• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "DX"에 대한 통합 검색 내용이 2,138개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
제조기업 디지털 트윈 기반 협업 플랫폼, CP(Collaboration Platform) 
주요 디지털 트윈 소프트웨어   제조기업 디지털 트윈기반 협업 플랫폼, CP(Collaboration Platform)    개발 및 자료 제공 : 디엑스티, contact@DXt.co.kr, https://DXt.co.kr, www.youtube.com/@DXTKoreaInc   클라우드 기반 솔루션 기업인 디엑스티(DXT)는 제조 및 엔지니어링 기업들이 디지털 트윈(Digital Twin) 개념을 기반으로 실험 데이터와 품질 관리 데이터, 엔지니어링 업무 데이터의 통합적 협업 및 관리를 가능하게 하는 클라우드 기반 협업 솔루션, CP(Collaboration Portal)를 제공한다. CP는 엔지니어링 업무, 품질 관리, 연구 및 실험 데이터를 통합적으로 관리하고 축적하여 향후 디지털 트윈(Digital Twin) 환경에서 정확한 가상 검증과 데이터 기반 예측을 수행할 수 있는 기반을 마련한다. 1. 주요 특징 CP는 엔지니어링 업무(CP Eng'r Work), 품질 관리(CP Quality), 연구 및 실험 관리(CP Experiment) 기능을 통합하여 기업이 다양한 업무 프로세스를 하나의 플랫폼에서 효율적으로 관리할 수 있도록 지원한다.  또한 기업의 기준 정보 관리를 통해 데이터 일관성을 유지하고, 업무에 필수적인 워크플로우를 맞춤형으로 제공하여 효율성을 극대화한다. 또한 '협업'을 중심으로 한 업무 프로세스를 설계하고 관리할 수 있는 유연한 협업 플랫폼으로서, 기업의 다양한 비즈니스 환경에 최적화된 협업 체계를 구축할 수 있도록 지원한다. CP는 프로젝트 기반으로 내·외부 협업을 위한 데이터 및 문서 관리 기능을 지원하고, 솔루션 단독으로 사용 가능한 경우와 기 개발된 다양한 Enterprise Legacy 시스템 (PLM, QMS, MES, ERP)과 연동하는 경우 모두를 지원하는 유연한 환경을 제공한다. 2. 주요 기능 (1) CP(Collaboration Platform) 클라우드 기반 협업 및 프로젝트 관리 솔루션으로 제조기업에서 진행되는 협업관련 업무를 명확하고 실행 근거를 확보하면서 진행 할 수 있는 협업 환경을 제공한다. (예: 협업 File 관리, 문의/답변, 협업 기반의 권한 관리 등) CP는 협업 중심의 프로젝트 관리 기능을 통해 내·외부 이해관계자들이 실시간으로 데이터를 공유하며 업무 진행을 관리할 수 있도록 한다 (2) CP Eng'r Work 효율적인 엔지니어링 업무 진행하기 위한 기능을 제공 한다. (예: 업무의뢰 /답변, 도면 배포의뢰/배포, 원격 시스템 연동 등) CP Eng'r Work는 엔지니어링 업무의 정의, 할당, 진행률 추적, 실시간 협업을 지원 하여 엔지니어링 업무의 효율성을 극대화한다. (3) CP Quality 부품 승인원 관리, 수입/출고 검사 및 부적합 관리 기능을 제공한다.  CP Quality는 품질 데이터를 표준화하고 중복 없이 관리하고, 검사 실행 데이터 연계를 통한 부적합 처리를 진행한다. 특히, 고객의 고유한 비즈니스 프로세스에 따라 최적의 업무 워크플로우를 맞춤형으로 설계하고 제공할 수 있다. (4) CP Experiment 연구 및 실험 데이터 관리, AI 기반 데이터 분석 및 최적화 솔루션 연계를 지원한다. CP Experiment는 실험 과제 생성 및 과제별 세부 실험 관리, 기본 실험 조건 표준화 및 데이터베이스 관리 기능을 제공한다. 또한 사용자가 입력한 실험 데이터를 분석 및 시각화하여 연구자들이 손쉽게 결과를 해석하고 전략적 결정을 내릴 수 있도록 지원한다. 보고서 자동 생성 기능과 외부 파일 연계 기능을 제공하여 연구 업무의 효율성을 극대화하며, 연구자들이 입력한 데이터를 지속적으로 활용하여 기업 내 지식으로 축적할 수 있는 환경을 제공한다.  3. 도입 효과 ■ 데이터 기반의 협업 환경을 구축하여 기업 내 실시간 데이터 공유 및 협업 강화, 품질 및 연구 데이터의 효율적 축적, 데이터 분석과 예측 기반의 전략적 의사결정을 실현함으로써 향후 디지털 트윈을 통한 정밀한 가상 검증과 예측 능력을 확보한다. ■ 업무 생산성 향상, 업무 프로세스 자동화, 프로젝트 진행의 투명성 확보, 협력사 및 내부 부서 간 효율적인 실시간 협업 가능, 데이터 기반 의사결정 및 AI 기반 업무 최적화를 통해 기업의 연구개발 및 제조 경쟁력을 강화한다. ■ 부품 및 품질 데이터 관리 효율성 증가, 검사 기준의 일관성 유지, 품질 데이터의 체계적인 축적을 통해 향후 AI 기반 품질 분석 및 예측 활용 가능성 확보, 고객 맞춤형 업무 프로세스 제공을 통한 품질 업무의 신속한 대응과 효율성 극대화를 실현한다. ■ 실험 데이터 관리의 효율성 향상, 연구 프로세스의 투명성 및 신뢰성 강화, 데이터 기반의 의사결정 지원, 체계적으로 축적된 데이터를 활용한 향후 AI 기반의 연구 최적화 가능성을 확보하여 연구 및 실험 업무의 생산성과 정확성을 극대화한다.  4. 주요 고객 국내와 반도체, 자동차, 바이오 산업의 제조 기업들과 제품 개발 End-to-End 프로세스 상에서 연구개발(R&D) 업무, 엔지니어링 업무, 협력사 협업 업무를 진행 하면서 발생하는 데이터를 체계적으로 관리하고, AI 기반 학습이 가능한 정보 구조체를 생성하는 프로젝트를 진행중이다.     상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-13
티맥스소프트, ‘재팬 IT 위크 2025’ 참가 통해 DX 기술력으로 글로벌 시장 공략
티맥스소프트, 클라우드 미들웨어, 메인프레임 현대화 등 DX 솔루션 대거 전시   티맥스소프트가 지난 4월 23일부터 일본 도쿄 빅사이트에서 개최된 일본 최대 규모 IT 전시회 ‘재팬 IT 위크 2025(Japan IT Week Spring)’에 참가하여 혁신적인 디지털 전환(DX) 솔루션을 선보이며 글로벌 시장 공략에 나섰다. ‘재팬 IT 위크’는 IT 산업 전반의 최신 기술과 솔루션을 한눈에 확인할 수 있는 일본 최대 규모의 IT 전문 전시회로, 춘계와 추계 연 2회 개최된다. 올해 춘계 행사는 지난 4월 23일부터 3일간 성황리에 진행되었다. 티맥스소프트는 이번 전시회 참가를 통해 일본 시장 내 고객과의 접점을 확대하고, 새로운 비즈니스 기회를 적극적으로 발굴한다는 전략이다. 최근 일본, 북미, 동남아시아를 핵심 글로벌 거점으로 삼아 사업 확장에 박차를 가하고 있는 만큼, 이번 전시회를 통해 티맥스소프트의 차별화된 제품과 기술력을 현지 고객들에게 널리 알리는 데 주력했다. 특히 전 세계적으로 AI(인공지능)와 데이터 중심의 디지털 전환이 가속화되는 추세에 발맞춰, 티맥스소프트는 AI 환경과 클라우드 전환을 효과적으로 지원할 수 있는 다양한 솔루션을 전시하여 참관객들의 높은 관심을 받았다. 전시 제품군은 클라우드 미들웨어 ‘제우스(JEUS)’와 ‘웹투비(WebtoB)’, 메인프레임 현대화 솔루션 ‘오픈프레임(OpenFrame)’, 그리고 다양한 인터페이스(FEP·EAI·MCI) 통합 및 연계 솔루션 ‘애니링크(AnyLink)’ 등으로 구성되었다. 행사 첫날부터 티맥스소프트 전시 부스에는 메인프레임 현대화 솔루션인 ‘오픈프레임’에 대한 문의가 쇄도하며 참관객들의 뜨거운 관심을 입증했다. 특히 후지쯔와 히타치 메인프레임 시스템을 사용하고 있는 일본 기업 고객들은 티맥스소프트의 ‘오픈프레임’ 제품과 관련 성공 사례에 대해 깊이 있는 상담을 진행했다. ‘오픈프레임’은 기업 및 금융 기관에서 오랫동안 핵심 업무 시스템 운영 환경으로 사용해 온 메인프레임 기반의 비즈니스 자산을 유닉스(UNIX)와 같은 오픈 시스템 환경 또는 클라우드 환경으로 최적화하여 이전할 수 있도록 지원하는 솔루션이다. 일본은 메인프레임 보급률이 높은 국가 중 하나이며, 오는 2030년 후지쯔의 메인프레임 사업 중단이 예정되어 있어 최근 메인프레임 현대화에 대한 수요가 지속적으로 증가하고 있다. 티맥스소프트는 전시회 기간 동안 IT 분야 전문가 및 기업 의사결정권자 등 잠재 고객들과 적극적인 네트워킹 시간을 가졌으며, 일본 시장 내 사업 확장을 위한 역량 있는 디지털 기업들과의 파트너십 구축 또한 모색했다. 또한 일본 내에서 클라우드 도입과 API(애플리케이션 프로그래밍 인터페이스) 연계에 대한 수요가 빠르게 증가하고 있는 점을 고려하여, 티맥스소프트의 인터페이스 통합·연계 솔루션인 ‘애니링크’의 성공적인 도입 사례를 신한은행 일본 법인 SBJ DNX 고객 인터뷰 영상을 통해 소개하여 참관객들의 이해를 높였다. 티맥스소프트 전략마케팅본부장 변재학 전무는 “팬데믹 이후 일본 시장의 디지털 전환 속도가 빨라지면서 소프트웨어 기업에게는 새로운 도전이자 글로벌 성장의 중요한 발판이 마련되었다”며, “티맥스소프트는 해외 파트너십, 다양한 성공 레퍼런스, 그리고 폭넓은 제품 포트폴리오를 기반으로 일본 시장뿐만 아니라 북미, 동남아시아 시장에서도 새로운 판로를 개척하며 글로벌 기업으로 성장해 나갈 것”이라고 포부를 밝혔다.    
작성일 : 2025-05-11
다쏘시스템, ‘3D익스피리언스 콘퍼런스 코리아 2025’에서 AI 시대 선도하는 버추얼 트윈 혁신 제시
다쏘시스템은 5월 29일 서울 코엑스에서 ‘3D익스피리언스 콘퍼런스 코리아 2025(3DEXPERIENCE CONFERENCE KOREA 2025)’를 개최한다고 밝혔다. ‘모두를 위한 모든 것의 버추얼 트윈(Virtual Twin of Everything for Everyone)’을 주제로 열리는 이번 행사는, 생성형 AI와 결합해 한층 진화한 버추얼 트윈 기술을 중심으로 대한민국 산업의 미래를 만들어 나갈 혁신 비전을 소개한다. 이번 콘퍼런스에서는 다쏘시스템이 올해 초 새롭게 발표한 기술 비전 ‘3D유니버스(3D UNIV+RSES)’를 소개하고, 7개 혁신 브랜드를 통해 다양한 산업 분야에 적용되는 최신 기술 트렌드를 선보인다. 특히 다쏘시스템은 ▲40개 이상의 전문 세션 ▲산업 전문가들이 직접 전하는 실무 지식과 노하우 등 프로그램을 통해 참석자들에게 실질적 인사이트를 제공할 예정이다.     오전에 진행되는 제네럴 세션은 다쏘시스템코리아 정운성 대표이사의 환영사로 시작한다. 기조연설자로 초청된 LG전자 ES연구소의 황윤제 기술고문은 ‘모델 기반 가상화 R&D를 통한 디지털 혁신 : AI 시대의 도전과 미래’를 주제로, 디지털 전환(DX)을 이끄는 AI 기술과 버추얼 목업 제작을 더욱 용이하게 하는 모델 기반 시스템 엔지니어링의 중요성에 대해 발표한다. 황윤제 기술고문은 가상화 분야에서 현재 직면한 주요 도전 과제가 무엇인지 살펴보고, 이를 극복함으로써 열릴 미래의 가능성에 대한 인사이트를 제공할 예정이다. 오후에는 바이오비아(BIOVIA), 에노비아/넷바이브(ENOVIA/NETVIBES), 카티아/3D익사이트(CATIA/3DEXCITE), 델미아(DELMIA), 시뮬리아(SIMULIA)의 5개의 브랜드 트랙과 별도 마련된 SDV(Software-Defined Vehicle) 트랙이 진행된다. 각 트랙을 통해 다쏘시스템의 전문가와 브랜드별 고객사는 최신 기술 동향과 다양한 산업 적용 사례를 폭넓게 소개하며, 특히 3D익스피리언스 기반 통합 업무 환경을 심도 있게 다룰 예정이다. 특히 추가로 마련된 SDV 트랙은 총 3개의 발표로 구성되어, 다쏘시스템의 SDV 설루션 전략과 함께 모델 기반 시스템 엔지니어링(MBSE : Model-Based Systems Engineering), 하드웨어/소프트웨어 통합, 가상 검증 등 제품 전체 관점의 개발 방향을 소개한다. 아울러 미래 모빌리티 산업의 도전과제와 설루션 방안, 메카트로닉스(mechatronics) 및 소프트웨어 중심 경험(software-driven experiences)을 위한 엔드 투 엔드 통합 업무 환경 구축 전략을 다룬다.   다쏘시스템코리아 정운성 대표이사는 “3D익스피리언스 콘퍼런스 코리아 2025는 가상과 현실을 끊임없이 연결하는 기술로 산업 혁신의 방향을 제시하는 자리”라며, “모두를 위한 모든 것의 버추얼 트윈이라는 이름에 걸맞게, 다쏘시스템은 앞으로도 다양한 산업의 전문가들과 함께 버추얼 트윈으로 미래 산업을 혁신하고, 무한한 가능성을 만들어 나갈 것”이라고 밝혔다.
작성일 : 2025-05-08
한국후지필름BI, ‘레보리아 프레스’ 신제품 2종 로드쇼 개최
한국후지필름비즈니스이노베이션(이하 한국후지필름BI)은 5월 13일부터 전국 5개 도시에서 ‘레보리아 프레스(Revoria Press)’ 신제품 2종 로드쇼를 개최한다고 밝혔다. 이번 행사는 디지털 인쇄기 신제품과 함께, 인쇄 산업의 디지털 전환(DX)을 지원하는 다양한 솔루션을 소개할 예정이다.   한국후지필름BI는 부산(5월 13일)을 시작으로 대구(5월 14일), 대전(5월 15일), 서울(5월 16일), 광주(5월 20일) 순으로 로드쇼를 개최할 예정으로, 빠르게 변화하는 인쇄 시장 환경 속에서 고객이 직면한 과제를 진단하고 한국후지필름BI의 자동화 기반 솔루션을 직접 체험할 수 있는 기회를 제공한다.   첫번째 세션에서는 상업용부터 소형 오피스 환경에 이르기까지 폭넓은 활용이 가능한 디지털 인쇄기 ‘레보리아 프레스’ 신제품 2종이 소개된다. 해당 신제품은 고화질 LED 프린트 헤드와 특수 토너로 선명한 색상 구현이 가능하며, AI 기반 프린트 서버와 ‘스마트 모니터링 게이트(Smart Monitoring Gate)’ 기능을 탑재해 출력 품질과 작업 효율을 동시에 향상시킨 것이 특징이다. 이번 신제품을 통해 중소형 상업 인쇄 시장에서도 특수 토너를 활용해 새로운 비즈니스 기회를 창출할 수 있다.   이어지는 세션에서는 고객의 니즈에 따라 인쇄 프로세스별 ▲업무 자동화(RPA) 솔루션 ▲클라우드 기반 협업 플랫폼 ‘FUJIFILM IWpro(Integrated Working Process)’, ▲원스톱 IT 운영 관리 서비스 ‘IT 엑스퍼트 서비스(ITESs)’ ▲디지털 프린트 워크플로우 소프트웨어 ‘레보리아 XMF 프레스레디’ 등 다양한 DX 솔루션을 제안한다.   이번 서울 로드쇼는 서울 중구에 위치한 한국후지필름BI ‘CHX 라이브 오피스’에서 진행된다. 대전은 KW컨벤션, 대구는 대구인터불고호텔, 광주는 라마다호텔에서 개최된다. 부산 로드쇼는 한국후지필름BI의 쇼룸 ‘라이브 오피스 부산’에서 열린다.   한국후지필름BI 하토가이 준 대표는 ”한국후지필름BI는 고객의 CHX(Customer Happiness Experience) 실현을 위해 업종별 맞춤형 디지털 전환을 적극 지원하고 있다”며, “이번 로드쇼와 신제품을 통해 인건비 및 인력 부족 문제를 해결하고, 생산성과 수익성 향상이라는 고객의 핵심 과제에 기여할 수 있기를 기대한다”고 말했다.
작성일 : 2025-05-08
Automotive Industry의 새로운 지평선에서(HL만도 배홍용 CTO) - 영상보기 & 내용 요약
HL만도 배홍용 CTO, 자동차 산업의 미래 심층 분석   PLM DX 베스트 프랙티스 컨퍼런스 2024에서  배홍용 만도 CTO가 'Automotive Industry의 새로운 지평선에서'라는 주제로 강연을 진행하며 자동차 산업의 거대한 변화를 예고했다. 62년 역사의 만도는 섀시, 자율주행, 로보틱스, 소프트웨어 분야를 융합하며 미래 모빌리티 시대를 위한 혁신을 주도하고 있다. 배 CTO는 급변하는 시장 상황 속에서 자동차 부품 산업이 직면한 도전과 기회, 그리고 미래 모빌리티의 핵심 트렌드를 심층적으로 분석했다. 전기차(EV) 대세론, 부품 생태계의 지각변동을 불러오다 배 CTO는 전기차 시장의 폭발적인 성장세를 강조하며, 2030년에는 EV가 자동차 시장의 절반을 넘어설 것으로 전망했다. 특히 글로벌 EV 시장에서 강력한 존재감을 드러내는 BYD를 언급하며, 완성차 업계뿐만 아니라 부품 산업 내 경쟁 심화를 예상했다. EV는 고전압 배터리, 전력 변환 시스템 등 새로운 부품 수요를 창출하는 반면, 내연기관 관련 부품 산업의 축소와 정비 시장의 변화를 불가피하게 만들 것이라고 진단했다. 자율주행, 기술적 난관 속에서도 로봇 택시를 중심으로 현실화될 전망 자율주행 기술의 발전은 미래 모빌리티의 핵심 동력이지만, 배 CTO는 높은 개발 비용, 엄격한 법규 제제, 그리고 아직 해결해야 할 기술적 과제들로 인해 레벨 3 이상의 자율주행 도입이 예상보다 더디게 진행되고 있다고 밝혔다. 하지만 그는 로봇 택시와 같은 특정 영역에서는 레벨 4 수준의 자율주행 기술이 상용화될 가능성이 높다고 예측하며, 자율주행차 시장이 개인 소유 모델과 공유 기반 사용자 모델로 나뉘어 발전할 것이라고 전망했다. 마이크로 모빌리티, 도심 이동의 새로운 해법으로 떠오르다 친환경적이면서도 짧은 거리를 효율적으로 이동할 수 있는 마이크로 모빌리티 시장의 성장 가능성에도 주목했다. 다만 국내에서는 아직 관련 규제가 명확하게 정립되지 않아 시장 활성화에 제약이 있을 수 있다고 지적했다. 소프트웨어 정의 차량(SDV), 자동차 산업의 패러다임 전환 배 CTO는 소프트웨어가 차량의 기능과 성능을 결정하는 SDV 시대가 본격적으로 개막할 것이라고 전망하며, 하드웨어와 소프트웨어의 융합 및 분리 전략이 중요하다고 강조했다. 만도는 이러한 변화에 발맞춰 SDV 관련 소프트웨어 및 하드웨어 솔루션 개발에 박차를 가하고 있으며, 다양한 앱 생태계를 구축할 수 있는 차량용 소프트웨어 앱스토어 사업에도 참여하고 있다고 밝혔다. SDV의 안전성과 신뢰성을 확보하기 위해서는 자동차 제조사, 부품 공급업체, 소프트웨어 기업 간의 긴밀한 협력이 필수적이라고 덧붙였다. 구독 경제와 텔레 오퍼레이션, 미래 모빌리티 서비스의 핵심 축으로 부상 자동차 구매 방식의 변화와 더불어 테슬라의 FSD와 같은 구독 기반 서비스 모델이 확산될 것이라고 예상했다. 또한 자율주행 기술의 한계를 극복하고 안전성을 확보하기 위한 텔레 오퍼레이션(원격 제어) 기술의 중요성을 강조하며, 이를 위해서는 고품질 통신 네트워크와 실시간 데이터 처리 기술 확보가 필수적이라고 설명했다. 친환경 부품과 AI 기술, 지속 가능한 모빌리티 시대를 열다 ESG 경영의 중요성이 강조되는 시대적 흐름에 발맞춰 자동차 부품 산업에서도 친환경 소재 개발과 재활용 기술 도입이 더욱 확대될 것이라고 전망했다. 또한 AI 기술이 자동차 부품의 연구 개발 효율성을 높이고 제품 혁신을 가속화하는 핵심 동력이 될 것이라고 강조하며, 만도는 AI 기반 설계 및 검증 시스템 개발에 적극적으로 투자하고 있다고 밝혔다. 인간 중심의 미래 모빌리티를 향하여 배 CTO는 자동차 산업이 과거의 틀을 벗어나 완전히 새로운 시대로 접어들고 있으며, 미래 모빌리티는 단순한 이동 수단을 넘어 즐거움과 편리함을 제공하고 환경까지 고려하는 '인간 중심'으로 발전해야 한다고 강조했다.   * 해당 내용 정리는 AI(구글 제미나이)의 도움으로 작성되었습니다. 상세 내용은 원본 영상을 통해 확인하시기 바랍니다.  발표자료 다운로드 https://www.cadgraphics.co.kr/newsview.php?pages=lecture&sub=lecture01&catecode=7&num=74990   #모빌리티 #자동차산업 #전기차 #자율주행 #SDV #친환경부품 #AI #만도 #자동차부품산업 #소프트웨어정의차량 #자동차트렌드
작성일 : 2025-05-06
모빌리티 혁명, UAM의 현재와 미래(한국항공우주연구원 황창전) - 영상보기 & 내용 요약
PLM/DX 베스트 프랙티스 컨퍼런스 2024에서 한국항공우주연구원 황창전 UAM연구부장은 'UAM(Urban Air Mobility)'의 현황과 미래에 대한 깊이 있는 발표를 진행했다. 내용을 요약 정리하여 소개한다. 단순한 개인용 비행체를 넘어, 예약 기반 MaaS(Mobility as a Service)로 진화할 UAM 생태계를 조망하며, 미래 도시 이동의 혁신적인 변화를 예고했다. UAM, 도시 이동의 패러다임을 바꿀 혁신 황창전 부장은 UAM을 1900년대 초 마차에서 자동차로의 전환에 비견되는 파괴적 혁신으로 정의했다. 도심 내 이동 효율성을 극대화하고 새로운 이동 옵션을 제공함으로써, 미래 도시인의 삶의 질을 향상시키는 데 기여할 것이라는 전망이다. 핵심은 버티포트(수직 이착륙장) 네트워크를 구축하여 주요 도심 거점을 연결하고, 초기 유인 운항을 시작으로 점진적인 자율 비행 시스템으로 발전시켜 나가는 것이다. UAM 관련 핵심 용어 이해 OPPAV (Optionally Piloted Personal Air Vehicle): 유·무인 겸용 개인 항공기로, 한국의 OPPAV 개발 프로젝트는 UAM 기술 자립화의 중요한 발걸음이다. UAM (Urban Air Mobility): 도시 지역 내 승객과 화물을 아우르는 종합적인 항공 운송 시스템을 의미한다. RAM (Regional Air Mobility): UAM과 유사하지만, 인구 밀도가 낮은 지역을 대상으로 하며 안전 기준이 다소 완화될 수 있다. 플라잉 카 (Flying Car): 지상과 공중 이동이 모두 가능한 차량이나, 현재 기술적 난제와 효율성 문제로 실현 가능성은 낮게 평가된다. 글로벌 UAM 시장 동향 및 한국의 노력 전 세계적으로 도시 교통 문제 해결과 효율적인 이동 수단에 대한 요구가 높아짐에 따라 UAM 개발 경쟁이 치열하게 전개되고 있다. 2010년대부터 다수의 기업들이 eVTOL(electric Vertical Take-Off and Landing) 항공기 개발에 뛰어들었으며, 글로벌 UAM 시장은 2040년까지 수조 달러 규모로 성장할 것으로 예측된다. 한국 역시 OPPAV 개발 프로젝트를 통해 UAM 기술 확보에 적극적으로 나서고 있다. 한국항공우주연구원을 중심으로 현대자동차 등 여러 기관이 협력하여 틸팅 로터와 고정 로터를 결합한 독특한 디자인의 OPPAV 기술 시연기를 개발했으며, 첨단 비행 제어 시스템과 경량 복합 소재 기술을 적용했다. 정부 주도의 UAM 상용화 준비와 미래 정부 주도로 설립된 UAM 팀 코리아는 산업계, 학계, 연구 기관, 정부 간 협력을 통해 UAM 개발 및 상용화를 촉진하는 핵심적인 역할을 수행하고 있다. 정부는 2025년 초기 상업 서비스 개시를 목표로 UAM 로드맵을 수립하고, 그랜드 챌린지 프로젝트를 통해 통합적인 기술 실증을 진행 중이다. 또한, NASA와의 협력을 통해 UAM 관련 기술 개발 및 안전성 확보에도 힘쓰고 있다. 황창전 부장은 UAM의 미래를 자율 비행 능력 향상, 전천후 운용 능력 확보, 그리고 높은 수준의 안전성과 신뢰성 확보로 전망했다. 상용화를 위해서는 항공기 인증 및 안전 표준 마련이 필수적이며, eVTOL 항공기의 설계 표준화 및 대량 생산을 위한 혁신적인 재료 개발과 제조 공정 개선이 요구된다. 지속적인 연구 개발과 기술적 난제 해결 노력을 통해 UAM은 가까운 미래에 도시 이동의 혁신을 이끌어낼 것으로 기대된다.   * 해당 내용 정리는 AI(구글 제미나이)의 도움으로 작성되었습니다. 상세 내용은 원본 영상을 통해 확인하시기 바랍니다.  영상보기 발표자료 다운로드 https://www.cadgraphics.co.kr/newsview.php?pages=lecture&sub=lecture01&catecode=7&num=74990  
작성일 : 2025-05-05
[특별기고] 디지털 트윈 발전 전망
디지털 트윈과 산업용 메타버스 트렌드   데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다.  디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.   ▲ 철도 네트워크의 디지털 트윈 구축하는 독일 디지털 철도(이미지 출처 : 엔비디아)   1. 디지털 전환과 디지털 트윈 디지털 전환(Digital Transformation: DX)은 비즈니스 전 과정에 ICT 기술을 도입하여 전사적 업무, 생산 기술, 제품 등을 디지털화 한 후 이를 기반으로 가상 실험이 가능한 디지털 환경을 구축하는 것이다.  디지털 전환의 궁극적 목적은 기업 이윤 극대화에 필요한 업부/생산 효율성 및 제품 부가 가치 증대를 위한 다양한 창의적 대안들을 가상 실험을 통해 평가한 후 그 결과를 비즈니스 전 과정에 활용하는 것이다. 예를 들어, 스마트 팩토리의 디지털 전환은 조달 시스템, 생산 시스템, 물류 시스템 등 스마트 팩토리 구성요소들의 자원 할당 및 운용에 대한 다양한 대안들을 가상 실험을 통해 평가할 수 있는 환경을 구축하여야 한다. 그렇다면, 비즈니스 전 과정을 가상 실험하기 위해서는 무엇이 필요할까?  가상 실험을 하기 위해서는 먼저 가상 실험 대상(예: 제조 공장)을 선정하고, 다음으로, 가상 실험 시나리오(예:새로운 제조 장비 도입)가 필요하며 시나리오를 수행할 모델(예: 제조 공정 시뮬레이션 모델)이 필요하다. 이러한 가상 실험을 위한 모델이 디지털 트윈이며 이런 이유로 많은 사람들이 디지털 트윈을 DX의 Key(Richard Marchall, 2017), DX의 Enablers(Reterto Saracco, 2019), DX의 Central(Vijay Ragjumathan, 2019), DX의 Steppingstone(Harry Forbes, 2020), DX의 Pillar(Fransesco Belloni, 2020)라고 지적하였다.   2. 디지털 트윈의 정의 디지털 트윈은 물리적 자산, 프로세스 및 시스템에 대한 복제본으로 정의[Wiki 사전]되며, 복제본이란 대상 체계의 운용 데이터, 지형/공간/형상 정보 및 동작/운용 법(규)칙을 컴퓨터 속에 디지털화 해 놓은 것을 의미한다. 예를 들면, 제조 공장의 디지털 트윈은 제조 공장의 운용 데이터, 제조 공장의 공간/형상 정보, 그리고 제조 장비 동작 및 공정 모델이 컴퓨터 속에 복제된 것이 될 것이다. 디지털 트윈과 대상 체계가 쌍둥이기 때문에 쌍둥이 중 누가 먼저 태어났느냐에 따라 디지털 트윈의 이름을 다르게 붙이기도 한다. 대상 체계가 존재하기 전에 만들어진 디지털 트윈을 디지털 트윈 프로토타입(Prototype) 그리고 대상 체계가 만들어진 후 복제된 디지털 트윈을 디지털 트윈 인스턴스(Instance)라고 부른다. 디지털 트윈 프로토타입은 대상 체계 설계 단계에서 활용되며 디지털 트윈 인스턴스는 대상 체계의 운용 분석에 활용되는 것이 일반적이다. 디지털 트윈 인스턴스(실 체계의 복제본)와 디지털 트윈 프로토타입(실 체계의 설계 모델)이 모두 존재할 수도 있지만 디지털 트윈 프로토타입 없이 디지털 트윈 인스턴스만 존재할 수도 있다. 디지털 트윈 프로토타입과 인스턴스가 모두 존재한다면 인스턴스는 프로토타입에 실 체계 운용 정보가 반영되어 진화(성장)된 트윈으로 볼 수 있다. 3. 디지털 트윈 구축 목적 디지털 트윈의 구축 목적은 대상 실 체계와 디지털 트윈을 연동 운용함으로써 실 체계 관련 이해 당사자에게 지혜 수준의 혁신적 서비스를 제공할 수 있는 핵심 도구/수단으로 활용하기 위함이다. 데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다. 융합 빅 데이터는 AI-통계/공학 분석도구들을 이용하여 실 세계의 구성요소인 자산, 사람, 운용 프로세스들의 다양한 결합에 대한 분석/예측 및 체계 운용 최적 대안(최적화)을 찾는데 활용될 수 있다. 아울러, 융합 빅 데이터는 실 세계를 가상 환경에서 현실감 있게 표출할 수 있는 다양한 장비/장치와 VR/AR/XR/메타버스 관련 ICT 기술과의 융합 인터페이스를 통해 오락, 관광, 교육 훈련, 체험 등에 활용될 수 있다.     디지털 트윈의 복제 대상은 실 체계의 운용 데이터, 공간/형상 정보 및 실 체계에 포함된 객체들의 행위 모델 등 3가지이다. 운용 데이터는 실 체계에 설치된 IoT 장비로부터 획득이 가능하다. 공간/형상 정보는 서비스 목적에 따라 GIS, BIM 혹은 3D CAD 중 한 가지 이상을 결합하여 사용한다. 객체 행위 모델은 다양한 시나리오를 가상 실험하기 위한 시뮬레이션 모델을 사용하지만 서비스 목적에 따라서는 운용 데이터를 학습한 데이터 모델을 사용할 수도 있다. 구성요소 중 일부만을 사용한 디지털 트윈은 나머지 구성요소를 사용하지 않음으로 인한 한계점에 봉착하게 된다. 예를 들면, 실 체계 운용 데이터 복제만으로 구성된 IoT 기반 디지털 트윈은 수집된 데이터를 분석할 수는 있지만, 실 체계를 시각화한 지형/공간 상에 데이터를 표출할 수 없을 뿐만 아니라 실 체계와는 다른 가상 데이터를 입력한 시뮬레이션을 수행할 수 없다. 마찬가지로, 지형/공간 정보 만으로 구성된 디지털 트윈은 실 체계에서 일어나는 지형/공간 정보의 변화를 실 시간으로 반영할 수 없으며 시뮬레이션을 통한 실 체계의 현상 분석 및 미래 예측이 불가능 하다.      디지털 트윈의 효율적인 활용을 위해서는 위의 세 가지 구성요소 모두를 개발 및 운용할 수 있는 통합 플랫폼이 바람직하지만 국내외적으로 표준화된 디지털 트윈 플랫폼은 존재하지 않는다. 디지털 트윈의 특성 상 3가지의 디지털 트윈 구성요소 각각을 개발하는 독립적인 플랫폼을 사용하여 구성요소를 개발한 후 이들을 연동하여 운용하는 것이 효율적이다.  구체적으로는, 먼저, 디지털 트윈 개발 목적에 맞게 운용 데이터를 수집하는 IoT 플랫폼, 지형/공간 정보를 구축하는 지형/공간정보 플랫폼 및 모델링 시뮬레이션 플랫폼들을 이용하여 각 구성요소를 개발한다. 다음으로, 개발된 세 가지 구성요소를 실행하는 플랫폼들을 연동 운용하는 PoP(Platform of Platforms) 구조를 사용할 수 있다. PoP 구조는 디지털트윈의 목적에 부합되는 모든 디지털트윈을 개발/운용할 수 있는 플랫폼으로써 신뢰성 및 경제성(개발 기간 및 비용) 면에서 효율적인 구조이다. PoP 구조를 사용할 경우 플랫폼들 사이의 연동을 위한 데이터 모델과 API의 국제적인 표준화가 요구되며 데이터 모델의 표준은 대상 시스템에 따라 달라질 수 있다.  디지털 트윈을 실제 시스템에 대한 문제 해결 목적으로 사용하기 위해서는 대상 시스템에 대한 다양한 질문의 답을 디지털 트윈을 통해서 얻을 수 있는 서비스가 제공되어야 한다. OR 이론의 창시자 중 한 명으로 경영 과학 이론가인 R.L.Ackoff 교수는 사람이 생각하는 내용을 데이터, 정보. 지식, 지혜 등 4가지로 분류하였다. 데이터는 단순한 심벌(숫자나 문자)을 말하지만 정보는 ‘who’, ‘what’, ‘where’, ‘when’을 답할 수 있고, 지식은 ‘how’를 답할 수 있고, 지혜는 ‘why’를 답할 수 있어야 한다고 정의하였다. 디지털 트윈의 서비스 수준을 Ackhoff 교수의 분류법에 매핑 시킨다면 정보 수준 서비스는 시스템 분석(현상, 기능 등), 지식 수준 서비스는 시스템 예측(행위, 성능 등) 그리고 지혜 수준 서비스는 시스템 최적화(운용 최적화 등) 및 진단(수명 진단 등)에 해당한다. 예를 들어, 교통 시스템에 대한 다양한 질문을 답하기 위해 교통 디지털 트윈을 만들었다고 하자. 정보 서비스의 예는 현재 교통 시스템의 현상을 분석하는 것으로 어느 위치의 현재 시간대에 단위 시간당 교차로 통과 차량 대수가 얼마인지에 대한 답을 하는 서비스이다. 지식 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 얼마가 되는지를 예측하는 질문에 대한 답을 하는 서비스이다. 지혜 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 최소가 되는 최적화된 경로가 어떤 것인지의 질문에 대한 답을 하는 서비스이다.    4. 디지털 트윈의 구성요소 디지털 트윈의 3 가지 구성요소 중 행위 모델은 목적에 따라 데이터 모델과 시뮬레이션 모델로 대별된다. 데이터 모델은 실 체계에서 수집된 데이터들 사이의 상관관계를 기계학습하여 얻어진 모델(예: 인공신경망)로서 지식 서비스를 위한 시스템 행위 예측에 한계점을 가지고 있다. 구체적으로, 데이터 모델은 학습된 데이터 영역에서는 미래 예측이 가능하지만 학습된 영역 밖의 데이터에 대한 예측은 불가능 하다. 뿐만 아니라 학습 시와 예측 시의 시스템 운용 조건이 달라질 경우에도 예측이 불가능하다. 앞서 예시한 교통 디지털 트윈으로 데이터 모델을 사용할 경우 학습 시 도로 상황(운행 시간, 사고 발생 유무 등)이 예측 시 도로 상황과 동일하지 않으면 소요 시간 예측의 정확도가 보장되지 않는다. 더욱이, 시스템 변수 사이의 상관 관계로 표현된 데이터 모델은 변수 사이의 인과 관계가 필요한 시스템의 최적화 및 고장 진단 등에는 활용할 수 없다. 이러한 데이터 모델의 서비스 한계를 극복하기 위해서는 시뮬레이션 모델을 사용할 수 있다. 시뮬레이션 모델은 구축은 대상 시스템에 대한 도메인 지식과 이를 표현하는 지배 법칙에 대한 수학적/논리적 표현 방법을 이해해야 하므로 데이터 모델에 비해 고 비용이 요구된다. 따라서, 디지털 트윈의 행위 모델은 대상 시스템의 서비스 목적과 수준에 따라 다르게 선택될 수 있다.    5. 디지털 트윈의 발전 전망  디지털 트윈의 향후 발전 전망은 문제 해결과 가상 체험 및 빅 데이터 분야로 대별할 수 있다. 문제 해결 분야에서 디지털 트윈의 대상은 분석, 예측, 최적화/진단 대상이 되는 모든 시스템 분야로서 산업(제조, 생산, 물류, 식물공장 등), 공공(교통, 환경, 금융 등), 의료(진단, 인공장기, 가상수술 등), 재난안전(안전점검, 피해분석, 대피훈련 등), 국방(군사훈련, 국방분석, 무기체계 획득 등)등을 포함한다.  현재 디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.  가상 체험 분야는 디지털 트윈이 실 세계 혹은 가상 세계를 움직이는 다양한 시나리오를 정형화한 지배 법칙(모델)을 실행(시뮬레이션)하는 수단으로 활용될 전망이다. 이러한 지배법칙 실행은 실제 세계와 가상 세계의 구별 없는 가상 체험을 목표로 하는 메타버스의 서비스 콘텐츠를 제공한다. 따라서, 메타버스 발전을 위해서 메타버스의 서비스 컨텐츠를 제공하는 디지털 트윈 발전이 필수적으로 향후 메타버스와 디지털 트윈은 동시에 발전할 전망이다.  빅 데이터 분야에서는 디지털 트윈의 가상 실험을 통해 실 체계에서는 물리적/경제적 이유로 수집 불가능한 다양한 빅 데이터를 생성하는데 활용될 전망이다. 유의미한 빅 데이터 생성을 위해서는 실 체계에서 수집 가능한 데이터를 사용하여 디지털 트윈 모델의 검증이 선행된 후 실 체계에서 수집 불가능한 데이터 생성을 위한 가상 실험이 설계되어야 한다. 디지털 트윈을 사용한 빅 데이터 생성은 시스템 기능 검증, 예지 진단 및 기계학습 등과 같은 부가가치가 높은 데이터 생성에 집중되어 미래 데이터 구독 시장 활성화에 기여할 전망이다.   김탁곤 명예교수  KAIST 전기전자공학부  
작성일 : 2025-05-05
오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석
BIM 칼럼니스트 강태욱의 이슈 & 토크   생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로, 행동과 의사결정을 위한 인지 아키텍처를 갖추고 있다. 이번 호에서는 오픈소스 AI 에이전트인 오픈마누스(OpenManus)를 통해 AI 에이전트의 동작 메커니즘이 어떻게 구현되는지 분석해 본다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://DXbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   최근 AI 에이전트 기술이 크게 발전하고 있다. 구글의 에이전트 백서를 보면, 생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로 설명한다. 명시적인 지시가 없어도 스스로 판단하고 능동적으로 목표에 접근할 수 있다. 이러한 에이전트는 행동과 의사결정을 위한 인지 아키텍처를 갖추며, 핵심 구성 요소는 <그림 1>과 같이 사용자 입력에 대한 추론 역할을 하는 모델(보통은 GPT와 같은 LLM), 입력에 대해 필요한 기능을 제공하는 도구(tools), 그리고 어떤 도구를 호출할지 조율하는 오케스트레이션의 세 가지로 이루어진다.   그림 1. AI 에이전트의 구성 요소(Agents, Google, 2024)   이번 호에서는 AI 에이전트의 동작 메커니즘을 분석하기 위한 재료로, 딥시크(DeekSeek)와 더불어 관심이 높은 마누스(Manus.im)에서 영감을 받아 개발된 오픈마누스(OpenManus) 오픈소스 AI 에이전트를 활용하겠다. 오픈마누스는 메타GPT(MetaGPT)라는 이름으로 활동 중인 중국인 개발자가 공개한 AI 에이전트이다. 개발자는 오픈마누스가 연결된 다양한 도구를 LLM으로 조율하고 실행할 수 있다고 주장하고 있다. 깃허브(GitHub) 등에 설명된 오픈마누스는 다음과 같은 기능을 지원한다. 로컬에서 AI 에이전트 실행 여러 도구 및 API 통합 : 외부 API, 로컬 모델 및 자동화 도구를 연결, 호출 워크플로 사용자 지정 : AI가 복잡한 다단계 상호 작용을 효율적으로 처리 여러 LLM 지원 : 라마(LLaMA), 미스트랄(Mistral) 및 믹스트랄(Mixtral)과 같은 인기 있는 개방형 모델과 호환 자동화 향상 : 내장 메모리 및 계획 기능을 통해 코딩, 문서 처리, 연구 등을 지원   <그림 2>는 이 에이전트가 지원하는 기능 중 일부이다. 프롬프트 : “Create a basic Three.js endless runner game with a cube as the player and procedurally generated obstacles. Make sure to run it only in browser. If possible also launch it in the browser automatically after creating the game.”   그림 2   오픈마누스는 이전에 중국에서 개발된 마누스에 대한 관심을 오픈소소로 옮기는 데 성공했다. 오픈마누스는 현재 깃허브에서 4만 2000여 개의 별을 받을 정도로 관심을 받고 있다.    그림 3. 오픈마누스(2025년 4월 기준 42.8k stars)   필자는 오픈마누스에 대한 관심이 높았던 것은 구현된 기술보다는 에이전트 분야에서 크게 알려진 마누스에 대한 관심, 오픈소스 버전의 AI 에이전트 코드 공개가 더 크게 작용했다고 생각한다. 이제 설치 및 사용해 보고, 성능 품질을 확인해 보자. 그리고 코드 실행 메커니즘을 분석해 본다.    오픈마누스 설치 개발 환경은 이미 컴퓨터에 엔비디아 쿠다(NVIDIA CUDA), 파이토치(PyTorch) 등이 설치되어 있다고 가정한다. 이제, 다음 명령을 터미널에서 실행해 설치한다.   conda create -n open_manus python=3.12 conda activate open_manus git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus pip install -r requirements.txt playwright install   오픈마누스가 설치하는 패키지를 보면, 많은 경우, 기존에 잘 만들어진 LLM, AI Agent 라이브러리를 사용하는 것을 알 수 있다. 여기서 사용하는 주요 라이브러리는 다음과 같다.  pydantic, openai, fastapi, tiktoken, html2text, unicorn, googlesearch-python, playwright, docker     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[핫윈도] 디지털 트윈 기대 속에 실질적 도입과 확산 위한 노력 필요
캐드앤그래픽스 디지털 트윈 설문조사 분석   디지털 트윈 기술에 대한 관심이 국내 제조 및 엔지니어링 업계를 중심으로 높아지고 있지만, 실제 산업 현장에서는 여전히 다양한 현실적 제약에 직면해 있는 것으로 나타났다. 캐드앤그래픽스는 국내 디지털 트윈 현황을 집대성한 ‘디지털 트윈 가이드’를 발간하고, 국내 제조 및 엔지니어링 업계 관계자를 대상으로 3월 13일부터 4월 14일까지 ‘국내 디지털 트윈 현황 설문조사’를 실시했다. 총 1212명이 참여한 이번 설문조사에서는 디지털 트윈의 이해도, 적용 분야, 도입 단계, 구축 시 어려움 등 다양한 관점에서 기술의 현주소를 조망했다. 특히 디지털 트윈을 실제로 사용 중인 기업과 종사자를 대상으로 진행한 심층 조사에서는 기술 도입 과정에서의 구체적인 어려움과 향후 투자 계획 등 실질적인 인사이트가 도출됐다. ■ 최경화 국장   설문조사 개요 및 참가자 현황 이번 설문조사는 국내 제조 엔지니어링 업계 관계자 1212명을 대상으로 진행되었다. 설문 참가자들의 배경은 다양한 산업 분야에 걸쳐 있었으며, 이는 디지털 트윈 기술이 단일 산업에 국한되지 않고 여러 분야에서 관심을 받고 있음을 시사한다. 참가자들의 직무 또한 연구개발, 설계, 생산, 관리 등 다양한 영역에 분포하고 있어, 디지털 트윈 기술이 기업 내 여러 부서와 직무에 걸쳐 중요성을 인정받고 있음을 알 수 있었다. 디지털 트윈 관련 업무 분야에서도 다양한 응답이 나타나, 이 기술의 응용 범위가 넓어지고 있음을 확인할 수 있다.   주력 산업 분야 설문 응답자들의 주력 산업 분야는 ‘건축/건설/토목’(22.7%)과 ‘전기전자/하이테크/반도체’(17.9%), ‘시각화/그래픽/디자인’(14.2%) 등이 높은 비중을 차지했으며, 자동차, 플랜트 등 다양한 산업 분야가 분포되어 있음을 알 수 있다.   그림 1. 설문 응답자 현황 - 주력 산업 분야   직무 분야 설문 응답자들의 직무 분포는 ‘엔지니어’(41.2%)가 압도적으로 높은 비율을 보였고, ‘경영진/임원’(15.9%), ‘SW 개발’(14.3%) 순으로 나타나, 기술 및 관리 직무 종사자들의 높은 관심을 반영했다.   그림 2. 설문 응답자 현황 – 직무   디지털 트윈 관련 업무 분야 설문 응답자들의 디지털 트윈 관련 업무 분야에 대해서는 CAD/3D 모델링이 가장 높게 나타났고, AI/머신러닝, CAE/시뮬레이션 순으로 나타났다.    그림 3. 설문 참가자 현황 - 디지털 트윈 관련 업무 분야   국내 디지털 트윈 도입 현황 - 뜨거운 기대감과 더딘 현실 디지털 트윈 이해 수준 기술에 대한 이해 수준은 아직 부족한 것으로 나타났다. 디지털 트윈 이해 수준에 대해서는 ‘대체로 알고 있다’(36.8%)와 ‘조금 알고 있다’(37.2%)가 비슷한 비율을 보였으며, ‘매우 잘 알고 있다’ (10.4%)는 소수에 불과했다. ‘잘 모른다’(15.6%)는 응답도 상당수를 차지했다. 이는 기술에 대한 인지도는 높지만, 깊이 있는 이해와 활용 능력은 아직 부족하다는 점을 시사한다.   그림 4. 디지털 트윈에 대한 이해 수준   디지털 트윈 발전 전망 반면, 디지털 트윈의 미래에 대한 업계의 기대는 매우 컸다. 향후 디지털 트윈 발전 전망에 대한 응답에 따르면 ‘매우 중요하게 성장할 것’(66%)과 ‘다소 성장할 것’(30.5%)이라는 답변이 전체의 압도적인 대다수를 차지했다. 또한 전체 응답자의 96.5%가 기술의 중요성과 잠재력에 대해 폭넓은 공감대를 형성하고 있음을 확인시켜 주었다.   그림 5. 디지털 트윈 향후 발전 전망   디지털 트윈 사용 기업 및 도입 현황 디지털 트윈을 실제로 사용하고 있는 기업 및 유저를 대상으로 한 심층 조사에는 총 385명이 참여했다. 이들 기업의 규모는 매출액과 직원 수를 기준으로 다양하게 분포하고 있어, 디지털 트윈 기술이 대기업뿐 아니라 중소기업에서도 점차 도입되고 있음을 알 수 있다.   디지털 트윈 사용 기업 규모 디지털 트윈 사용 기업의 매출액은 5000억원 이상이 48.8%를 차지해 가장 높은 분포를 보였으며, 1000억원 이상~500억원 미만이 13.2%로 큰 기업들이 주로 관심을 가지고 있었음을 알 수 있었다. 직원 수도 5000명 이상이 32.2%로 가장 높은 수치를 차지했으며, 1000명~5000명 미만이 17.9%, 100명~500명 미만이 11.7% 순으로 나타났다.    그림 6. 디지털 트윈 사용 기업 매출액   디지털 트윈 사용 기업 적용 분야 디지털 트윈 적용 분야는 ‘제품 설계 및 시뮬레이션’(66.8%), ‘생산/제조 운영’(43.9%), 설비 모니터링 및 유지보수(39.2%) 순으로, 제품 개발과 생산 영역에 활용이 집중되는 경향을 보였다. 제조 분야에 비해서는 사용이 적지만 도시, 에너지, 교통, 물류, 의료 등 다양한 영역에서 활용되고 있음을 확인할 수 있다. 특히 제조업 분야에서는 생산 공정 최적화, 품질 관리, 설비 예지 보전 등의 목적으로 활용되고 있을 것으로 추정된다.   그림 7. 디지털 트윈 적용 분야   디지털 트윈 적용 목적 디지털 트윈을 적용하는 주요 목적은 ‘설계 최적화’(61.0%), ‘생산성 향상’(54.5%), ‘운영 효율화’(46.2%) 등 효율성 증대 관련 항목들이 우위를 점했다.   그림 8. 디지털 트윈 적용 목적   디지털 트윈 도입 단계 아직까지 디지털 트윈에 대한 관심은 높지만 실제 사용 보다는 검토 중인 기업이 많은 것으로 나타났다. 디지털 트윈 사용 기업의 도입 단계 관련 답변을 보면, ‘도입 검토 중’(43.6%)이 가장 큰 비중을 차지했다. 이어 ‘일부 시스템 도입 완료’(18.4%), ‘PoC(파일럿) 진행 중’(12.2%), ‘전사 확산 및 활용 중’은 4.2% 순으로, 본격적인 활용 단계에 진입한 기업은 소수임을 알 수 있었다. ‘도입 계획 없음’(17.9%)이라는 응답도 적지 않았다.    그림 9. 디지털 트윈 도입 단계   다양한 상용 디지털 트윈 툴 사용… 자체 개발·검토도 다수 디지털 트윈 기술의 확산과 함께, 국내 기업들이 활용 중인 디지털 트윈 소프트웨어 및 플랫폼은 매우 다양하며, 기업별로 도입 단계나 활용 수준에서도 큰 차이를 보이는 것으로 나타났다. ‘현재 사용 중인 디지털 트윈 툴’에 대한 주관식 응답 결과를 분석해 보면, 국내 산업계는 BIM 기반 플랫폼, CAE 시뮬레이션 도구, PLM 및 협업 플랫폼, 그리고 게임 엔진 기반 시각화 도구를 중심으로 디지털 트윈 기술을 도입하고 있는 것으로 나타났다. 아래 내용은 답변 내용을 중심으로 정리한 것이다.   BIM 및 설계 중심 소프트웨어의 강세 디지털 트윈 구축의 초기 단계에서 가장 두드러지는 분야는 설계 기반 모델링(BIM) 도구다. 응답자 중 상당수가 오토데스크의 레빗(Revit), 오토캐드, 시빌 3D(Civil 3D), 나비스웍스(Navisworks) 등을 사용하고 있다고 응답했다. 벤틀리 시스템즈의 아이트윈(iTwin), 트림블의 테클라(Tekla) 및 트림블 커넥트(Trimble Connect), 아비바의 아비바 E3D(AVEVA E3D) 등도 건설·플랜트 산업에서 활용하고 있다고 답변했다.   정밀 해석 기반의 시뮬레이션 툴 확산 앤시스(Ansys), 아바쿠스(Abaqus), 하이퍼웍스(HyperWorks), LS-DYNA, 시뮬링크(Simulink), 아담스(Adams), GT-스위트(GT-Suite), 플렉스심(FlexSim) 등 해석 전문 툴의 사용도 두드러졌다. 특히 제품 설계나 공정 시뮬레이션에서 정밀한 모델링이 필요한 제조업, 자동차, 중공업 분야에서는 다물리 해석 툴 기반의 디지털 트윈 구현이 주를 이뤘다.   PLM 기반 통합 디지털 플랫폼도 주목 설계-생산-운영 전 주기를 통합 관리하기 위한 PLM 기반 플랫폼도 활발히 사용되고 있다. 다쏘시스템즈의 3D익스피리언스(3DEXPERIENCE), 카티아(CATIA), 에노비아(ENOVIA), 지멘스의 NX, 팀센터(Teamcenter), 플랜트 시뮬레이션(Plant Simulation), PTC의 크레오(Creo), 윈칠(Windchill), 씽웍스(ThingWorx) 외에도 전문 툴인 비주얼컴포넌트 등은 스마트 공정 및 운영 관리까지 연계된 디지털 트윈 구현에 활용되고 있는 것으로 보인다.   게임엔진 기반 실시간 시각화 기술 부상 유니티(Unity), 언리얼 엔진(Unreal Engine), 트윈모션(Twinmotion), 엔비디아 옴니버스(Omniverse) 등 게임엔진 기반 시각화 도구는 실시간 협업과 현장 시뮬레이션에서 각광받고 있다. 특히 언리얼엔진, 유니티와 옴니버스 등은 다른 플랫폼과의 연동성을 강화해 디자인 협업 및 공정 검증에 널리 활용되고 있다.   자체 설루션 및 커스터마이징 비율도 높아 이밖에도 국산 설루션인 이에이트, 소프트힐스, 버넥트, 한국디지털트윈연구소 설루션을 이용하고 있다는 응답도 있었다. 흥미로운 점은 응답자의 상당수가 ‘인하우스 개발’ 또는 ‘자체 플랫폼’, ‘프로젝트마다 요구사항 수렴 방식’ 등의 형태로 독자적인 디지털 트윈 시스템을 운영하고 있다는 것이다. 이는 특정 상용 설루션만으로는 각기 다른 업무 흐름이나 도메인 지식을 완벽히 반영하기 어렵기 때문으로 분석된다. 또한 ‘아직 도입 예정’ 또는 ‘검토 단계’라는 응답도 적지 않아, 디지털 트윈 도입의 확산은 진행 중인 흐름임을 알 수 있다.   넘어야 할 장벽 : 현장의 목소리로 본 핵심 과제 디지털 트윈의 확산이 더딘 배경에는 공통적으로 지적된 여러 장애물이 존재했다. 특히 높은 비용과 불확실한 ROI는 가장 큰 걸림돌로 지목됐다.   디지털 트윈 시스템 구축의 어려움 디지털 트윈 사용 기업이 꼽은 구축 시 가장 큰 어려움으로 ‘초기 투자 비용’(24.4%)과 ‘전문 인력 부족’(20.5%)이 가장 높은 비율을 차지했다. 그 뒤를 이어 ‘ROI 분석의 어려움’(16.6%), ‘경영진의 이해 부족’(15.1%) 순으로 나타났다. 주관식 답변에서는 고비용의 소프트웨어, 외산 설루션 및 3D 프로그램의 높은 라이선스 비용, 디지털 전환(DX) 도입 및 유지보수 비용 과다 등 경제적 부담에 대한 토로가 많았다. 특히 기대효과가 명확해야 한다, 비용 대비 효율이 확보되지 않으면 불가능하다, 실질적인 경영 효과로 어떻게 연결되는지 의문이라며, 투자를 정당화할 명확한 성과 측정과 검증된 성공 사례 부족을 지적했다. 전문 인력 부족 문제는 교육 시스템의 부재와 연계돼 있으며, 현장에서는 관련 교육 기회가 부족하다는 지적이 많았다. 경영진의 이해 부족도 중요한 문제로 나타났다.   그림 10. 디지털 트윈 구축 시 어려움   디지털 트윈 시스템 구축 관련 투자 계획 이러한 어려움에도 불구하고, 향후 디지털 트윈에 대한 투자 의향은 비교적 긍정적이었다. 사용 기업의 향후 투자 계획을 보여주는 그래프를 보면, ‘2년 이내’(31.4%), ‘1년 이내’(19.0%), ‘6개월 이내’(11.4%) 등 2년 내 투자 계획이 있다는 응답이 전체의 61.8%를 차지했다. 반면에 ‘도입 계획 없음’(26.2%)도 상당수 있었다.   그림 11. 향후 투자 계획   미래 투자 방향과 나아갈 길 전체 응답자가 디지털 트윈 확산을 위해 가장 필요하다고 꼽은 요소를 가중치 순으로 나타낸 그래프를 보면, ‘경영진의 의지와 디지털 트윈에 대한 이해’가 다른 항목을 큰 차이로 앞서며 압도적인 1위를 차지하고 있음을 확인할 수 있다. 또한 실제 사용 기업이 겪는 어려움에서도 ‘경영진의 이해 부족’이 중요한 요인으로 드러났다. 주관식 답변에서는 ROI 증명의 어려움과 맞물려 경영진 설득의 어려움을 토로하거나, 심지어 “실제 시험을 안 해도 된다고 생각하는 경영진이 많다”는 언급까지 나와, 리더십의 인식 개선이 시급함을 알 수 있었다. 표준화의 부재 역시 반복적으로 지적되었다. 응답자들은 데이터 표준화, 3D CAD 포맷 변환, 시스템 간 호환성 부족 등을 구체적인 문제로 언급했다.   그림 12. 디지털 트윈 시스템 구축과 확대를 위해 가장 필요한 것   구체적 정보와 성공 사례의 부족 또한 큰 장벽이다. 응답자들은 산업별 사례, 성공 및 실패 경험 등을 통한 실질적 정보 공유를 절실히 요구하고 있다. 이 밖에도 데이터 확보의 어려움, 외산 소프트웨어 의존도, 기술 복잡성, 국산 소프트웨어 개발의 필요성 등이 복합적으로 언급되며, 생태계 전반에 대한 개선이 필요함을 시사했다. 따라서 성공적인 디지털 트윈 도입과 확산을 위해서는 산적한 과제를 해결하기 위한 다각적인 노력이 필요하다. 현장의 목소리와 설문 데이터는 다음과 같은 방향을 제시하고 있다. 정부의 적극적인 역할 : 중소기업 지원 확대 , R&D 지원 및 국산 소프트웨어 육성, 산업 표준화 주도, 선도적인 인프라 투자 및 정책 지원 등 정부의 체계적이고 일관성 있는 지원 정책이 요구된다. 실질적 가치 증명 및 정보 공유 : 명확한 ROI 산정 모델 개발, 산업별 성공/실패 사례 발굴 및 투명한 공유, 기술 효용성에 대한 적극적인 홍보와 교육 강화가 필요하다. 표준화 및 기술 개발 : 데이터 형식 통일, 호환성 확보 등 산업 표준을 조속히 마련하고, 사용자 편의성을 높인 기술 및 플랫폼 개발 노력이 필요하다. 인력 양성 및 생태계 조성 : 실무 중심의 교육 프로그램 개발발 및 전문가 양성 시스템 구축, 산학연관 협력 시스템 강화가 필요하다.   맺음말 : 잠재력 현실화 위한 협력과 실질적 노력 시급 이번 설문조사는 디지털 트윈에 대한 국내 산업계의 높은 관심과 함께, 도입을 가로막는 다양한 현실적 장애 요인을 통계와 목소리로 생생하게 보여준 것이라고 할 수 있다. 이 같은 결과는 국내 산업계에서 디지털 트윈 도입이 활발히 이루어지고 있으나, 여전히 도입 도구의 표준화, 조직 내 전사적 활용, 실제 업무 흐름과의 통합 등에서 과제가 많다는 점을 보여준다. 향후에는 상용 툴과 자체 개발 플랫폼 간의 융합 전략, 그리고 데이터 연동성과 유지관리 측면에서의 체계적인 접근이 더욱 중요해질 것으로 보인다. 또한 디지털 트윈이 제조업 혁신의 핵심 동력으로 자리매김하기 위해서는 산업계, 정부, 학계가 함께 협력해 실질적인 해결책을 모색하고, 지속 가능한 생태계를 조성하려는 노력이 절실하다고 할 것이다.     ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02