해당 함수를 활용해 최적해를 탐색하는 방법이다. 근사함수를 생성하기 위해서는 주로 반응표면법(RSM), 머신러닝 모델 등이 사용되며, 계산 자원을 절감하고 빠른 최적해 도출이 가능하다는 장점이 있다. 반면, 모델 정확도에 따라 해의 품질이 좌우되고, 고차원 문제에서 모델링이 어려울 수 있다. 직접 검색 기반 최적화는 목적 함수의 수학적 형태를 몰라도 입력과 출력 간 관계를 직접 탐색하며 최적해를 구하는 방법이다. 비선형성이나 불연속성이 있는 문제에도 적용할 수 있는 장점이 있지만, 계산 비용이 크고 수렴 속도가 느릴 수 있어서 고비용 시뮬레이션 환경에서는 활용에 한계가 있을 수 있다.   최적화를 위한 예제 지난 호에서 사용한 외팔보의 처짐 문제를 사용하겠다. 외팔보의 체적을 최소화하는 최적화 문제를 다음과 같이 정의하였다. 빠른 계산을 위해 파이썬(Python)으로 계산한다.   그림 1   목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(&siGMa;) ≤ 200 Mpa 최대 끝단 처짐(δ) ≤ 2 mm 설계 변수 Length : 5,000 mm Load P : 6,500 N E : 200 Mpa H : 50 mm ≤ H ≤ 100 mm h1 : 5 mm ≤ h1 ≤ 30 mm b1 : 50 mm ≤ b1 ≤ 100 mm b2 : 5 mm ≤ b2 ≤ 50 mm 외팔보의 체적, 응력, 처짐량은 다음의 관계식으로 계산한다. Volume = [2*h1*b1 + (H – 2*h1)*b2]*L Stress = P*L*H/(2*I) Deflection = P*L3/(3*E*I) where : I = 1/12*b2*(H-2*h1)^3 + 2*[1/12*b1*h13 + b1*h1*(H-h1) 2/4]   히즈 기본 설정 파이썬 포털(Python portal)을 사용하여 예제의 Input/Output file을 등록하였다.    그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
앤시스 플루언트를 이용한 혈류 해석 워크플로
앤시스 워크벤치를 활용한 해석 성공 사례   다양한 산업에서 제품 설계 및 안정성 평가를 위한 실험에 많은 비용과 노력이 소요됨에 따라, 가상의 공간에서 사용자가 원하는 실험 환경을 구성하여 결과를 도출하는 방식이 증가하고 있다. 또한, 해석을 많이 활용하지 않던 산업군에서도 시뮬레이션을 도입하는 단계에 있다. 그 중 바이오 산업에서는 환자의 CT 정보를 기반으로 한 혈류 해석과 임플란트 해석에 대한 수요가 증가하고 있다. 해석 결과를 바탕으로 안정성과 구조적 성능을 평가하고, 이를 임상 결과 데이터로 보완하는 과정이 이루어지고 있다. 이번 호에서는 3D 슬라이서(3D Slicer)와 앤시스 플루언트(Ansys Fluent)를 활용하여 혈관 모델링부터 혈류 해석까지의 워크플로를 소개하고자 한다.   ■ 김지원 태성에스엔이 FBU-F1팀의 매니저로, 열 유동 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   현재 대부분의 기업이 시뮬레이션을 적극 적용하고 있으며, 특히 바이오 산업에서는 환자의 CT 정보를 기반으로 한 혈류 분석에 대한 수요가 증가하고 있다. 이러한 분석은 혈관 협착증 및 인조혈관의 안정성과 구조적 성능을 평가하는 새로운 방법으로 중요한 역할을 한다. CT와 MRI 기술의 발달로 체내 모습을 3D 영상으로 시각화할 수 있게 되면서, 유체역학과 의학 간 융합 연구의 발전이 기대되고 있다. 특히 혈관 질환의 발생 원인을 규명하기 위해 혈류 해석을 기반으로 혈류 역학적 특성을 분석하는 추세다. 또한, 비침습적 방법을 활용하여 환자의 혈관을 진단하고 평가하는 기술이 주목받고 있다. 이번 호에서는 혈류 해석을 수행하기 위해 주요 혈관 모델링 툴을 활용한 혈관 추출 방법, 혈액의 물성치 설정, 그리고 경계 조건 설정 과정에 대해 다루고자 한다.   전처리(Pre-Processing) 대동맥 혈관의 3차원 영상 및 모델링 앤시스의 모델링 툴에는 환자의 3D CT 영상을 STL 파일로 직접 추출하는 기능이 존재하지 않는다. 따라서 이번 호에서는 상용 프로그램인 3D 슬라이서를 사용한다. 3D 슬라이서는 의료 이미징 데이터를 시각화하고 분석하는 오픈소스 소프트웨어 플랫폼으로 영상 분석, 3D 모델링, 디자인 등을 통해 종합적인 의료 영상 처리를 수행하는 전문 소프트웨어다. 이를 통해 DICOM 파일을 기반으로 3D 형상을 추출할 수 있다.    그림 1. 3D 슬라이서에서 혈관 추출   <그림 1>은 3D 슬라이서를 이용하여 혈관을 추출한 과정이다. CT 촬영 시 혈관 조직을 명확하게 구분하기 위해 조영제를 주입하면, HU(Hounsfield Units) 수치로 표현되어 특정 HU 값 범위에서 혈관을 쉽게 추출할 수 있도록 구성된다. 또한, 유동 해석을 위해 격자를 생성하는 과정에서 모델링 단계에서 패싯(facet)을 스무딩(smoothing)하는 옵션을 적용하여 형상을 정리한다. 혈관 모델링이 완료된 후, DICOM 파일을 STL 파일로 변환한다.    대동맥 혈관의 3차원 영상 및 모델링 앤시스 스페이스클레임(Ansys SpaceClaim)에서 변환한 STL 파일을 가져오면 패싯을 확인할 수 있으며, 이를 볼륨(volume) 형태로 변환하는 과정을 진행한다. 볼륨 형태로 변환하기 위해 모델을 확인하면, <그림 2>와 같이 돌출되거나 뚫린 패싯 등 변환이 어려운 영역이 존재한다.   그림 2. Faulty facet areas   그림 3. Converting from facet to volume   솔브(Solve) 혈액 물성치 이번 호에서는 혈류 해석을 수행하기 위해 플루언트를 사용하며, 혈액의 거동을 수치적으로 해석하기 위해 혈액의 밀도와 점성 계수를 입력한다. 혈액은 전단 응력에 따라 점도가 변하는 비뉴턴 유체이며, 이러한 특성을 반영하기 위해 Carreau 모델을 적용한다. Carreau 모델은 비뉴턴 유체의 점성 거동을 정의하는 구성 방정식이며, 이는 <그림 4>의 수식과 같이 계산된다.   그림 4. Carreau 모델 수식     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
[온에어] 시뮬레이션과 디지털 트윈을 통한 전기차 시장 경쟁력 확보
캐드앤그래픽스 CNG TV 지식방송 지상 중계   지난 3월 6일 CNG TV 웨비나는 ‘시뮬레이션과 디지털 트윈을 통한 전기차 시장 경쟁력 확보’를 주제로, 지멘스의 시뮬레이션 및 디지털 트윈 기술을 활용한 전기차 시장 경쟁력 강화 방안에 대해 소개했다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   ▲ 제조업체가 직면한 도전 과제(환경 영향, 가속화된 성장, 규제 등)   전기차 시장의 성장 둔화와 규제 강화 속에서 OEM과 부품사는 기술 혁신과 시장 요구 충족이라는 과제에 직면해 있다. 이에 지멘스는 가상 개발 환경 구축, 설계 최적화, 생산 관리 등 다양한 설루션을 제공함으로써 이러한 어려움을 극복하는 동시에 전기차 시장의 경쟁력을 강화하고자 노력하고 있다.    지멘스, 전기차 시장 경쟁력에 초점 맞춰 지멘스 디지털 인더스트리 소프트웨어의 최승현 영업대표는 “지멘스는 전기차 개발 프로세스 전반에 걸친 혁신을 통해 기업이 시장에서 성공할 수 있도록 지원하는 것을 목표로 하고 있다”며, “이번 웨비나에서는 배터리 사이징, 열 관리, 모터 및 구동계 설계 등 전동화 차량 개발 전반에 걸쳐 지멘스의 기술력이 활용될 수 있음을 보여주고자 한다”고 말했다. 그는 전기차 시장의 둔화, 강력한 배출 규제, 관세 이슈 등의 어려움 속에서 지멘스가 시뮬레이션과 디지털 트윈 기술을 통해 시장 경쟁력을 확보할 방안을 제시했다. 또한 새로운 혁신 프로세스를 설계하고 최적화하는 과정에서 GM의 제로 프로토타입 개발과 같은 가상 개발이 중요하다고 소개했다. 또한 전기차의 배터리 사이징과 관련해서 차량 요구 사항에 맞춰 배터리 용량과 전압을 예측하고 검증하는 과정이 필수라고 말했다.   전기차 개발을 위한 디지털 트윈과 시뮬레이션 활용 전기차는 특정 주행 시나리오에서 냉각 전략 및 에너지 관리 효율성을 검증하기 위해 시뮬레이션을 실시해야 한다. MIMO(멀티 인풋, 멀티 아웃풋) 개념을 적용한 통합 열 관리 시스템이 전기차에 탑재되며, 여러 냉각 및 난방 전략의 복합적 검증이 필요하다. 최승현 영업대표는 “3D 시뮬레이션을 통해 냉각 시스템 전략의 효율성을 검증함으로써 전기차의 에너지 관리가 최적화될 것으로 예상된다”며, “전기차 열 폭주 현상을 예측하고 이에 따른 안전한 설계를 통해 승객의 안전성을 확보할 수 있다”고 설명했다. 지멘스는 디지털 트윈 기술을 활용하여 열폭주와 관련된 설루션을 제공하며, 이를 통해 전기차 성능 및 안전성을 개선할 수 있도록 지원하고 있다. 지멘스의 PLM 시스템은 전기차 개발의 기본 구조를 형성하며, 각 요소의 아키텍처와 스펙을 정의하는 역할을 한다. 전기차의 성능을 검증하기 위해 모터, 인버터, 기어박스 등 여러 요소의 물리적 테스트가 필요하며, 이를 통해 최적화된 파워트레인을 개발할 수 있다. 또한, 프로젝트의 요구 사항과 스펙을 관리하며, 데이터 통합을 통해 개발 속도를 높이고 검증을 빠르게 수행할 수 있다. 최승현 영업대표는 “시뮬레이션 모델에서 다양한 시나리오를 검증하여 실제 주행 조건에서 발생할 수 있는 소음, 진동 등을 예측할 수 있는 체계를 구축한다”며, “지멘스는 디지털 트윈 모델과 실제 제어기를 연동하여 가상 환경에서 전동 카트를 운전하며 다양한 성능 특성을 테스트할 수 있도록 하고 있다”고 설명했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-04-02
[신간] 돈이 되는 AI 영상만들기
심동엽 지음 / 2만 2,000원 / 비엘북스 영상은 가장 강력한 콘텐츠 중 하나다. 여기에 AI 기술이 더해지면 가능성은 상상 이상이 된다. <돈이 되는 AI 영상 만들기>는 AI 영상으로 실제 수익을 내는 법을 다룬 책이다. 이 책은 단순히 AI를 적용한 기술을 나열하거나 '앞으로 유망할 것이다'라는 추상적 전망 대신, 지금 당장 가능한, 실행 가능한 전략에 대해 구체적으로 제시했다.  전문적인 장비와 편집 기술이 필요했던 영상 제작을 이제는 AI를 활용해 단 몇 분 만에 가능한 시대가 되었다. 텍스트에서 영상을 만들어주는 Text-to-Video(T2V), 이미지를 영상으로 변환하는 Image-to-Video(I2V), 기존 영상을 새롭게 변형하는 Video-to-Video(V2V) 기술까지 등장해 영상 제작의 패러다임이 완전히 바뀌었다. AI는 더 이상 단순한 도구가 아니라, 크리에이터의 생산성을 극대화하는 강력한 파트너가 되었다는 것을 실감하는 요즘이다. 이 책에서는 돈이 되는 AI 영상제작에 필요한 5가지 전략을 제시했다. 영화제 및 공모전 수상, 교육다큐 분야 제작, 광고 프로덕션, 뮤직비디오의 음원화, 영상변환 서비스 등 AI 영상에 대한 막연한 기대나 감탄을 넘어, 실제 수익화로 이어질 수 있는 방향에 대해 소개했다.  이 책에서는 GPT를 활용한 프롬프트 작성법부터 Midjourney를 활용한 이미지 관리법, 그리고 올바른 BGM과 효과음 제작 등 AI를 활용한 다양한 콘텐츠를 제작을 통해 어떻게 수익 모델로 만들 것인가에 대해 설명했다. 
작성일 : 2025-04-02
캐디안, 법무복지공단 경남지부에 국산 CAD 소프트웨어 기증
CAD 프로그램 개발 기업인 캐디안은 한국법무보호복지공단 경남지부 기술교육원에 교육용 캐디안(CADian) 소프트웨어를 기증했다고 밝혔다. 한국법무보호복지공단은 형사처분이나 보호처분을 받은 사람 중, 자립을 위해 보호가 필요한 이들에게 맞춤형 기술교육을 제공하며, 보호 대상자들이 건전하게 사회에 복귀할 수 있도록 돕는 기관이다. 캐디안은 기술교육원 훈련생이 정품 CAD 소프트웨어로 안정적인 도면 설계 교육을 받을 수 있는 환경을 제공함으로써, 실습을 마친 훈련생들이 양질의 일자리 취업과 창업을 통해 안정적인 자립을 할 수 있도록 돕기 위해 이번 기부를 결정했다고 소개했다. 캐디안의 조병찬 상무는 “뜻깊은 일에 동참하게 되어 매우 기쁘다. 사회 복귀를 위해 노력하는 법무보호 대상자에게 실질적인 도움이 될 수 있도록 계속 지원하겠다”고 전했다. 한국법무보호복지공단의 문성관 경남지부장은 “이번 기증에 동참해 주신 조병찬 상무님과 김두호 대표님께 깊은 감사의 말씀을 드린다. 법무보호 대상자의 자립을 위한 지속적인 지원을 아끼지 않겠다”고 말했다.     한편, 오토캐드 DWG 기반 도면을 양방향으로 호환하는 국산 CAD 프로그램을 개발하여 공급하는 캐디안은 인공지능(Object Detection 및 Semantic SeGMentation) 기술을 활용해 건축 평면도에서 벽, 창호, 싱크대, 욕조 등의 객체 정보를 추출하고, 이를 기반으로 적산, 검증, 개보수, 배선 및 배관, 인테리어, 소방·방범 등 다양한 분야에서 요구하는 BOM(자재명세서)과 새로운 CAD 도면 파일을 생성할 수 있는 AI 설루션인 ‘CADian AI-CE’를 개발한 바 있다. AI-CE 설루션은 건설 산업의 견적 수주용 적산, 플랜트 및 디스플레이 산업의 P&ID 도면 정산, 전기 포설 및 배선 작업을 위한 객체 인식 및 도면 재생성 등 다양한 분야에 적용될 수 있다.
작성일 : 2025-04-01