• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "API"에 대한 통합 검색 내용이 1,975개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
오라클, AWS 클라우드에서 자율운영 DB 실행하는 ‘데이터베이스앳AWS’ 출시
오라클과 아마존웹서비스(AWS)가 오라클 데이터베이스앳AWS(Oracle Database@AWS)의 공식 출시(GA)를 발표했다. 이제 AWS 클라우드 환경에서 OCI(오라클 클라우드 인프라스트럭처) 전용 인프라의 오라클 엑사데이터 데이터베이스 서비스(Oracle Exadata Database Service) 및 오라클 자율운영 데이터베이스(Oracle Autonomous Database)를 실행할 수 있다. 오라클 데이터베이스앳AWS는 AWS의 미국 동부 및 서부 리전에서 이용 가능하며, 대한민국 서울을 포함한 전 세계 20여 개 AWS 리전에서 추가로 출시될 예정이다. 기업 고객은 오라클 데이터베이스 워크로드를 AWS 환경에서 OCI 상에서 실행되는 오라클 데이터베이스앳AWS로 손쉽게 마이그레이션할 수 있으며, 오라클 리얼 애플리케이션 클러스터(RAC) 및 AI 벡터 기능이 내장된 최신 오라클 데이터베이스 23ai의 이점도 누릴 수 있다. 오라클 데이터베이스앳AWS에는 제로 ETL(추출, 변환 및 로드) 기능이 포함되어 있어 엔터프라이즈 오라클 데이터베이스 서비스와 AWS 애널리틱스(AWS Analytics) 서비스 간 데이터 통합이 간편해지고, 이로써 복잡한 데이터 파이프라인을 구축하고 관리할 필요가 없어진다. 이는 오라클 데이터베이스 서비스와 AWS 서비스 간 데이터 흐름을 원활하게 하며, 기업은 자사의 데이터를 AWS 분석, 머신러닝 및 생성형 AI 서비스와 결합해 애플리케이션을 추가로 개선할 수 있다. 이번 출시로 클라우드 내 데이터베이스 실행에 있어 기업 고객들의 선택지는 더욱 넓어졌으며, 기존의 AWS 내 오라클 데이터베이스 실행 옵션이 보완됐다. AWS의 G2 크리슈나무티(G2 Krishnamoorthy) 데이터베이스 서비스 부사장은 “기업은 애플리케이션 재설계 없이도 자사의 오라클 데이터베이스 워크로드를 오라클 데이터베이스앳AWS로 원활히 마이그레이션할 수 있다. 동시에 AWS의 글로벌 인프라가 제공하는 보안성과 복원 탄력성, 확장성도 누릴 수 있다”면서, “보안에 가장 민감한 세계 최대 규모 기업 조직의 상당수가 이미 AWS에서 오라클 워크로드를 실행하고 있다. 오라클 데이터베이스앳AWS는 기업이 AWS의 첨단 분석 및 생성형 AI 기능을 바탕으로 보다 손쉽게 데이터로부터 더 큰 가치를 창출하도록 돕는다”고 말했다. 카란 바타 OCI 수석 부사장은 “기업들은 지난 수십 년간 자사의 가장 가치 있는 데이터를 오라클 데이터베이스에 저장해 왔다”면서, “오라클 데이터베이스앳AWS는 AWS 환경의 OCI에서 오라클 데이터베이스 워크로드를 실행할 수 있게 해 준다. 덕분에 오라클 데이터베이스 23ai의 이점을 온전히 활용하여 애플리케이션 개발을 간소화하고, AI 및 네이티브 벡터 임베딩을 바탕으로 미션 크리티컬 워크로드를 실행할 수 있다. AWS의 고급 생성형 AI 및 분석 서비스와 결합된 오라클 데이터베이스앳AWS는 진정 주목할 만한 설루션”이라고 설명했다. 오라클 데이터베이스앳AWS는 OCI와 AWS 전반에 걸쳐 일관된 사용자 경험을 제공하며, 양사의 통합된 지원으로 데이터베이스 관리와 구매, 배포를 간소화할 수 있다. 이는 기업 고객이 신뢰하는 기업용 애플리케이션에 최적화된 참조 아키텍처 및 랜딩 존을 기반으로 설계되었다.  이 서비스를 활용하면 오라클 제로 다운타임 마이그레이션(Oracle Zero Downtime Migration)을 비롯한 마이그레이션 도구와의 호환성을 바탕으로 기존 오라클 데이터베이스의 클라우드 마이그레이션을 간소화 및 가속화할 수 있다. 그리고 오라클 RAC를 통한 워크로드의 고도의 복원력 및 확장성 상승, 여러 AWS 가용 영역(AWS Availability Zones)과 아마존 S3(Amazon S3)을 통한 백업 및 재해 복구가 가능하다. 또한, AWS 마켓플레이스(AWS Marketplace)를 활용한 간소화된 구매 경험을 누릴 수 있다. 기존 AWS 약정 및 BYOL(Bring Your Own License) 등 오라클 라이선스 혜택과 오라클 서포트 리워드(OSR) 등 할인 프로그램을 오라클 데이터베이스앳AWS와 함께 사용할 수 있다. 아마존 EC2(Amazon EC2), 아마존EKS(Amazon EKS), 아마존 ECS(Amazon ECS)와 AI 벡터 검색(AI Vector Search) 등 오라클 데이터베이스 기능을 결합하면 확장 가능한 새로운 마이크로서비스 기반 애플리케이션을 구축할 수 있고, 이를 통해 애플리케이션 인텔리전스를 개선하면서 신기능을 신속하게 시장에 출시할 수 있다. 오라클 데이터베이스앳AWS는 내장형 오라클 AI 벡터 검색을 지원하는 오라클 데이터베이스 23ai를 제공한다. 사용자는 특정 단어와 픽셀, 데이터 값이 아닌 개념적 콘텐츠를 기반으로 문서, 이미지, 관계형 데이터를 손쉽게 검색할 수 있다. AWS 관리 콘솔(AWS Management Console), AWS 명령줄 인터페이스(AWS Command Line Interface), API 등 익숙한 도구 및 손쉬운 워크로드 관리를 위한 모니터링 기능이 제공되며, 고급 분석, 머신러닝, 생성형 AI 서비스를 활용한 데이터 준비가 가능하다. 이외에도 AWS IAM(AWS Identity and Access Management), AWS 클라우드 포메이션(AWS CloudFormation), 아마존 클라우드워치(Amazon CloudWatch), 아마존 VPC 라티스(Amazon VPC Lattice), 아마존 이벤트브리지(Amazon EventBridge) 등 AWS 서비스와의 통합이 제공된다. 한편으로 오라클 E-비즈니스 스위트(Oracle E-Business Suite), 피플소프트(PeopleSoft), JD 에드워즈 엔터프라이즈원(JD Edwards EnterpriseOne), 오라클 EPM(Oracle Enterprise Performance Management), 오라클 리테일 애플리케이션(Oracle Retail Applications) 등 오라클 애플리케이션도 지원된다. 오라클 데이터베이스앳AWS는 현재 AWS 미국 동부(버지니아주 북부) 및 서부(오리건주) 리전에서 이용 가능하며, AWS의 클라우드 인프라를 활용하고 있다. 오라클 데이터베이스앳AWS 설루션은 대한민국의 서울을 포함해 캐나다(중부), 프랑크푸르트, 하이데라바드, 아일랜드, 런던, 멜버른, 밀라노, 뭄바이, 오사카, 파리, 상파울루, 싱가포르, 스페인, 스톡홀름, 시드니, 도쿄, 미국 동부(오하이오주), 미국 서부(캘리포니아주), 취리히를 포함해 20여 곳의 추가 AWS 리전에서도 출시를 앞두고 있다.
작성일 : 2025-07-10
어도비, 뉴웰 브랜즈의 생성형 AI 활용 콘텐츠 공급망 혁신 지원
어도비는 글로벌 소비재 기업인 뉴웰 브랜즈(Newell Brands)가 어도비 파이어플라이(Adobe Firefly) 및 어도비 익스프레스(Adobe Express)를 통해 생성형 AI를 도입하고, 전 세계 소비자와의 접점 확장 및 영향력 확대에 나선다고 발표했다. 샤피, 러버메이드, 콜맨, 양키캔들 등 50개 이상의 브랜드를 보유한 뉴웰 브랜즈는 증가하는 콘텐츠 수요에 대응하기 위해 소셜 미디어, 이커머스 등 옴니채널 마케팅 및 콘텐츠 전략에 투자하며, 소비자 및 소매 파트너와의 관계를 강화하고 있다. 또한 이러한 투자 전략의 일환으로 어도비의 콘텐츠 공급망 설루션 활용을 확대해, 마케팅 캠페인의 기획부터 콘텐츠 제작, 실행, 성과 측정까지 전 과정을 최적화하고 있다. 뉴웰 브랜즈의 콘텐츠 공급망은 어도비 파이어플라이 서비스를 포함한 어도비의 생성형 AI 설루션으로 구동된다. 파이어플라이 서비스는 생성형 채우기(Generative Fill)와 생성형 확장(Generative Expand) 등의 역량을 기존 제작 워크플로에 직접 통합하는 생성형 및 크리에이티브 API 모음이다. 이를 통해 팀은 다양한 디지털 채널에 맞게 콘텐츠 크기를 조정하거나, 지역별 또는 캠페인별로 배경을 교체하는 등의 작업을 간소화함으로써 대규모 콘텐츠를 제작할 수 있다.     뉴웰 브랜즈는 자사 고유의 애셋으로 안전하게 학습된 맞춤형 생성형 AI 모델을 구축하기 위해 어도비 파이어플라이 커스텀 모델(Adobe Firefly Custom Models)도 활용할 예정이다. 이를 통해 팀 전반에서 브랜드 가이드라인에 맞는 콘텐츠를 제작할 수 있도록 지원한다. 실제로 페이퍼메이트(Paper Mate)의 패키징 작업에 이 모델을 적용했을 때, 콘텐츠 제작 속도가 75% 향상됐으며 출시 소요 시간도 단축됐다. 뉴웰 브랜즈는 콘텐츠 공급망을 최적화해, 향후 콘텐츠 크기 조정과 같이 시간이 많이 드는 작업 시간을 줄이고 연간 수천 개에 달하는 새로운 크리에이티브 애셋을 제공할 수 있을 것으로 기대하고 있다. 뉴웰 브랜즈는 자사의 크리에이티브 및 마케팅 조직 전반에 어도비 익스프레스도 도입하고 있다. 어도비 익스프레스는 마케팅 및 크리에이티브 담당자가 브랜드 일관성을 유지하도록 돕고, 팀원들이 비즈니스 성과 달성에 필요한 콘텐츠를 쉽고 빠르게 제작하고 커스터마이징할 수 있도록 지원하는 앱이다. 뉴웰 브랜즈의 크레이이티브 팀이 정의한 템플릿과 브랜드 가이드라인을 바탕으로, 담당자는 각 채널에 맞는 콘텐츠를 직접 제작할 수 있다. 또한 어도비 익스프레스 내 생성형 AI 역량을 통해, 사용자는 브랜드 가이드라인에 부합하면서도 상업적으로 안전하게 사용할 수 있는 에셋을 생성하는 것도 가능하다. 일례로 라틴 아메리카 팀은 어도비 익스프레스를 활용해 로고, 색상, 글꼴, 템플릿 등이 포함된 스타일 가이드를 제작하여, 오스터(Oster)의 소셜 콘텐츠 제작 프로세스가 33% 향상됐으며 52개의 콘텐츠 제작에 소요되는 시간도 12시간에서 8시간으로 단축됐다. 뉴웰 브랜즈의 멜라니 위에(Melanie Huet) 홈 & 커머셜 부문 공동 CEO는 “시장 경쟁에서 앞서 나가기 위한 전략의 일환으로, 탁월한 브랜드 커뮤니케이션을 구현할 수 있는 설루션에 투자하고 있다”면서, “뉴웰 브랜즈 생태계를 연결해 쉽고 빠르게 고품질 콘텐츠를 제작할 수 있도록 지원할 파트너를 찾고 있었다. 결국 우리는 기존 워크플로에 바로 적용할 수 있는 최고 수준의 툴을 보유한 오랜 파트너인 어도비와의 협업을 확대하기로 결정했다”고 말했다. 이어 “콘텐츠 공급망을 재정비하고 마케팅 기술 스택을 통합함으로써, 콘텐츠 생산량을 5배까지 확대하고 운영 효율성을 획기적으로 높이는 동시에 브랜드 커뮤니케이션의 효과도 한층 높이고자 한다”고 말했다. 어도비의 브렌트 루드위크(Brent Rudewick) Gen스튜디오 부문 부사장은 “향후 몇 년간 콘텐츠 수요가 급증할 것으로 예상되면서, 마케터와 크리에이티브 담당자들은 전 세계 마케팅 활동을 지원하고 고객 참여를 이끌어낼 수 있는 콘텐츠를 빠르게 제작해야 한다는 과제를 안고 있다”면서, “뉴웰 브랜즈가 새로운 고객층으로 영향력을 넓혀가는 이 시점에서, 어도비의 AI 기반 엔터프라이즈 설루션은 크리에이티브와 마케팅을 통합해 강력한 고객 경험을 이끄는 차별화된 콘텐츠를 대량 제작할 수 있도록 지원할 것”이라고 전했다.
작성일 : 2025-07-08
파이썬 버전 라이브러리 p5 기반 3D 데이터 시각화
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 컴퓨터 그래픽스 분야에서 유명한 프로세싱(processing) 도구를 파이썬(Python)으로 포팅한 p5를 알아보고, 이를 이용한 데이터셋 3D 가시화 방법을 확인해 본다. 또한 관련된 개발 프로세스를 이해하는 데 도움이 되는 간단한 예제를 설치, 코딩 및 실행하는 방법을 다룬다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1. p5 데모   실행 가능한 소스 코드는 다음 링크에서 다운로드할 수 있다. 깃허브 : https://github.com/mac999/llm-media-art-demo   p5 소개 p5 Python은 JavaScript 라이브러리 p5.js와 컴퓨터 그래픽 미디어아트에서 자주 사용되는 processing.org에서 영감을 받아 창의적인 코딩을 위해 설계된 라이브러리이다. 2D 및 3D 모두에서 그래픽, 애니메이션 및 대화형 프로그램을 구축하기 위한 간단한 API를 제공한다. p5는 파이썬을 지원하므로 pandas, numpy, 딥러닝 관련 라이브러리를 함께 사용해 가시화하기 편리하다.   그림 2   기본적으로 `p5py`는 `setup()`과 `draw()` 함수를 중심으로 프로그램의 구조를 구성한다. `setup()` 함수는 초기 설정을 담당하며, `draw()` 함수는 프레임마다 반복 호출되어 애니메이션이나 실시간 그래픽 표현을 가능하게 한다. 이를 통해 반복적이거나 시간 기반의 시각적 표현이 용이하게 된다. 그래픽 요소의 생성 및 조작이 매우 직관적이다. 예를 들어, `circle()`, `rect()`, `line()` 등의 함수는 간단한 인자 전달만으로 기본 도형을 화면에 출력할 수 있게 하며, `fill()`, `stroke()`, `background()` 등은 색상과 스타일 설정을 손쉽게 조절할 수 있게 한다. 마우스와 키보드 입력을 처리하기 위한 이벤트 함수도 포함되어 있다. `mousePressed()`, `keyPressed()` 등은 사용자와의 인터랙션을 가능하게 하며, 이를 통해 인터랙티브 아트, 시각적 피드백, 교육용 시뮬레이션 등을 손쉽게 개발할 수 있다. 이미지, 사운드, 텍스트 등 다양한 멀티미디어 요소도 지원한다. 이미지 로딩 및 출력은 `loadImage()`와 `image()`로, 텍스트 출력은 `text()`로 구현되며 각각의 요소는 다양한 좌표 기반 조정이 가능하다. 또한, NumPy와 같은 파이썬 과학계산 생태계와도 호환이 가능하여, 복잡한 수학적 계산이나 데이터 시각화 작업에 활용할 수 있는 확장성이 있다. 전반적으로 p5py는 예술가, 디자이너, 교육자, 프로그래밍 입문자를 위한 시각 중심의 프로그래밍 도구로서, 단순한 문법과 풍부한 기능을 통해 창의적 프로토타이핑을 효율적으로 지원하는 라이브러리이다. 상세한 내용은 다음 링크를 참고한다. https://github.com/p5py/p5 https://p5.readthedocs.io/en/latest/install.html   p5 Python 설치 시작하려면 컴퓨터에 파이썬이 설치되어 있어야 한다. 다음 단계에 따라 필요한 라이브러리를 설정한다.   1단계 : 파이썬 설치 파이썬 3.11이 설치되어 있는지 확인한다. 없다면 python.org에서 다운로드한다.   2단계 : p5 설치 pip를 사용하여 p5를 설치한다. pip install p5   3단계 : pandas 설치 CSV 파일을 처리하려면 라이브러리를 설치한다. pip install pandas   4단계 : 설치 라이브러리 검사 터미널에서 다음의 명령을 입력해 제대로 설치되었는지 확인한다. python -c "import p5" python -c "import pandas"     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-07-01
PINOKIO : 스마트 제조의 실현 위한 물류 디지털 트윈 설루션
개발 및 공급 : 이노쏘비 주요 특징 : 제조 물류 전반에 걸친 시뮬레이터/디지털 트윈/AI 에이전시의 통합 플랫폼, 설계~운영 과정의 최적화 지원, 다양한 제조 운영 시스템과 실시간 연동으로 대용량 데이터를 수집 및 처리, LLM/sLLM을 활용해 직관적인 데이터 분석 및 의사결정 지원 등 사용 환경(OS) : 윈도우 10/11(64비트) 시스템 권장 사양 : 인텔 i5 10세대 이상 또는 AMD 라이젠 5 이상 CPU, 최소 16GB RAM(32GB 권장), 엔비디아 RTX 4060 이상 GPU(AI 기능 사용 시 필요), 30GB 이상 여유 저장공간   최근 제조 기업들은 디지털 트윈 기반의 스마트 공장 도입과 더불어 급속한 디지털 전환(DX)을 위해 노력하고 있다. 불과 몇 해전만 하더라도 그 실체와 사례에 대해 의문이 있었지만, 다양한 도입 사례와 성과가 공개되면서 이제는 DX에서 나아가 AI 기술 도입과 AI로의 전환(AX : AI Transformation)을 활발히 검토하고 있고, 적극적인 도입 의사를 밝히고 있다. ‘PINOKIO(피노키오)’는 최신 기술 흐름을 반영해 탄생한 차세대 물류 디지털 트윈 설루션으로, 기존 상용 시스템의 한계를 극복하고 제조 산업의 스마트화를 가속화하는데 최적화된 해답을 제시한다. 기술 대전환의 시대를 맞아 기존의 전통적인 DX 설루션 기업들은 3D 모델링 및 시뮬레이션 등 낮은 단계의 디지털 트윈 기술을 기반으로 DX 설루션으로 개선 및 확장하고 있다. 이와 달리, PINOKIO는 초기부터 현장의 대용량 데이터 기반 실시간 물류 모니터링 및 실시간 시뮬레이션을 제공하는 디지털 트윈 기반의 운영 시스템을 목적으로 출발하였다. 그 결과 SK 하이닉스, LG전자 등 대량의 혼류 생산 제조 현장에서 디지털 트윈의 정합성과 예측의 정확도 등을 검증받았고 도입 효과를 증명했다. 이를 바탕으로 최근에는 기존 상용 설루션보다 높은 성능의 시뮬레이터까지 라인업하여 다양한 요구를 충족시킬 수 있게 되었다. 기존 상용 물류 시뮬레이션 설루션은 대부분 20~30년 전 개발된 구조를 가지고 있어, 최신 IT/OT 시스템과의 연동과 AI 기술을 적용하기 어렵다. 이로 인해 대용량 데이터 처리에 한계가 있으며, 사용자 API(애플리케이션 프로그래밍 인터페이스) 미제공으로 커스터마이징과 타 시스템 연계, 현장 실시간 운영에 필요한 유연성과 확장성에서도 제약이 있다. PINOKIO는 이러한 기존 설루션의 문제점을 개선해 제조 물류 관련 다양한 AI 모델을 지원하며, 기존 설루션 대비 높은 모델링 속도를 구현할 수 있다. 그리고 멀티 스레드, GPU 기반의 고속 시뮬레이션 연산 기능과 2차전지, AMR(자율이동로봇), OHT(오버헤드 트랜스퍼), 자동창고 등 다양한 제조 환경에 맞는 특화 라이브러리를 제공한다. 특히, 생산 현장에서 발생하는 실시간 빅데이터를 효과적으로 처리하고, 대화형 어시스턴트(assistant) 방식의 직관적인 사용자 인터페이스(UI)를 통해 사용자 편의성을 높였다. 또한, 사용자 API를 통한 고도화된 커스터마이징이 가능하며, MES(제조 실행 시스템), 센서, PLC(프로그래머블 로직 컨트롤러), IoT(사물인터넷) 등 다양한 운영 시스템과의 실시간 연동 기능도 갖췄다. 나아가, 전력 사용량 분석과 탄소세 예측 기능까지 탑재돼 지속 가능한 제조 환경 구축을 위한 의사결정도 지원한다. PINOKIO는 AI 기반 제조 혁신의 길을 여는 실질적인 도구로, 앞으로 제조업계의 디지털 전환을 선도할 핵심 설루션으로 자리매김할 전망이다.   주요 기능 소개 PINOKIO는 시뮬레이터, 디지털 트윈, AI 에이전시(agancy)를 통합한 차세대 DES(이산 이벤트 시뮬레이션) 기반 플랫폼으로, 제조 물류 전반에 걸친 통합 설루션을 제공한다. PINOKIO는 세 가지 핵심 모듈로 구성된다. 첫 번째는 ‘Pino SIM’으로, 공정 흐름 설계부터 시뮬레이션, 분석까지 수행하는 시뮬레이터다. Pino SIM은 도면 편집과 레이아웃 설계를 위한 Pino Editor를 내장하고 있어, 단순한 시뮬레이션을 넘어 제조 기준정보 입력, 물류 시나리오 구성, 시뮬레이션 실행 및 시각화 분석까지 다양한 기능을 제공한다. 이를 통해 설계 초기 단계부터 실제 운영에 이르기까지 전 과정의 최적화를 효과적으로 지원한다. 두 번째는 실시간 디지털 트윈 모듈인 ‘Pino DT’다. MES, IoT, PLC, 센서 등 다양한 제조 운영 시스템과의 실시간 연동을 통해 대용량 데이터를 실시간으로 수집하고 처리하며, 이를 바탕으로 실시간 모니터링은 물론 미래 상황 예측, 예지 보전 기반의 시뮬레이션이 가능하다. 이는 생산 현장의 가시성과 민첩성을 높이는 데 기여한다. 세 번째는 인공지능 기반의 ‘Pino AI’다. LLM(대규모 언어 모델)과 sLLM(전문 도메인 특화 언어 모델)을 활용한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다. 또한 목적에 따라 강화학습, 파라미터 최적화 등 다양한 AI 기법을 적용할 수 있어 생산성과 품질 향상을 동시에 도모할 수 있다. PINOKIO는 엔비디아 옴니버스(NVIDIA Omniverse)와 같은 고급 시각화 플랫폼과 연동 가능하며, 파이썬(Python) 개발 환경 확장도 지원함으로써 사용자 맞춤형 라이브러리 개발이 가능하다. 이를 통해 제조 기업은 사전 공정 및 물류 최적화는 물론 실시간 생산 모니터링, 미래 예측, AI 기반 정확도 향상 등 다양한 지능형 서비스를 구현할 수 있다. 제조업의 디지털 전환이 본격화되는 시대에 PINOKIO는 스마트 공장을 넘어 AI 전환을 실현하는 핵심 파트너로 부상하고 있다.   PINOKIO의 특징 PINOKIO는 고도화된 시뮬레이션 엔진과 AI 통합 기능을 바탕으로 대규모 데이터 처리 및 실시간 예측 분석을 지원하며 스마트 제조 시대의 경쟁력을 강화하고 있다. PINOKIO는 이벤트 처리 기법 최적화 및 단순화된 시뮬레이션 엔진 설계로 빠른 연산 속도를 제공한다. 특히, 초당 60프레임(FPS) 기준으로 500만 개 수준의 대규모 3D 데이터를 안정적으로 처리할 수 있으며, 선택적 컴파일 방식(C# 기반 네이티브 코드)을 활용한 별도 계산 도구를 통해 집약적인 연산 작업도 고속으로 수행할 수 있다. 디지털 트윈 구축에서도 PINOKIO는 강력한 성능을 발휘한다. MES, ACS, MCS 등 다양한 제조 운영 시스템과 연동과 IoT, 센서, PLC 등 생산 현장에서 수집되는 대용량 데이터를 실시간으로 처리한다. 이를 통해 실시간 모니터링과 동시에 백그라운드 시뮬레이션을 수행하고, 타임 호라이즌(Time Horizon) 방식의 미래 예측 기술을 통해 병목, 이상 징후 탐지 및 알람 기능도 제공된다. 또한, AI를 활용하기 위한 정상/이상 데이터 제공과 파라미터 최적화 및 시나리오별 분석 기능이 포함되어 있으며, LLM과 sLLM, 챗GPT(ChatGPT), 메타 라마(Meta LLaMA) 등 다양한 AI 모델을 통합한 AI 에이전시 기능을 통해 대화형 데이터 분석, 자동 의사결정 지원, 데이터 해석 및 운영 최적화를 구현한다. 시뮬레이션 설계 및 모델링 측면에서도 사용자 편의성이 강화됐다. Pino Editor를 활용해 레이아웃 도면을 직관적으로 확인 및 편집할 수 있으며, 제조 기준 정보 입력 및 템플릿 매칭 기능을 통해 모델링 작업 시간을 획기적으로 단축시킨다. 또한, 2차전지 및 반도체 공정에 특화된 전용 라이브러리도 제공되며, 고객 맞춤형 커스터마이징 시뮬레이터를 통해 사용자의 목적에 따라 분석 및 최적화가 가능한 유연한 개발 환경을 지원한다. 이처럼 PINOKIO는 고속 시뮬레이션, 실시간 예측, AI 기반 의사결정, 그리고 유연한 모델링 기능을 종합적으로 제공하며, 제조업의 지능화·자동화를 실현하는 설루션이다.   그림 1. PINOKIO UI 화면 – 반도체 FAB   사전 레이아웃 및 물류 검토를 위한 설루션 : Pino SIM 디지털 트윈 구축 시 미래 예측을 위한 시뮬레이터 역할과 기존 상용 설루션과 같이 공장 신축 또는 생산 라인 변경 등 제조 현장의 변화가 요구된다. 이런 상황에서 Pino SIM은 사전에 최적의 물류 계획과 레이아웃 구성을 지원하고 공정의 효율성과 안정성을 미리 확보할 수 있는 디지털 전환 핵심 도구이자 가상 공장 구현 설루션이다. Pino SIM은 제조 기준 정보(제품, 공정, 레이아웃, 물류 흐름, 작업 순서, 스케줄링 등)를 기반으로 공정을 시뮬레이션하며, 그 결과를 차트, 그래프 등 다양한 시각화 도구를 통해 분석할 수 있다. 이를 통해 레이아웃 검증 및 최적화, 생산성 향상 등 공장 운용 전반의 효율화를 실현할 수 있다. 특히, OHT, AMR 등 신 산업군을 위한 특화 라이브러리를 제공하며, 이송 설비 구현을 위한 이동, 충돌 방지, 회피 제어를 위한 OCS, ACS 기능도 탑재되어 있다. 이를 통해 코드 작성 오류를 줄이고 디버깅 시간을 줄일 수 있으며, 보다 쉽고 효율적으로 시뮬레이션 모델을 구축할 수 있다. 또한, 자동창고 모델링에 필요한 Stocker(Crane, Rack, Rail)를 그룹화 형태로 제공하여 빠른 모델링이 가능하다. 환경과 에너지 측면에서도 전력 사용량 및 탄소 배출량(탄소세) 분석 기능을 통해 지속 가능한 생산 전략 수립에 도움을 주며, 제조업의 친환경화와 ESG 경영 대응에도 기여할 수 있다. 이처럼 Pino SIM은 공장 설계 단계에서의 의사결정 품질을 높이고, 새로운 제조 환경에 유연하게 대응할 수 있는 설루션이다.   그림 2. 라이브러리 제공 – Stocker   그림 3. 개발(코딩) 없이 기능 구현   그림 4. 시뮬레이션 결과 리포트 예제   디지털 트윈 설루션 : Pino DT 제조 현장에서 물류는 제품의 사이클 타임을 결정하는 요소 중에 하나이다. 물류 정체가 발생할 경우 제품의 사이클 타임이 길어지거나 라인이 정지되는 등 심각한 손실이 발생할 수 있다. 이러한 문제를 해결하기 위해 시뮬레이션을 통한 최적화된 운영 방식을 시스템에 적용하려는 노력이 이어져왔다. 기존의 물류 설루션은 현장에서 발생하는 대용량의 데이터를 시뮬레이션에 반영하여 실시간으로 의사결정하는 과정에서 다양한 제약으로 인해 어려움이 있었다. 또한, 현장 작업자의 개입과 같은 인간적 오류는 시스템이 예측할 수 없는 데이터를 발생시키기 때문에 생산 계획 단계에서의 사전 분석 및 검증만으로는 시뮬레이션 정합성을 높이는데 한계가 있다. Pino DT는 최적화된 자체 개발 시뮬레이션과 모니터링 엔진을 탑재하여 이를 해결하였다. 시뮬레이션의 이벤트 횟수를 최적화하여 최소한의 이벤트로 시뮬레이션이 가능하도록 설계했다. 또한 계산 속도에 이점이 있는 C, C++ 언어로 물류 경로를 최적화하는 알고리즘을 구현하여 기존 설루션 대비 약 2만평 규모의 공장에서 약 70배의 향상된 성능을 검증하였다.   그림 5. Pino DT의 UI 화면   대용량 데이터 처리 및 실시간 모니터링 Pino DT는 시뮬레이션에 최적화된 알고리즘을 사용함으로써 대용량 데이터 처리가 가능하고, 현장 데이터를 실시간으로 시뮬레이션에 반영할 수 있다. 기존 물류 시뮬레이션 설루션에 비해 60~700배 뛰어난 가속 성능을 제공하는 시뮬레이션 도구이다. 제조 현장과 동일한 상황을 시뮬레이션하기 위해 현장과 연동 후 데이터를 가공하여 디지털 트윈 모델로 표현하여 가시화하고, 사용자가 설정한 시간 주기마다 미래를 예측하는 시뮬레이션(proactive simulation)을 백그라운드로 수행한다. 이는 제품의 공정 시간보다 짧은 시간 안에 결과를 확인할 수 있고, AI를 통해 보다 정확한 의사결정을 내릴 수 있도록 지원한다.   그림 6. Pino DT의 모니터링 화면   디지털 트윈 실시간 시뮬레이션 : 미래 예측 실시간 현장 상황을 반영하여 미래를 예측하는 시뮬레이션(proactive simulation)은 제품의 택트 타임(tact time)보다 짧은 시간 내에 결과를 도출해내지 못하면 현장에서 선제 대응하지 못하는 결과를 초래할 수 있다. 모니터링 엔진으로부터 라인 상황에 대한 데이터를 수집하고, 현재로부터 예측하고자 하는 시간 동안 발생하는 이상상황에 대해 피드백을 준다. 예를 들어 조립 라인의 경우에는 부품이 5분 뒤에 부족하다는 알람을 작업자에게 즉시 전달하여 선제적 대응을 가능케 함으로써, 라인 정지 등 비상 상황을 사전에 방지할 수 있다. PINOKIO 디지털 트윈 시뮬레이션은 이러한 역할이 가능하도록 가속화한 고속 시뮬레이션 엔진을 보유하고 있다.   그림 7. 현장 FAB(왼쪽)과 PINOKIO에서 생성된 디지털 트윈(오른쪽)   제조 물류 현장에 특화된 AI 플랫폼 : Pino AI AI를 이용한 설루션을 만들기 위해서는 다양한 상황에 대한 데이터가 필요하다. 하지만 제조 현장의 특성 상 여러 상황에 대한 데이터를 획득하기 어렵다. PINOKIO에서는 현장에서 획득하기 어려운 데이터를 시뮬레이션을 통해 데이터를 확보할 수 있다. 즉, Pino DT 모델이 AI를 위한 데이터를 생성하고, 이를 AI가 최적 값을 도출하여 시뮬레이션에 반영한다. Pino DT에서 획득한 데이터를 파이썬, C, 자바(JAVA) 등 다양한 언어로 구현한 로직을 적용할 수 있도록 개발 환경을 제공하고 있다. 이를 통해 예측 정확도 향상, 데이터 기반 의사 결정, Scheduling, Routing, Dispatching 등 목적에 따라 AI 활용이 가능하다. 또한 LLM, sLLM, 챗GPT(ChatGPT), 메타 라마(Meta Llama) 등과 결합한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다.   그림 8. 대화형 UI 및 결과 리포트   그림 9. Pino DT와 AI 모델 활용 원리   Pino DT와 현장 데이터 인터페이스 디지털 트윈에 가장 중요한 요소는 현장과의 연결이다. 대부분의 물류 전문 설루션이 현장과의 연결을 위한 인터페이스를 지원하지만, 많은 양의 데이터를 처리하면서 실시간으로 시뮬레이션하는데 어려움이 있다. Pino DT는 대용량 데이터 처리와 시뮬레이션 가속 성능이 뛰어나 실시간 모니터링 시스템까지 가능하다. <그림 10>은 현장에 있는 MES와 Pino DT가 인터페이스되는 과정이다. 현장에 있는 PLC가 MES에 데이터를 전달하고, MES는 그 데이터를 데이터베이스에 저장한다. 이를 Pino DT에서 외부 통신(IP)을 통해 데이터베이스에 접근하여 데이터를 시뮬레이션에 반영한다. 이 과정에서 현장 데이터의 상태가 중요하다. 불필요한 데이터가 있거나 로스 또는 시간 순서가 맞지 않은 경우가 대부분이다. Pino DT에서는 현장 데이터를 올바르게 정제하는 작업을 거쳐 현장과 동일한 디지털 트윈 모델을 만든다.   그림 10. 현장 데이터 인터페이스 과정   PINOKIO의 기대 효과 PINOKIO는 현장 운영 데이터를 실시간으로 디지털 트윈과 연동함으로써 모니터링이 가능하며, 전체 공장을 PC, 웹, 모바일 등 다양한 형태로 여러 사용자와 함께 직관적으로 확인하면서 공유하고 협업할 수 있다. 또한 현장과 연결된 디지털 트윈 모델을 이용하여, 미래에 발생 가능한 문제점을 예지(predictive)하고, 이러한 문제점을 사전에 해결하기 위한 선제대응(proactive) 의사결정을 가능하게 한다. 이 때 디지털 트윈을 이용한 사전예지는 온라인 시뮬레이션 기술에 기반하고, 선제대응은 AI 기술에 기반한다고 볼 수 있다. 디지털 트윈 기반 사전예지의 시간적 범위(time horizon)는 현장의 특성에 따라서 0.1시간~10시간으로 달라질 수 있으며, 문제점의 종류는 주로 생산 손실(loss), 부품의 혼류 비율 불균형, 설비 고장예지 및 물류 정체 등을 포함한다. 문제점이 예지되면 이를 해결하기 위한 즉각적인 의사결정 AI 기술을 활용하여 최적 운영을 달성함으로써 생산성, 경제성, 안정성 및 경쟁력 향상 효과가 있다.   맺음말 생산 계획 단계에서 Pino SIM을 통해 레이아웃 검증과 물류를 최적화하고, Pino SIM 모델 데이터를 생산 운영 단계에서 PINOKIO와 연계하여 현장 데이터 기반 실시간 모니터링과 미래 상황 예측 및 선제 대응함으로써 현실적이고 실제 활용 가능한 스마트한 디지털 트윈을 구축할 수 있다. 다음 호부터는 Pino SIM, Pino DT, Pino AI 등 각 제품별 소개 및 적용 사례를 소개하고자 한다.   그림 11. 디지털 트윈을 위한 플랜트 시뮬레이션과 PINOKIO     ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
[온에어] AI 시대, 지식과 경험의 디지털 트윈 전략과 도구
캐드앤그래픽스 지식방송 CNG TV 지상 중계   CNG TV는 6월 9일 ‘AI 시대, 지식과 경험의 디지털 트윈 전략과 도구’를 주제로 웨비나를 개최했다. ‘AI 시대에 개인의 지식과 경험을 디지털 트윈화하는 최고의 전략은 무엇인가’라는 물음에 디지털지식연구소 조형식 대표는 “AI 시대에 개인의 지식과 경험을 디지털 트윈화하는 최고의 전략은 인공지능과 디지털 트윈의 결합에 있다”고 말했다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   ▲ 디지털 트윈(Digital Twin)의 발전 과정을 연도별로 정리한 타임라인   AI와 디지털 트윈, 왜 지금 결합해야 하는가? “과거에는 10년 주기로 바뀌던 지식이 이제는 1~2년 만에 달라지는 시대이다.” CNG TV 진행자이자 캐드앤그래픽스 편집자문위원인 조형식 대표는 AI와 디지털 트윈(DT)의 결합이 더 이상 선택이 아닌 필수 전략임을 강조했다. 조 대표는 전문가조차 AI 활용에 주저하는 현실을 지적하며, 이제는 개인이 디지털 전환을 통해 미래 경쟁력을 갖춰야 할 때라고 말했다. 디지털 트윈은 현실의 사물, 시스템, 조직 등을 가상공간에 복제하여 예측과 시뮬레이션을 수행하는 기술이다. 하지만 디지털 트윈은 구현이 어렵고 비용이 많이 들며, AI는 빠른 분석은 가능하지만 맥락을 이해하지 못하는 단점이 있다. 이 약점을 보완하는 가장 강력한 전략이 바로 AI + DT의 결합이다. 조 대표는 “디지털 트윈은 현실을 복제하는 가상 쌍둥이이며, AI와 결합되어야 비로소 실질적인 성과를 낸다”고 강조했다. 이 기술의 적용 범위도 점점 확장되고 있다. 초기에는 제품이나 설비 단위였지만 이제는 시스템 트윈, 프로세스 트윈을 넘어 스마트시티, 헬스케어 등 복잡한 영역까지도 디지털화되고 있다. 심지어 점심 메뉴, 회식 장소 선택, 회사의 조직 구조 같은 존재하지 않는 개념조차 디지털 트윈화할 수 있는 시대, ‘디지털 트윈화(digital twinification)’가 도래한 것이다. 이런 흐름은 세계적인 데이터 분석 기업 팔란티어(Palantir)에서도 볼 수 있다. 팔란티어는 기업의 모든 데이터와 시스템을 디지털 트윈으로 재현하고, 이를 AI 기반으로 운용하는 방식을 도입했다. 여기서 핵심이 되는 개념이 ‘온톨로지(ontology)’이다. 이는 AI가 인간처럼 의미를 파악하고 연결망을 이해할 수 있도록 설계하는 방식으로, 앞으로의 프롬프트 설계나 데이터 관리에서 필수적인 구조다.   ▲ 2025년 AI 기반 지식 관리 도구 20가지를 주제로 한 시각적 요약   나만의 디지털 쌍둥이를 만드는 5단계 전략 조형식 대표는 개인이 자신의 지식과 경험을 디지털 트윈화하기 위한 실전 전략을 다음과 같이 5단계 + α로 제안했다. 구조화 : 에버노트, 노션 등을 통해 정보를 정리 네트워크화 : 옵시디언, 롬 리서치 등으로 개념과 연결성 강화 AI 강화 : 챗GPT, 구글 노트북LM 등을 통해 콘텐츠 해석과 보완 트윈화 : 기능 단위로 구체적인 디지털 복제물 생성 자동화 : 반복되는 작업은 FastAPI, Make.com, ZAPIer 등으로 자동화 α(지속적 학습) : 반복 학습과 개선으로 궁극적인 지식 자산화 조 대표는 “지식은 데이터이고, 경험은 프로세스다. 이 둘을 함께 디지털화하는 것이 개인 디지털 트윈의 핵심”이라고 정리했다. 그리고 “AI 시대는 기억력의 싸움이 아니라 상상력의 싸움이다. 거창한 계획보다는 작은 디지털 트윈부터 만들어보자”고 조언했다. 또한, 조 대표는 이러한 실전 전략을 뒷받침하는 다양한 도구도 소개했다. AI 음성 복제 도구 : 일랩스(자신의 목소리로 다국어 출력 가능) 오프라인 LLM 실행 : LM Studio를 활용해 나만의 AI 구축 자동화 플랫폼 : 노션 + Make.com, Jasper, ZAPIer 등 추천 학습 : MCP(Model Context Protocol), 그래프 DB에 대한 이해   ▲ CNG TV 진행자이자 캐드앤그래픽스 편집자문위원인 디지털지식연구소 조형식 대표   AI와 디지털 트윈의 결합은 개인의 지식과 경험을 ‘복제·확장·자동화’할 수 있는 가장 효과적인 전략이다. 거창한 기술이 아니라, 지금 당장 나만의 작은 디지털 쌍둥이 하나를 만드는 것부터 시작하면 누구든지 미래의 경쟁력을 키울 수 있다.     ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
[칼럼] AI 스터디그룹(데이터공작소)에서 답을 찾다
현장에서 얻은 것 No. 20   피곤했지만 놓칠 수 없는 기회, AI 스터디그룹(데이터공작소)에서 답을 찾다.”   AI 시대, 배움과 연결에서 찾은 성장 동력 일상에 지쳐 몸은 천근만근이었지만, 빠르게 변화하는 인공지능(AI) 시대에 뒤쳐질 수 없다는 생각에 발걸음을 재촉했다. 특히 AI 기술이 단순한 효율성 도구를 넘어 업무 방식과 산업 지형을 근본적으로 바꾸고 있다는 통찰 앞에 서니, 피로감은 부차적인 문제로 느껴졌다. 이러한 변화의 파고를 헤쳐나갈 답을 찾기 위해, 필자는 주말에 스터디하는 데이터공작소 TFT, 데이터 공작소의 매주 월요일 줌강의, 매달 모임과 자율주행 회사들의 특별한 만남인 미모셀, 지식을 공유하고 서로 도움을 주는 네트워크 모임인 한국미래융합연구원 등 AI 및 관련 기술 스터디 그룹의 문을 두드렸다. 이곳에서 만난 전문가들과의 지식 공유와 토론은 필자가 가진 궁금증을 해소하고 새로운 가능성을 탐색하는 데 귀중한 기회가 되었다. “배우는 법을 배우라.” − 데미스 허사비스(Demis Hassabis) CEO, 구글 딥마인드   ▲ 피곤했지만 놓칠 수 없는 기회, AI 스터디그룹   AI 에이전트와 MCP : AI의 실행력을 극대화하는 연결 고리 탐색 스터디 그룹에서 가장 주목받는 개념은 AI 에이전트였다. AI 에이전트는 환경을 인식하고 스스로 결정하며 목표를 달성하는 소프트웨어 개체로 정의된다. 독립적으로 작동하며 목표를 향해 지속적으로 학습하고 개선하는 특징을 가진다. 데이터를 수집, 분석하고 최적의 행동을 선택하여 실행하는 방식으로 작동하며, 질문에 대한 하위 질문을 생성하고 리서치한 후 포괄적인 답변을 제공하거나 AI 요약 결과를 자동화하고 개선하는 등 다양한 기능을 수행할 수 있다. 일부는 다양한 도구를 사용하여 복잡한 작업을 수행하는 완전 자율 시스템으로 정의되기도 하고, 미리 정의된 워크플로를 따르는 규범적인 구현을 설명하기도 한다. 이러한 AI 에이전트의 역량을 극대화하는 핵심 기술로 MCP(Model Context Protocol)가 소개되었다. MCP는 LLM(Large Language Model) 애플리케이션과 외부 데이터 소스 및 다양한 도구 간의 원활한 통합을 가능하게 하는 개방형 프로토콜이다. 마치 USB-C가 다양한 전자기기를 연결하듯, MCP는 웹 서비스와 AI 에이전트를 연결하여 AI가 서비스에 직접 접근할 수 있도록 돕는 핵심 기술이다. 이를 통해 LLM은 단순히 텍스트를 생성하는 것을 넘어 현실의 도구들과 연결되며 이메일 작성 및 전송, 캘린더 약속 등록, 슬랙 메시지 전송, 파일 저장 및 정리, 소셜 미디어 검색 및 게시, 스프레드시트 데이터 정리, 줌 회의 예약 및 회의록 작성, 노션 자료 활용 등 다양한 작업을 실행할 수 있게 된다. 이는 에이전틱 AI(agentic AI) 발전의 중요한 요소로 강조되었다. 또한, MCP는 프레임워크나 벤더에 관계없이 에이전트 간 상호 운용 가능한 통신을 안전하게 지원하는 것을 목표로 한다. API와 MCP가 반드시 필요한 것은 아니지만, 엄청난 잠재력을 가지고 있다는 점이 강조되었다. API 연결은 개발자에게도 쉬운 일은 아니며 권한 부여 문제 등이 있기 때문에, MCP가 이를 더 쉽게 만들 수 있는지에 대한 고민도 있었다. “미래를 예측하는 최선의 방법은 미래를 창조하는 것.” − 정종기 박사, AI 비즈니스 전문가   바이브 코딩과 커서 : AI를 개발 동료로 활용하는 방법 AI 스터디에서는 개발의 패러다임 변화인 ‘바이브 코딩’에 대한 논의도 활발했다. 전통적인 코딩이 ‘개발자가 자신의 작업을 대신할 프로그램을 만드는 것’이라면, 바이브 코딩은 ‘AI가 자신의 작업을 대신할 프로그램을 만드는 것’이다. 이는 AI에게 개발을 외주로 맡기는 것과 유사한 개념으로 설명된다. 좋은 바이브 코더는 좋은 외주 의뢰자가 갖춰야 할 다섯 가지 역량을 AI에게 적용해야 한다. 내 문제를 풀기 위한 작업 정의(PRD, 유저 플로) AI가 잘 이해할 수 있게 의사소통(프롬프트, 지침) 프로그램을 잘 만들기 위한 리소스 지원(데이터, API, 실행/배포 환경) 프로그램이 의도대로 동작하는지 검수(자동화 테스트) 이 과정에서 모르는 것을 배워 점차 스스로 할 수 있게 되는 것이다. 커서(Cursor)는 이러한 ‘LLM-assisted IDE’ 개념을 제시하는 도구로 소개되었다. 복잡한 프로그래밍 지식, 문서, 오류 메시지 기반의 학습 곡선이나 사전 설계 중심의 신중한 개발 문화, 툴과 언어, 개발 환경의 복잡성 같은 문제 속에서 커서는 아이디어를 즉각 코드로 구현하고 비전문가의 접근성을 폭발적으로 증대시키며 LLM 기반의 빠른 실험과 피드백 루프를 가능하게 한다. 문법 대신 의도 전달과 맥락 중심으로 전환되는 패러다임의 변화를 지원한다. 데이터공작소 개발TFT(서울팀) 관련 세션에서는 커서를 활용한 실질적인 개발 프로세스가 시연되었다. 혼자서 다양한 역할을 수행하는 ‘솔로프리너’ 관점에서 기획부터 개발, 테스트, 배포, 모니터링, 마케팅까지 전 과정을 AI와 함께 진행하는 방법이 제시되었다. 커서를 통해 아이디어 구체화, 기획 문서 작성(PRD, 비즈니스 모델 캔버스), 프로젝트 관리(Task Master MCP를 활용한 작업 목록 생성, 복잡도 계산, 하위 태스크 분해), 실제 코드 작성, 그리고 문서화(Obsidian 연동) 등이 가능함을 보여주었다. 특히 개발 경험이 있는 발표자인 어니컴의 최성훈 팀장은 커서를 통해 불편하고 반복적인 작업의 상당 부분을 자동화하고, 단계별로 명확한 지시를 내리며 태스크 관리를 통해 AI가 맥락을 이해하도록 유도하는 장점을 강조했다. 그는 커서를 쓰면서 처음에는 AI가 코딩을 짜는 것을 도와주는 정도라고 생각했고, 코드를 다 안 봐도 알아서 다 짜 주는 줄 알았다고 했다. 하지만 실제로 해 보니 절대 그렇지는 않았고, 다만 불편하거나 반복적인 작업에서는 충분히 활용 가치가 있음을 느꼈다고 했다. AI와 소통하며 생각을 체계화하고 문서화하며 원하는 것을 구체화하고 실행 계획을 짜서 이뤄가는 과정을 보였다고 했다. 그는 커서 하나로 A부터 Z까지 다 해 볼 수 있겠다는 느낌을 받았고, 솔로프리너를 목표로 하는 사람들은 연구해 볼 만하다고 개인적인 의견을 덧붙였다. AI에게 외주를 맡기는 개념이기 때문에 사람이 명확하게 문제 정의를 하고, 의사소통하며, 검수하는 역할이 중요하다고 언급했다. 또한, 커서가 굉장히 많은 도움을 주었다고 말했다. 개발자는 커서를 통해 코드의 문제점이나 개선 포인트를 찾는 데 도움을 받을 수 있고, 혼자 개발하면서 보조적인 도움이 필요할 때 효과적일 수 있다고 했다. 또한 자동 PR 요약이나 커밋 메시지 작성 등 깃(Git)과의 연동도 잘 되는 장점이 있었다. 오랜 개발 경험을 가지고 있는 양선희 대표는 필자의 숙원 고민거리를 반나절만에 해결해 주었다. 디자인씽킹 기법 중 첫 번째인 공감대 형성의 템플릿을 시스템화시켜 주었다. 클로드(Claude)로 대화하듯이 고민거리를 얘기하고 프로그램 기획, 개발, 테스트 등을 통해 언제든지 실행 가능한 설루션으로 만들어 주었고 소스도 공유했다. 보안 분야를 다루면서 다양한 경험을 통해서 항상 정리를 잘 하고 번뜩이는 아이디어를 내는 NSHC 장주현 이사와 AI인터시스 신동욱 대표는 AI 일타 강사이다. 항상 새로운 기술, 주제를 뚝딱 만들어내고 강의도 잘 한다. 최근에는 개발, 교육을 병행하느라 전국을 일일 생활권으로 두고 있다. 신동욱 대표의 회사에서 핵심 인재인 정성석 상무는 차세대 유망주인데, 알고 보니 고등학교 후배였다. 세상은 넓고 할 일은 많지만, 오늘 이 모임이 있기까지 도움을 준 데이터마이닝 이부일 대표는 유튜브 R릴에오를 통해 데이터 통계 분석 기법을 유튜브로 알렸다. 2022년 콘셉트맵 캘린더 9월호의 주인공으로 모신 인연으로 SNS에서 자주 소통하고 온/오프라인으로 인연을 이어가고 있다. “결국 실행되는 지식만이 힘이다.” − 데일 카네기   노트북LM : 개인 맞춤형 학습 및 연구 파트너 활용 또 다른 유용한 AI 도구인 노트북LM(NotebookLM)은 맞춤형 AI 리서치 어시스턴트이자 AI 기반 학습 및 연구 파트너로 소개되었다. 노트북LM의 가장 큰 강점은 사용자가 제공한 소스 내에서만 정보를 검색하고 답변을 생성하여, 환각 현상을 줄이는 데 도움을 준다는 것이다. PDF, 구글 드라이브 문서, 웹사이트 링크, 유튜브 링크, 마크다운 등 다양한 형태의 소스를 학습할 수 있으며, 특히 유튜브 공개 동영상 URL을 소스로 사용할 수 있는 점은 챗GPT에서 제공하는 프로젝트 기능과의 차별점으로 언급되었다. 노트북LM의 주요 기능으로는 학습 자료(소스) 내 정보 검색 및 답변 생성, 소스 요약(핵심 내용 추출), 추가 탐색, 메모 추가 및 소스 전환, AI 오디오 오버뷰(팟캐스트 형태의 요약 청취), 오버뷰, 마인드 맵(소스 기반 개념 및 관계 구조화), 생성 맞춤 설정, 학습 가이드, FAQ 생성, 브리핑 문서, 타임라인(시간적 순서 정리), 소스 검색, 심화 질문 및 분석 등이 있다. AI 오디오 오버뷰 기능은 두 명의 팟캐스트가 대화 형식으로 소스 내용 중 중요한 부분을 6~7분 분량의 팟캐스트로 만들어 주며, 원하는 내용에 초점을 맞추어 생성할 수도 있다. 시각 장애인에게도 좋은 서비스로 생각된다고 언급되었다. FAQ 기능은 우리가 생각하지 못했던 질문을 많이 만들어 준다고 했다. 마인드 맵 기능은 주어진 소스를 기반으로 개념과 관계를 시각화하는 데 상당히 잘 작동한다고 했다. 타임라인 기능은 소스에 있는 여러 이벤트를 시간 순서대로 정리해 주는데 정말 훌륭하다고 했다. 활용 사례로는 새로운 개념 이해, 핵심 자료 수집, 스터디 메이트 역할(학습 계획 관리, 질문/답변 학습, 복습, 약점 보완, 동기 부여), 모의 시험 및 문제 풀이, 창의력 및 사고력 훈련, 논문 관련 작업(주제 선정, 배경 탐색, 선행 연구 정리, 개념 정립, 논리 구성, 글쓰기 초안, 피드백) 등이 제시되었다. 특히 장비 매뉴얼 이해나 유튜브 영상 내용 파악에 유용하며, 논문 작성을 위한 참고 문헌 제안 및 형식 정리에도 활용될 수 있다고 했다 새로운 개념을 이해하고 싶을 때나 중요한 질문에 대한 핵심 자료를 만들고 싶을 때 소스 검색 기능이 유용하다고 했다. 다만 노트북LM은 과제나 태스크를 대신해주는 도구가 아니라 도와주는 어시스턴트라는 점과 좋은 소스를 제공하는 것이 중요하다는 점이 강조되었다. 쓰레기를 집어넣으면 쓰레기가 나온다는 ‘Garbage In, Garbage Out’이라는 말이 있듯이. 노트북LM만 단독으로 사용하기보다 챗GPT, 제미나이(Gemini) 등 다른 툴과 함께 사용하는 것이 더 중요하다고 생각한다고 했다. 다른 툴로 좋은 소스를 만들어서 노트북LM에 넣어 활용하는 선순환 구조를 잘 활용하면 좋다고 했다. “성공하고자 하는 의지가 강하다면, 실패 따위가 나를 압도할 수 없다.” − 정광천, 이노비즈협회 회장   다양한 스터디 그룹의 시너지 : 연결과 성장의 기회 한국미래융합연구원은 정기적인 지식 공유 모임을 통해 AI를 비롯한 다양한 분야의 최신 트렌드와 비즈니스 인사이트를 공유하는 플랫폼 역할을 하고 있다. 정종기 박사는 AI 비즈니스 전문가로서 AI 대중화 시대에 지속 가능한 미래 준비, AI 활용 능력의 중요성, 그리고 AI 트랜스포메이션에 대한 강의를 진행하며 멤버들에게 영감을 주고 있다. 그는 AI가 기업 경영의 효율화와 비용 절감에 핵심적인 역할을 하며 제조 등 다양한 산업에 영향을 미치고 있음을 강조한다. AI에게 일을 잘 시키는 사람이 능력 있는 사람이라고 했다. 미모셀은 미래 모빌리티 분야의 전문가들이 모여 업계 동향 공유와 네트워킹을 하는 그룹이다. 자율주행 기술, 센서(라이다, 레이다), SDV(Software Defined Vehicle) 등 모빌리티와 AI가 접목되는 분야의 최신 정보를 공유하고 토론한다. 어려운 시기에도 서로 힘이 되고 지지하는 관계를 형성하며 연결의 중요성을 보여준다. 미모셀의 목표는 대표님들의 어깨를 가볍게 해 드리는 것이라고 했다. 이처럼 다양한 스터디 그룹은 AI 기술 자체뿐만 아니라 기술이 비즈니스, 커리어, 그리고 사회 전반에 미치는 영향에 대해 깊이 있게 논의하고 있다. 유발 하라리 교수는 초지능 AI가 인류를 파멸로 이끌 위험이 있지만 경쟁 때문에 개발 속도를 늦추지 못하며, AI는 단순 도구가 아닌 스스로 생각하고 결정하는 주체(agent)라고 했다. AI는 인간과 달리 휴식이 필요 없어 지속적으로 활동 가능하며, 알고리즘 속도를 인간의 속도에 맞게 조절해야 한다고 했다. 또한, AI는 인간을 대체해 불평등한 사회를 초래할 가능성이 있다고 했다. 이러한 예측 속에서 AI 활용 능력은 개인과 기업의 생존에 필수라는 메시지가 반복적으로 강조된다. “AI 활용 능력이 당신의 생존입니다.” − 정종기 박사, AI 비즈니스 전문가   맺음말 : 배움과 연결을 통한 미래 준비 AI 시대는 불확실성이 높지만 지속적인 학습과 유연성 개발, 광범위한 역량 개발을 통해 기회를 잡을 수 있다고 한다. 특히 기술 변화에 대한 적응력과 개인적인 열정을 바탕으로 오픈소스 도구 등을 활용해 실습하고 실험해보는 것이 중요하다. 데이터공작소와 같은 AI 스터디 그룹, 데이터공작소 개발TFT(서울팀)에서의 실질적인 기술 학습, 미모셀에서의 산업 지식 공유, 그리고 한국미래융합연구원에서의 비즈니스 및 트렌드 통찰은 이러한 미래를 준비하는 강력한 기반이 된다. 피곤함에도 불구하고 참여했던 이 스터디 그룹들에서 필자는 AI 기술의 최신 동향과 더불어 그것이 어떻게 실제 업무와 비즈니스에 적용될 수 있는지, 그리고 개인의 역량을 어떻게 발전시켜야 하는지에 대한 실질적인 답과 영감을 얻을 수 있었다. 기술 도입을 넘어 조직 문화와 일하는 방식을 근본적으로 전환할 용기를 가지고 AI를 경쟁 상대가 아닌 협업 파트너로 받아들일 준비를 하는 것, 그리고 배움과 연결을 멈추지 않는 것이 이 급변하는 시대에 생존하고 번영하는 길임을 다시 한 번 확인했다.   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
디지털 트윈 소프트웨어, Emulate3D
주요 디지털 트윈 소프트웨어   디지털 트윈 소프트웨어, Emulate3D ■ 개발 및 자료 제공 : 로크웰 오토메이션, 02-2188-4400, www.rockwellautomation.com/ko-kr.html   Emulate3D(에뮬레이트3D)는 2005년 영국 리딩에서 설립 후 2019년 로크웰 오토메이션이 인수하여 전 세계 다양한 산업 분야의 고객을 지원하고 있다. 이 소프트웨어는 실제 장비를 가상에서 검증할 수 있는 동적 3D 기반 디지털 트윈 기술로 제조 생산 라인, 창고 자동화, 자재 취급 및 유통, 수하물 처리, 기계 장비 구축분야 등 다양한 산업에서 활용된다.   1. 주요 특징   Emulate3D는 사용자의 편의를 고려해 직관적인 인터페이스를 제공하며, 사전 프로그래밍된 카탈로그 사용으로 비전문가도 쉽게 사용할 수 있도록 설계되었다. 다양한 PLC(Programmable Logic Controller) 브랜드와의 전용 프로토콜 및 OPC(Open Platform Communications)로 연결이 가능하고 클라우드 기반 배포 옵션을 통해 버전 제어, 협업 등의 유연성을 극대화한다. 이러한 특성은 교육 및 훈련에 효과적일 뿐만 아니라, 다양한 운영 환경에서 활용할 수 있는 확장성을 제공한다. 최근 엔비디아 옴니버스 API(NVIDIA Omniverse API)와의 통합으로 실사 수준의 그래픽 질감과 공장 규모의 동적 디지털 트윈 생성이 가능해져 여러 기계와 시스템 간의 상호작용을 실시간으로 분석하고 최적화할 수 있게 됐다.   2. 주요 기능   Emulate3D는 현실감 있는 시뮬레이션과 에뮬레이션을 통해 물리적 충돌, 중력 가속도, 마찰 계수 등의 물리 엔진을 반영한 정밀한 테스트 환경을 제공한다. 가상 시운전을 통해 실제 시스템 구현 전 동일한 조건에서 제어 로직을 사전에 검증할 수 있으며, 설계 단계에서부터 문제를 식별하고 해결할 수 있다. 이를 통해 프로젝트 일정이 단축되고 불필요한 재설계 및 재작업 등의 시간과 비용이 절감된다. 제조라인의 처리량 실험 기능으로 물류 차량, 설비 배치를 검토하는 시뮬레이션 환경을 제공하며 PLC 및 상위 시스템을 연결하여 생산 라인 또는 장비의 가상 시운전을 유연하게 테스트할 수 있는 에뮬레이션 기능을 제공하여 엔지니어는 현장에서 소프트웨어를 재테스트하는 시간을 줄이고 프로젝트 일정을 단축할 수 있다.   3. 도입 효과   작업자 교육에서도 Emulate3D는 물리적으로 위험하거나 재현하기 어려운 상황을 가상 환경에서 안전하게 시뮬레이션하여 작업자의 숙련도를 높이고 사고 위험을 줄이는데 기여한다. Emulate3D는 단순히 자동화를 지원하는 도구를 넘어 디지털 트윈 기술로 혁신을 주도하는 플랫폼으로 기업은 더 나은 결정을 내리고 경쟁력을 강화할 수 있도록 돕는다.   4. 주요 고객 사이트   로크웰 오토메이션의 Emulate3D는 자동차, 생명 과학, 소비재, 식음료, 반도체 제조, 자재 취급, 자동창고 및 물류시스템 등 다양한 산업 분야의 광범위한 고객들이 사용하고 있다. 또한 공항 수하물 처리 시스템, 우편 물류시스템과 같은 복잡한 자동화 환경에서도 성공적으로 활용되고 있다.  주요 고객사로는 쿠카(Kuka), 히라타(Hirata), 에이티씨 오토메이션(ATC Automation), 바스티안 솔루션(Bastian Solutions), 인트라록스(Intralox) 등이 있다.     상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-07-01
3D 애플리케이션 개발 플랫폼, 엔비디아 옴니버스(NVIDIA Omniverse)
 주요 디지털 트윈 소프트웨어   3D 애플리케이션 개발 플랫폼, 엔비디아 옴니버스(NVIDIA Omniverse) 개발 및 공급 : 엔비디아, www.nvidia.com   엔비디아 옴니버스(NVIDIA Omniverse)는 산업 디지털화와 물리 AI 시뮬레이션을 위한 3D 애플리케이션 개발 플랫폼이다. 오픈USD(OpenUSD)와 RTX 렌더링 기술을 3D 산업 디지털화 애플리케이션에 쉽게 통합할 수 있도록 서비스, API, SDK 등을 제공한다.  1. 제품 종류 (1) 옴니버스 엔터프라이즈(Omniverse Enterprise)  기업을 위한 협업과 시뮬레이션 플랫폼으로, 사용하기 쉬운 도구를 통해 고급 실시간 3D 애플리케이션을 구축하고 제품, 에셋, 시설을 고충실도로 시각화하고 시뮬레이션한다. (2) 엔비디아 아이작 심(NVIDIA Issac Sim) 로봇 개발과 시뮬레이션을 위한 플랫폼으로, 물리 기반 환경에서 로봇과 자율 머신을 테스트하고 검증하며 훈련할 수 있다.  이 외에도 산업, 엔터프라이즈, 크리에이터, 개발자들을 돕는 여러 옴니버스 솔루션들이 있다. 2. 주요 기능 (1) 옴니버스 엔터프라이즈 비파괴적 상호 운용성으로 데이터 전송 필요성을 줄인다. 맞춤형 워크플로우와 앱을 빠르게 개발하며, AI를 활용해 반복 작업을 자동화한다. (2) 엔비디아 아이작 심 AI 기반 로봇을 개발을 위한 가상 환경을 제공하며, 센서 시뮬레이션, 탐색, 조작, 딥 러닝 애플리케이션을 지원한다. 합성 데이터 생성, 도메인 무작위화, 강화 학습 기능도 포함된다. 3. 주요 이점 (1) 쉬운 맞춤화와 확장 옴니버스 SDK는 다양한 3D 개발에 활용되며, 로우코드나 노코드 샘플 앱, 수정이 용이한 확장 프로그램을 통해 새로운 도구와 워크플로우를 기초 단계부터 개발할 수 있다. (2) 3D 애플리케이션 확장 옴니버스 클라우드 API를 통해 오픈USD, RTX, 가속 컴퓨팅, 생성형 AI 기술로 기존 소프트웨어 도구와 애플리케이션을 강화할 수 있다. (3) 어디에나 배포 가능 RTX 지원 워크스테이션 또는 가상 워크스테이션에서 맞춤형 애플리케이션을 개발하고 배포하거나 옴니버스 클라우드에서 애플리케이션을 호스팅하고 스트리밍할 수 있다. 4. 도입 효과 (1) 산업 영상 제작사는 옴니버스로 사실적인 디지털 세트와 가상 환경을 구현해 몰입감 있는 영상 효과를 만들어낸다.  (2) 엔터프라이즈 다양한 지역과 소프트웨어 도구에서 협업해 실시간 공장 설계와 계획을 진행한다. 직원 능률과 공정 효율성을 높이는 새로운 워크플로우로 생산 속도와 고객 경험을 향상한다. (3) 크리에이터 옴니버스 머시니마(Machinima) 애플리케이션으로 캐릭터와 소품 등에 애니메이션 클립을 적용한다. AI 기능을 기반으로 표정과 움직임을 더욱 생동감 있게 구현한다. (4) 개발자 옴니버스 클라우드 API와 SDK를 통해 고급 3D 애플리케이션 개발을 지원하며, 오픈USD 네이티브 앱과 확장 프로그램을 제작할 수 있다. 5. 주요 고객 (1) 지멘스(Siemens) 클라우드 기반 제품 수명주기 관리 소프트웨어인 팀센터 X(Teamcenter X)와 지멘스 엑셀러레이터(Xcelerator) 플랫폼에 옴니버스 클라우드 API를 채택했다. 옴니버스 API에 연결된 팀센터 X 소프트웨어는 설계 데이터를 엔비디아 생성형 AI API에 연결한 다음, 옴니버스 RTX 렌더링을 애플리케이션 내에서 직접 사용할 수 있다. (2) 폭스콘(Foxconn) 생산설비와 장비 레이아웃을 가상으로 통합하는 데 옴니버스를 채택했다. 이러한 가상 통합은 실제 운영에서 비용이 많이 드는 변경 사항을 크게 줄인다. 폭스콘은 내년 초 가동 예정인 멕시코 공장 구축에도 옴니버스를 채택했으며, 연간 30% 이상의 전략 사용량 감소를 기대하고 있다.   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-06-29
이기종 시스템 간의 3D 데이터 상호운용성 향상을 위한 솔루션, 3DxSUITE
주요 디지털 트윈 소프트웨어 이기종 시스템 간의 3D 데이터 상호운용성 향상을 위한 솔루션, 3DxSUITE   개발 : Elysium, www.elysium-global.com 자료 제공 : 아이지피넷, 02-2026-5100, www.igpnet.co.kr   3DxSUITE(3D스위트)는 이기종 시스템 간의 3D 데이터 상호운용성 향상을 위한 솔루션이다. 상호 운용성은 3D데이터를 공유하는 시스템의 보다 정확한 작동을 나타낸다. 이것은 제조업 DX(디지털 트랜스포메이션) 및 디지털 트윈 실현을 위해 반드시 실현해야 하는 과제다. 3DxSUITE는 다양한 3D 데이터 처리 기술을 통해 사람의 개입 없이 진정한 데이터 배포 및 제조 DX의 실현을 지원한다. 1. 주요 특징  디지털 트윈 환경에서 멀티 CAM 및 제조 공정 간에 발생되는 수많은 3D 데이터의 준비 및 최적화 작업에 적지 않은 시간이 소요되고, 3D 데이터의 품질 저하 및 변경 수정에 따른 정보 교환의 누락으로 재작업 및 제품 불량 등이 발생한다.  3DxSUITE는 이러한 문제를 쉽고 빠르게 자동으로 처리하기 위한 솔루션으로 멀티 CAD 환경의 중립 포맷이 가진 한계를 뛰어 넘는 3D 데이터 품질 유지와 3D 데이터에 표현된 정보의 정확한 전달과 최적화로 원활한 작업 환경을 제공한다. 2. 주요 기능 1) PDQ 검증을 통한 3D 모델링 데이터 변환 ISO, SASIG, JAMA 및 JAPIA와 같은 산업 협회에서 설정한 품질 표준을 기반으로 멀티 CAD 데이터의 PDQ(제품 데이터 품질)를 검증하여 3D 모델링 데이터가 가진 에러를 찾아낸다. 이러한 에러는 CAD개발사가 제공하는 공식 API를 사용하여 자동으로 수정하고 3D CAD 데이터의 형상, 속성, PMI등 각종 정보를 포함하여 원하는 CAD의 포맷에 따라 충실하게 변환한다. 2) 3D CAD 비교 복잡한 CAD 데이터를 시각적으로 비교한 것은 매우 어렵다. 3D CAD 비교 기능은 두개의 CAD 데이터를 빠르고 정확하게 비교하여 차이점을 3D PDF, HTML 및 XML 형식으로 출력하여 제작 공정의 효율성을 향상시킬 수 있다. 3) 형상 간략화 설계자가 만든 3D CAD 모델은 많은 양의 데이터와 복잡한 형상으로 인하여 다운스트림 처리가 어려운 경우가 있다. 지적 재산권 보호 및 데이터 경량화를 위한 외형 추출이 가능하고, 해석용 메시 모델 작성을 위한 필렛, 단차 및 기타 형상을 감지하여 자동 삭제함으로써 해석 시간의 단축과 해석 작업의 정확도를 향상시킬 수 있다. 4) DFM CAD 모델의 특정 형상을 인식하여 생산성, 가공성, 성형성 등 제작 과정에서 발생될 수 있는 품질 문제를 사전에 검증할 수 있다. 또한 제품상 안전 기준을 충족하지 못하는 형상을 검출하고 국제 규정에 근거한 안전한 설계 실현을 지원한다. 5. 도입 효과 멀티 CAD 환경에서 반드시 필요한 3D 모델링 데이터의 품질 유지와 속정 정보, PMI 등의 정확한 정보 전달이 가능하며, 설계 변경 전후의 차이점 및 파트 변경 등의 정보를 디지털화한 레포트를 이용하여 변경 사항을 빠르게 전달하고 제작 누락을 방지 및 다양한 회의 자료로도 활용할 수 있다. 형상 간략화 및 DFM 기능은 제조 공정에 맞춘 3D 모델링 데이터의 최적화, 경략화가 가능하며 데이터 변환 기능과 결합하여 최적의 데이터 전처리 프로세스로 활용함으로써 제작 공정 전체를 효율화할 수 있다. 6. 주요 고객 사이트 현대자동차, 기아자동차, 다임러, 폭스바겐, 르노, 토요타, 닛산, 포드, 발레오, 현대모비스, 에스엘, 센트랄, 경신, 만도, 삼성전자, LG전자, 나라엠앤디, 에이테크솔루션, 현대중공업, 한화에어로스페이스, 삼성SDI등 자동차 메이커 및 부품 제작사, 생활가전, 우주항공 등 다양한 분야에서 활용되고 있다.   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기  
작성일 : 2025-06-29