[포커스] 엔비디아, “PC 기반의 AI가 다양한 분야서 새로운 기회 만든다”
엔비디아가 PC 환경에서 인공지능(AI)을 활용하기 위한 자사의 기술과 활용사례를 소개했다. 엔비디아는 PC 기반의 AI가 클라우드의 대규모 AI로 대응하기 어려운 분야에서 시장을 창출할 수 있을 것으로 보고 있으며, PC 환경에서 생성형 AI의 개발과 활용을 지원하는 다양한 기술을 제공할 계획이다. ■ 정수진 편집장
PC 기반 AI의 성장세 이어질 것
지금까지의 AI 기술 발전에서는 클라우드 기반의 대규모 연산 기술이 큰 비중을 차지해 왔다. 대규모 AI 모델과 애플리케이션의 경우에 클라우드에서 구동하는 것이 유리하지만, 모든 것을 클라우드에서 실행할 수는 없다. 인터넷에 연결되지 않은 상황에서는 클라우드에 액세스할 수 없다. 게임이나 비디오 스트리밍의 경우에는 때로 속도보다 지연 시간이 더 중요할 수도 있다. 대용량의 원본 이미지 파일이나 비디오 파일을 업로드/다운로드하는 데에는 긴 시간이 걸리기 때문에 클라우드에 모든 것을 업로드하기가 어렵고, 보안이 중요한 정보를 클라우드에 저장하고 싶지 않을 수도 있다. 클라우드는 서버 비용을 지불해야 하기 때문에, PC에서 작업을 수행하는 것이 비용 효율적일 수도 있다.
엔비디아의 제프리 옌(Jeffrey Yen) APAC 테크니컬 마케팅 시니어 디렉터는 “PC에서 AI의 수요 증가에 따라 AI 연산을 처리할 수 있는 더 가벼운 프로세서인 NPU(신경망 처리 유닛)가 시장 기회를 창출하고 있는 것도 주목할 만하다”고 전했다. NPU는 항상 켜져 있어야 하고 전력을 적게 소비해야 하는 가벼운 사용 사례에 적합하다. 반면 게임이나 콘텐츠 생성 등 더 많은 AI 사용 사례를 위해서는 NPU보다 성능이 높은 GPU를 활용할 수 있다.
옌 시니어 디렉터는 “GPU와 NPU를 탑재한 AI PC는 테크 역사에서 중요한 발전 중 하나로 모든 주요 애플리케이션에 통합되고 있으며, 미래에는 거의 모든 사용자에게 영향을 미칠 것”이라고 짚었다.
▲ NPU, PC GPU, 데이터 센터 GPU 기반 AI의 차이점
PC AI 앱 개발의 과제 해결 지원
옌 시니어 디렉터는 많은 주목을 받고 있는 생성형 AI(generative AI)가 윈도우 PC 애플리케이션 개발자에게 기회와 함께 과제를 안겨주고 있다고 짚었다.
개발자는 고품질의 다양한 오픈소스 생성형 AI 모델을 활용해 새로운 것을 창조할 수 있지만, 윈도우 애플리케이션은 특정 애플리케이션에 맞는 구체적이고 타기팅된 응답이 필요하다는 것이다. 이 때문에 개발자는 오픈소스 모델을 그대로 사용하기보다는 필요에 맞게 조정하고 최적화하는 작업을 해야 한다. 또 PC 하드웨어에서 실행할 수 있도록 모델을 최적화하는 것도 필요하다.
이를 위해 엔비디아는 ‘RTX AI 툴킷(RTX AI Toolkit)’을 제공해 개발자가 AI를 애플리케이션에 쉽게 통합할 수 있도록 지원한다. RTX AI 툴킷은 AI 모델의 커스텀화, 최적화, 배포 등의 프로세스를 단순화한다. RTX AI 툴킷을 사용해 최적화된 모델은 더 빠르고 RTX 50 시리즈 GPU가 탑재된 랩톱 PC에서도 실행할 수 있는 수준이 된다는 것이 옌 시니어 디렉터의 설명이다.
또한, 엔비디아 AI 추론 관리자(NVIDIA AI Inference Manager : AIM)는 추론 관리와 관련된 두 가지의 주요 작업을 수행한다. 첫 번째는 AI 모델이 포함된 모든 파일과 데이터를 PC에 올리는 것이고, 두 번째는 추론이 어디서 이루어지는지 결정하는 데에 도움을 주는 것이다. 이를 위해 AIM은 다양한 백엔드 및 하드웨어를 위한 통합 인터페이스 API를 제공한다.
▲ PC 앱의 AI 통합을 지원하는 엔비디아의 RTX AI 툴킷
다양한 PC AI 기술 활용사례 소개
엔비디아는 RTX 및 텐서 코어(Tensor Core)의 도입과 함께 AI 기술의 개발을 꾸준히 진행해 왔다. 2018년에는 게이밍을 위한 DLSS(딥러닝 슈퍼 샘플링) 기술을 발표했고, 2019년에는 크리에이터를 위한 ‘엔비디아 스튜디오 SDK’를 선보였다. 이후에도 방송 및 영상 콘텐츠, 화상회의, 비디오 스트리밍 등 다양한 분야에 AI 기술을 적용하고 있다.
옌 시니어 디렉터는 게임 및 영상 분야를 중심으로 엔비디아의 AI 기술 활용 사례를 소개했다.
엔비디아는 최근 AI 추론을 위한 마이크로서비스인 NIM을 적용한 디지털 휴먼을 발표했는데, NIM은 PC와 클라우드에서 최적화되었으며, AI 툴킷을 사용하여 조정되었다.
프로젝트 G-어시스트(Project G-Assist)는 게이머가 게임을 배우는 데에 필요한 시간과 노력을 줄여주는 AI 도우미이다. 게임 내 상황 맥락을 실시간으로 파악해 플레이에 유용한 가이드를 제공하고, 시스템의 튜닝과 성능 최적화를 지원한다.
스테이블 디퓨전(Stable Diffusion) 모델 기반의 이미지 생성 프로그램인 콤피UI(ComfyUI)에 RTX 가속을 지원해, RTX 랩톱에서 더욱 빠르게 이미지를 생성할 수 있게 됐다.
메이저 영상 애플리케이션인 VLC와 다빈치 리졸브(Davinci Resolve)에 RTX 비디오(RTX Video)가 적용돼 AI 기반으로 HDR 영상 재생 및 편집이 향상됐다.
한편, 옌 시니어 디렉터는 지포스 RTX 그래픽카드를 더 작은 사이즈의 PC에 탑재할 수 있는 스몰 폼 팩터(SFF) 이니셔티브를 도입했다고 전했다. 이를 통해 엔비디아는 SFF에 맞춰진 RTX 그래픽카드의 크기와 형태에 관한 정보를 제공하고, 사용자가 PC를 조립할 때 호환성을 쉽게 확인할 수 있도록 한다.
옌 시니어 디렉터는 “앞으로 AI는 보이지 않는 곳에서 사람이 인식하지 못한 채 더 편하게 쓸 수 있는 방향으로 발전할 것”이라면서, 게임과 영상 외에도 다양한 분야에서 RTX AI를 활용할 수 있다고 밝혔다. NIM이 레고 블록처럼 애플리케이션과 결합해 더 쉽게 AI를 사용하도록 돕고, 실시간 데이터 처리에서 NPU보다 높은 성능의 GPU를 활용해 품질을 높일 수 있다는 것이다. 옌 시니어 디렉터는 “텍스트 생성, 코딩, 화상회의 등에서 빠른 처리 속도는 더 많은 시도를 가능하게 함으로써, 더 나은 최종 결과물을 얻을 수 있게 한다”고 짚었다.
■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-08-02