• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "형상"에 대한 통합 검색 내용이 2,328개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
크레오 파라메트릭 11.0에서 개선된 부품 모델링
제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (3)   이번 호에서는 크레오 파라메트릭 11.0(Creo Parametric 11.0)의 개선된 부품 모델링 기능에 대해 알아보자.   ■ 박수민 디지테크 기술지원팀의 과장으로 Creo 전 제품의 기술지원 및 교육을 담당하고 있다. 홈페이지 | www.digiteki.com   크레오 파라메트릭 11.0에서는 부품 모델링 작업이 크게 개선되었다. 새로운 외삽 옵션을 포함하여 서피스를 더욱 정교하게 확장할 수 있으며, 피처 치수 핸들이 개선되어 치수 조정이 쉬워졌다. 명령을 빠르게 검색하여 도구 모음에 추가할 수 있고, 참조 유형 제어와 피처 진단 보고 기능이 향상되어 더 빠르고 정확한 모델링이 가능하다. 롤링 볼 옵션, 점 패턴 기능, 바디 제거 기능 등의 추가된 기능들이 모델링 작업을 더욱 효율적으로 만들었다.   추가된 확장 기능 : 외삽 옵션 크레오 파라메트릭 11에는 확장(Extend) 피처에 외삽(Extrapolate)이라는 새로운 옵션이 추가되었다. 새로운 외삽 방법을 통해 사용자는 원하는 형상을 생성할 수 있는 유연성이 크게 향상된다. 이는 특히 변곡이나 접기와 같은 문제를 일으키는 경우에 유용하다. 또한, 다양한 서피스 확장 방법을 통해 더 나은 결과를 얻을 수 있어 생산선을 높일 수 있다. 옵션의 위치는 다음과 같다. 모델 → 편집 → 확장 → 옵션 탭으로 이동하여 추가된 외삽 옵션을 확인할 수 있다.     외삽 옵션을 사용하면 평면을 제외한 모든 서피스 유형이 외삽되어 B-스플라인 또는 스플라인 서피스가 된다. 원본 서피스의 유형이 스플라인 또는 B-스플라인이 아니면 외삽된 서피스는 원래 도메인 내에서 원본 서피스의 근접 근사화가 되고 평면은 평면으로 남게 된다. 확장 옵션 ‘동일(Same)’을 사용하여 다른 분석 서피스가 분석 상태를 유지하도록 확장한다.     외삽 옵션은 동일 서피스 확장 방법이 변곡이나 접기와 같은 원치 않는 결과를 생성하거나 실패할 때 더 나은 결과를 얻는 데에 도움이 될 수 있다. 이렇게 광범위한 형상 확장 방법을 사용하면 유연성과 생산성이 향상되어 원하는 형상을 생성할 수 있다.   드래그 핸들 현대화 크레오 파라메트릭 11.0에서는 피처 치수의 끌기 핸들이 현대화되었다. 이는 일반 부품 모드와 판금 모드 모두에서 적용된다. 핸들이 개선되어 피처의 다양한 치수 유형과 상호 작용 가능성을 쉽게 구분할 수 있게 되었다. 특히 복합 피처에서 컨트롤을 쉽게 식별할 수 있다. 이 새로운 핸들은 3D 공간에서 자체 방향을 설정하여 모델 작업을 수행할 때 디스플레이를 자동으로 조정한다.     새로운 피처 치수 핸들 개선으로 모델 작업의 효율성과 정확성이 향상되었고, 작업자의 시각적 피로를 줄이며 작업 속도를 높이고 오류를 줄였다. 현대화된 디자인으로 사용자 경험이 향상되었으며, 복잡한 피처에서도 정확한 치수 조절이 가능해져 설계 품질도 향상되었다. 이로써 크레오 파라메트릭 11.0에서 피처 치수 핸들을 더 효율적으로 사용할 수 있게 되었다.   명령 검색 내에서 빠른 액세스 도구 모음에 명령 지정 이제 명령을 빠르게 검색하고 찾아서 빠른 액세스 도구 모음에 쉽게 추가할 수 있다. 명령어를 검색하고 마우스를 우클릭하여 ‘빠른 액세스 도구 모음에 추가(Add to Quick Access Toolbar)’ 옵션을 사용할 수 있다. 이렇게 하면 다른 사용자 인터페이스 사용자 정의 대화 상자 및 단계를 거칠 필요 없이 빠른 액세스 도구 모음에 바로 추가할 수 있다.     오른쪽 상단의 명령 검색 기능을 통해 명령을 빠르게 찾고, 바로 빠른 액세스 도구 모음에 추가할 수 있게 되어 사용자 정의 워크플로가 더 빨라졌다. 이로 인해 작업 흐름이 개선되고 생산성이 향상되었다.   시드 및 경계 서피스 선택에서 참조 유형 제어 개선 크레오 파라메트릭 11에서는 시드 및 경계 서피스 선택에서 경계 서피스 참조에 대한 참조 유형을 제어할 수 있다. 서피스 컬렉션 정의의 경계 참조를 고정 참조로 표시하려면 새 옵션인 ‘고정 참조로 간주(Consider as strong references)’를 선택한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-08-05
맥스웰 및 모터캐드의 신규 연성 해석 기능
앤시스 워크벤치를 활용한 해석 성공사례   맥스웰(Ansys Maxwell)과 모터캐드(Ansys Motor-CAD)는 모터의 전자기장 해석에 자주 쓰이는 소프트웨어이다. 이번 호에서는 맥스웰과 모터캐드의 연성해석에 대해 2024년도 업그레이드 내용을 소개하겠다.   ■ 이상현  태성에스엔이 EBU-LF팀의 매니저로 전자기장 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   맥스웰과 모터캐드의 비교 소개 맥스웰은 유한요소해석으로 전기기기, 전력소자, 전자기기, 케이블, 버스바(busbar) 등의 전자기장 해석 솔루션을 제공한다. 모터캐드는 모터 설계를 위한 다양한 솔루션을 제공하며 전문적인 사용자 인터페이스를 갖추고 있다.  <그림 1>은 앤시스 제품을 이용한 모터의 해석 흐름을 보여준다. 모터캐드는 물리 기반의 전문 솔루션으로, 해석을 진행하기 이전에 모터의 개념 설계(concept design)에 사용하는 것을 추천한다. 다중물리 솔루션과 열전달 솔루션의 시너지 효과와 함께 모터의 성능을 정확하고 빠르게 예측할 수 있다. 그리고 앤시스의 모터캐드와 맥스웰 해석을 이용하여 모터 설계 환경 구축 및 전자기 특성 개선을 할 수 있다. 그리고 앤시스 메커니컬(Ansys Mechanical)과 CFD를 이용하여 진동/소음, 응력, 방열 해석 등을 할 수 있고, 이는 시스템 전체 검증 및 통합 환경에 적용시킬 수 있다.   그림 1. 앤시스 제품을 이용한 모터 해석 흐름    맥스웰과 모터캐드는 모터의 전자기장 해석을 할 수 있다는 공통점이 있다. 차이점은 맥스웰은 전자기장 해석만 가능하고 모터캐드는 전자기장과 열, 구조 해석이 가능하여 다물리장을 고려한 모터 성능 예측이 가능하다. 그리고 맥스웰은 자유로운 모델링으로 모터뿐만 아니라 변압기, 인덕터, 센서, 액추에이터, 배터리 등의 다양한 제품을 해석할 수 있지만 모터캐드는 회전기기만 해석 가능하다. 추가로 모터캐드는 2D 기반의 형상을 지원하기 때문에 Radial Flux 모터만 해석이 가능하고 AFPM과 같은 Axial Flux 모터는 지원하지 않는다. 맥스웰은 2D, 3D 해석이 가능하기 때문에 모든 형태의 모터 해석이 가능하다. 대신에 모터캐드는 유한요소해석을 위한 세팅이 맥스웰에 비해서 자동으로 되어 있는 것이 많아서, 사용하기가 간편하고 해석 시간도 빠르다는 장점이 있다.   앤시스 모터캐드 2024의 업그레이드 내용 2024 업그레이드의 주된 내용은 모터 디자인과 해석 정확도, 해석 시간 단축이다. 디자인 부분에서는 파이썬(Python)을 이용하여 기존에 정해져 있던 형상을 사용자가 좀 더 자유롭게 변경 가능하고 회전자에 방사 방향으로 오일 스프레이 쿨링이 추가되었다. 해석 정확도 부분에서는 맥스웰의 자기장 해석 결과를 모터캐드의 랩 모듈(Lab Module)로 불러와서 효율맵 해석이 가능해졌다. 이 기능은 영구자석형 모터와 권선계자형 모터, SynRM 이 세 가지 모터만 현재까지 가능하다. 그리고 모달(Modal) 해석에서 강성, 고유 진동수, 댐핑 계수의 값을 튜닝할 수 있게 추가되어 실제 측정 데이터나 다른 해석 결과 데이터를 기반으로 튜닝할 수 있다. 마지막으로 해석 속도를 더 증가시키고자 멀티스레딩(multi-threading) 설정이 랩 모듈에도 추가되었다. 이 기능은 Emag 모듈에만 있었는데 랩 모듈에도 추가되면서 효율맵을 만들 때 좀 더 빠르게 계산이 가능하다. 맥스웰이나 앤시스의 다른 툴은 멀티 코어 해석 시 따로 HPC 라이선스가 필요하지만, 모터캐드는 기본으로 사용 가능하다. Thermal Transient 해석 솔버도 알고리즘을 업데이트하여 기본적인 해석 속도가 향상되었다. 이번 호에서는 해석 정확도에서 맥스웰과 모터캐드 연성해석 부분을 다룬다. <그림 2>는 모터캐드와 맥스웰의 연성해석으로 효율맵을 출력하는 흐름을 나타낸다. 가장 먼저 맥스웰에서 모터(Motor) 해석이 가능한 디자인을 먼저 만들어 놓고, 모터캐드에서 맥스웰 파일을 불러온다. 불러온 후 몇 가지 세팅을 한 다음에 ‘Build Model’을 누르면 자동으로 맥스웰 파일이 실행되면서 변수화 해석을 진행하게 된다. 변수화 해석이 종료되면 맥스웰 결과 데이터를 모터캐드로 자동으로 불러와서 효율맵을 출력해준다.   그림 2. 모터캐드와 맥스웰 연성해석 흐름     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-08-05
[답변] 오토캐드 attout 추출 시 좌표 연동 방법이 궁금합니다.
table { border: 1px solid #c4c7c5; border-radius: 4px; font-size: 16px; } th { padding: 18px 16px; text-align: left; } td { padding: 16px; border-top: 1px solid #c4c7c5; } .katex-mathml{ display: block; text-align: center; } .katex-html { display: none; } table { border: 1px solid #c4c7c5; border-radius: 4px; font-size: 16px; } th { padding: 18px 16px; text-align: left; } td { padding: 16px; border-top: 1px solid #c4c7c5; } .katex-mathml{ display: block; text-align: center; } .katex-html { display: none; } AutoCAD에서 ATTOUT 명령어를 사용하여 속성값뿐만 아니라 좌표를 함께 추출하려면 다음 단계를 따라보세요: 포인트 입력: 좌표를 추출할 위치에 포인트를 입력합니다. 명령어 PO를 사용하여 포인트를 찍습니다. 포인트 스타일 변경: PTYPE 명령어를 사용하여 포인트 스타일을 변경할 수 있습니다. 데이터 추출: 메뉴 탭에서 주석 > 데이터 추출을 클릭합니다. 객체 선택: 데이터 추출 창에서 새 데이터 추출 작성을 선택하고, 도면에서 객체를 선택합니다. 이때 포인트와 속성값이 있는 객체를 모두 선택합니다. 특성 선택: 데이터 추출 과정에서 형상 범주를 선택하고, 위치 X, 위치 Y, 위치 Z를 선택합니다. 엑셀로 내보내기: 마지막 단계에서 데이터를 엑셀 파일로 내보냅니다12. 이 과정을 통해 속성값과 함께 좌표를 추출할 수 있습니다.  1: 오토캐드 좌표 추출 방법 2: CAD 좌표추출 방법   출처 : 코파일럿
작성일 : 2024-07-24
고급 복합재 후변형 시뮬레이션을 위한 시뮤워프
시뮤텐스 소프트웨어를 활용한 복합소재 해석 (4)   시뮤워프(SimuWarp)는 아바쿠스/CAE(Abaqus/CAE)의 플러그인 형태로 제공되어 후변형 시뮬레이션을 위한 자동화된 모델 설정을 제공한다. 이를 통해 시뮬레이션 작업 흐름을 촉진하고 속도를 높이며 모델의 모든 관련 측면이 올바르게 설정되도록 보장한다.   ■ 자료 제공 : 씨투이에스코리아, www.c2eskorea.com   정확한 재료 모델링은 정교한 복합재 후변형 시뮬레이션의 핵심이다. 시뮤워프에는 광범위한 재료 모델이 포함되어 있어, 열가소성 및 열경화성 재료의 안정적인 후변형 예측에 필수적인 모든 재료 특성을 고려할 수 있다.     시뮤워프의 주요 기능 후변형(구성 요소 및 어셈블리) 예측           후변형은 폴리머의 온도나 형태 변화로 인한 수축 변형으로 인해 발생된다. 적용된 열 경계 조건에 따라 두께 방향의 응력 구배로 인해 부품 모양이 변형된다. 복합재를 사용할 때 섬유의 분포와 방향은 응력 구배의 추가적인 원인이다. 결과적인 응력 상태를 계산하면 해당 부품 변형을 예측하고 규정된 공차가 충족되는지 확인할 수 있다. 후변형 구성요소가 더 큰 어셈블리의 일부인 경우, 장착 후 개별 구성요소와 연결된 부품의 변형이 발생한다. 이러한 변형은 비용이 많이 드는 실험을 수행할 필요 없이 어셈블리를 시뮬레이션 모델에 통합하여 예측할 수 있다.   후변형 최적화     후변형 시뮬레이션에는 부품 및 프로세스 설계 중에 정의된 여러 측면이 통합되어 있다. 따라서 이러한 설계 변수와 관련하여 결과 부품 형상의 민감도를 결정하는 데 활용될 수 있다. 무엇보다도 이를 통해 변형을 최소화하거나 부품 모양을 의도적으로 조정할 수 있다. 후자는 부품의 목표 적용에 유리한 특정 잔류 응력 상태를 유발하는 데 사용될 수 있다.   열운동 분석     가열 및 냉각 공정에 대한 정확한 분석은 공정으로 인한 잔류 변형을 예측하는 데 필수이다. 시뮤워프는 온도 분포를 정확하게 모델링하고 가교 결합(열 경화성) 또는 결정화(열 가소성)로 인한 수축 변형을 유도하는 정교한 모델을 포함하고 있다. 이 분석은 완전한 기능을 갖춘 변형 시뮬레이션의 일부로 수행되거나 독립형(예 : 냉각 시스템 설계에 대한 빠른 평가)으로 수행될 수 있다.   구조 성능 평가     공정으로 인한 잔류 응력을 예측하면 부품의 예상 성능을 더 잘 예측할 수 있다. 예를 들어 중요한 측면은 피로 또는 강도가 될 수 있다. 시뮤체인(SimuChain)을 사용하면 변형 시뮬레이션 결과를 다른 수치 모델로 전송할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-07-04
혼합 오더 메시 커브
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (10)   이번 호에서는 CFD에 유한요소법을 활용해 더 적은 요소 수로 해석 정확도를 높일 수 있는 곡선형 혼합 오더 메시(Mixed Order Mesh)를 생성하는 방법을 살펴본다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   High-Order 메시 커브는 전산유체역학(CFD) 솔버 커뮤니티에서 유한요소법(FEM)을 활용하는 사람들에게 큰 도움이 될 새로운 기술이다. 유한요소기법은 유한 체적 및 유한 미분 방법과 같은 기존 CFD 방법보다 적은 요소 수로 정확도를 높인다. 선형 요소의 가장자리, 면, 내부에 버텍스(새로운 자유도)를 추가로 도입하여 정확도를 높일 수 있다. 곡선 지오메트리에 인접한 요소의 경우 이러한 새로운 자유도가 지오메트리에 위치해야 하므로 원래 선형 요소의 모양이 변경된다. 메시가 점성이 있는 경계를 향해 요소들이 모여 있는 경우 이 과정은 더 어렵다. 또한 내부 요소의 가장자리와 면은 요소 반전을 방지하기 위해 경계 요소 곡률에 따라 곡선을 만들어야 한다. 케이던스 피델리티 포인트와이즈(Cadence Fidelity Pointwise)에서 사용하는 WCN 스무딩에 대한 연구를 통해 혼합 오더 메시(Mixed Order Mesh)를 사용하여 지오메트리 곡률을 해결할 수 있다. 요소는 곡률이 심한 지오메트리 근처에서는 최대 4차 다항식(quartic)까지 올라갈 수 있으며, 곡률이 심한 지오메트리에서 멀리 떨어진 곳에서는 선형을 유지한다. 메시 평활화 방법은 비용 함수를 사용하여 원하는 요소 모양과 양의 자코비안을 각 요소에 적용한다. 요소가 지오메트리 근처에서 곡선이 될 때 점성 메시 간격이 유지된다. 결과는 복잡한 3D 구성에 대해 표시된다.   지오메트리 선형 메시를 올리고 표면 곡률에 따라 곡선을 그리려면 지오메트리에 쉽게 액세스하고 강력한 초기화 및 평활화 프로세스가 필요하다. 초기화 중에 고차 노드가 지오메트리에 정확하게 배치되고 메시 평활화 중에 표면에 유지되도록 하려면, 지오메트리에 대한 표면 검색작업이 필요하다. 엘리베이트 및 스무딩을 위한 지오메트리 액세스는 메시링크 API¹) 를 통해 제공된다. 메시링크는 지오메트리 및 메시 데이터를 관리하기 위한 라이브러리로, 메시 생성 및 메시 적응 애플리케이션과 관련된 함수를 쿼리할 수 있는 간단한 인터페이스를 제공한다.   혼합 오더 커브 프로세스 혼합 오더 메시 커브는 유효한 선형 메시로 시작하는 프로세스를 사용한다. 프로세스의 주요 구성 요소는 <그림 1>의 순서도에 나와 있다. 이 백서 전체에서 요소의 차수 또는 다항식 차수는 선형, 이차, 입방체와 같은 Q1~4 명명법을 사용하여 표시되며, 이차 요소는 각각 Q1, Q2, Q3, Q4이다. 고차 요소는 라그랑지안 기저 함수를 사용하여 요소의 가장자리, 면, 내부에 고차 노드를 고르게 분포시킨다. 이러한 물리적 노드는 하위 요소와 요소 모양을 적용하기 위해 WCN 방식에 필수이다.   그림 1. 혼합 오더 메시 커브 프로세스의 순서도에는 가장 안쪽 고도 루프를 통과하는 여러 경로가 포함되어 있다. 진입 지점에 따라 색상으로 구분된 화살표를 따라가게 된다.   고도 프로세스는 입력된 선형 메시에서 시작하여 사용자가 요청한 최종 차수인 Qfinal에 도달할 때까지 최대 차수인 Qmax를 한번에 하나씩 증가시킨다. 각 차수 패스동안 먼저 표면 요소와 볼륨 요소의 편차를 테스트한다. 고차 점이 지오메트리에서 너무 많이 벗어나는 서피스 요소(허용 오차 기준)는 높이가 올라가고, 그 섭동이 볼륨에 퍼진다. 마지막으로, 요소 반전을 수정하고 엘리베이션 프로세스에서 생성된 요소의 품질을 개선하기 위해 WCN 메시 스무딩이 수행된다. 각 스무딩 반복 후 각 볼륨 요소의 편차를 다시 테스트하여 추가 높이 조정이 필요한지 여부를 결정한다. 이 프로세스는 모든 요소가 편차 기준을 충족하거나 최종 정도에 도달할 때까지 반복되며, 메시 평활화 프로세스가 수렴한다. 품질 제약 조건은 인접한 요소가 한 차수 이상 차이가 나지 않도록 보장한다. 최종 출력은 같은 차수의 요소 간에 공유되는 고차 노드가 포함된 메시이다. 그러나 차수가 다른 요소 간에 공유되는 면과 가장자리는 동일한 인터페이스 노드를 공유하지 않다. 따라서 내보내기 전에 이러한 인터페이스에서 형상 적합성을 적용한다.   요소 편차 메트릭 편차 메트릭(Deviation Metric)은 엘리먼트 엘리베이션 프로세스 및 메시 스무딩 프로세스의 일부로, 엘리먼트 엘리베이션 프로세스를 제어한다. 편차 메트릭은 곡선 경계 또는 다른 볼륨 요소에 인접한 요소의 가장자리와 면에 있는 테스트 노드의 변위를 측정한다. 이러한 테스트 노드의 변위가 임계값 거리를 초과하면 해당 요소에 상승 플래그가 지정된다. 높이를 트리거하는 임계값은 요소 내의 최소 선형 에지 길이에 입력 편차 임계값 파라미터(일반적으로 1~5%)를 곱한 값이다.   서피스 요소 편차 곡선 경계에 인접한 요소의 경우 편차 메트릭은 6차 가우스 구적법 점 위치에 배치된 테스트 노드를 사용한다. 그런 다음 테스트 노드를 지오메트리에 투영하고, 원래 위치와 투영된 위치 사이의 거리를 측정한다. 편차량은 <그림 2>에서 선형 삼각형의 중심(청록색)에 있는 테스트 노드를 곡선 지오메트리 표면(주황색)에 투영하여 보여준다.   그림 2. 지오메트리에 투영된 표면 요소의 중심에 있는 테스트 노드     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-07-04
우주발사체 하우징의 금속 적층제조 공정 시 과열 영역 예측 및 해결 방안
앤시스 워크벤치를 활용한 해석 성공 사례   이번 호에서는 태성에스엔이의 자회사로 적층제조(AM) 전문 CAE 기업인 원에이엠이 한국항공우주연구원 우주발사체 엔진의 개폐밸브 하우징에 대한 L-PBF 방식 금속 적층제조 공정 중 발생한 과열 문제를 앤시스 워크벤치 애디티브(Ansys Workbench Additive)를 통해 검토하고 해결한 사례를 소개하고자 한다.   ■ 김재은 원에이엠 DfAM팀의 선임연구원으로 Ansys Additive 라이선스 및 다양한 적층제조 관련 교육을 담당하고 있으며, 적층제조 특화 설계를 통한 성공사례를 만들어가고 있다. 홈페이지 | www.oneam.co.kr   금속 적층제조 공정은 상대적으로 높은 설계 자유도 및 공정 자유도에 의해 항공우주, 모빌리티 등의 산업에서 고부가가치 제품의 생산 또는 개발 단계의 성능 검증과 제품 제작에 많이 이용된다. 특히 L-PBF(Laser-Powder Bed Fusion) 방식이 가장 널리 쓰이는데, L-PBF 방식의 금속 적층제조는 금속분말이 얇게 도포된 베드 위에 레이저로 고밀도의 에너지를 조사함으로써 제품을 생산하는 방법을 일컫는다. 균일한 두께로 얇게 도포된 금속 분말은 레이저에 의해 용융되고, 고화 및 분말 도포 과정이 반복되며 층별로 쌓임으로써 제품 형상을 구현한다. 이러한 생산 방식으로 인해 L-PBF 방식 금속 적층제조 공정에서는 필연적으로 열이 발생한다. 이 열을 안정적으로 해소하지 못한 경우 제품의 변형, 크랙(갈라짐) 등이 발생할 가능성이 높아지고, 심각한 경우 공정을 중단하는 사태에 이르게 될 수 있다. 따라서 제품의 개발 비용 손실 최소화 및 성능 만족 측면에서 적층제조 공정 중 문제를 일으킬 가능성이 높은 열 문제를 반드시 검토하고 해결해야 한다.    발사체 엔진 개폐밸브 하우징의 과열 탐색 필요성 한국항공우주연구원은 대한민국 항공우주 분야의 중심 연구기관으로, 항공기·인공위성·우주발사체의 종합 시스템 및 핵심 기술 연구 개발을 수행하고 있다. 최근에는 우리나라 최초의 달 궤도선 다누리의 개발과 국내 독자 기술로 개발한 한국형 발사체 누리호의 개발에 성공하였으며, 차세대 발사체 개발에 박차를 가하고 있다. 이러한 우주발사체의 추진력은 엔진의 점화와 연소 중단을 통해 얻는데, 이때 연소기 내에서 산화제(산소)와 연료의 공급/차단이 원활히 이루어지도록 하는 것이 개폐밸브이다.  개폐밸브는 액체산소(LOX)가 산화제로 사용되기 때문에 -183℃의 극저온 환경에서 안정적으로 작동하여야 하며 기밀, 열림 압력, 내구성 등 밸브 성능에 높은 신뢰성이 요구된다. 또한 밸브 크기 및 무게의 제한으로 인해 개발 요구조건 난이도가 높다. 이러한 개발 요구조건을 만족시키기 위해 개폐밸브 작동조건 및 환경을 고려한 설계와 함께, 극저온 취성을 포함한 우수한 성질의 소재로 제작하는 것이 필요하다.  앞선 요구조건을 만족하도록 연구개발 및 해석을 통해 개폐밸브 하우징은 위상최적화 기법을 도입하여 설계되었고(그림 1) 위상 구조가 복잡해짐에 따라 L-PBF 방식의 금속 적층제조 공정으로 제작이 결정되었다.   그림 1. 한국항공우주연구원의 개폐밸브 하우징   L-PBF 방식의 금속 적층제조 공정은 얇은 금속 분말 층을 레이저로 용융한 뒤 고화시키는 과정을 반복하여 쌓음으로써 제품을 생산한다. 때문에 금속 적층제조 공정 중에 필연적으로 열이 발생한다. 이렇게 발생된 열의 대부분은 전도를 통해 제품의 하단, 즉 베이스플레이트 쪽으로 이동하며 배출된다. 그런데, 이때 열을 충분히 해소시키지 못하는 경우 과열 문제가 발생할 가능성이 높다. 주로 베이스플레이트 쪽으로 열을 전도시키는 매개체가 부족하거나, 제품의 단면적 변화가 급격하여 열 전달의 병목 구간이 존재하는 경우 나타난다. 이러한 과열 및 적층 레이어 간의 높은 열 구배는 잔류응력을 유발하는데, 이는 제품의 과도한 변형 및 크랙(갈라짐)을 일으키거나 제조 공정이 중단되는 사태에 이르게 될 수 있다. 따라서, 금속 적층제조 공정에 들어가기 앞서 문제를 초래할 가능성이 있는 과열 영역에 대해 사전 검토가 필요하다.   그림 2. 과열에 의한 파트 변형 예   추가로, 금속 적층제조 공정에서 열 전도도가 낮아 열 배출이 용이하지 않은 소재를 사용할 경우 과열에 더 유의해야 한다. 대표적으로 철 합금, 니켈 합금, 티타늄 합금 등이 있는데, 이 소재들은 고강도, 극저온, 인체 적합성 등 특수한 사용 환경 및 조건에 의해 항공우주, 모빌리티, 의료 등의 분야에서 활용도가 높다.    그림 3. Ansys Additive Manufacturing Materials의 열전도도 비교   한국항공우주연구원의 개폐밸브 하우징도 마찬가지로 -183℃의 액체산소(LOX) 산화제를 사용하고 내압, 진동, 열변형을 견뎌야 한다는 운용 환경에 의해, 니켈 합금인 Inconel 소재로 금속 적층제조 공정을 수행하게 되었다. 따라서, 위상최적설계를 통해 형상 복잡도가 높아 열 배출이 어려워진 것에 더해, 열전도도가 낮은 Inconel 소재 적용으로 과열에 대한 위험성이 높아졌다. 또한 제품의 크기가 커서 대형 장비로 제작해야 되기 때문에, 소형 대비 제작 실패 시 발생 비용이 높다. 그러므로 개폐밸브 하우징은 금속 적층제조 공정 제작 난이도가 매우 높고 제작 실패 시 발생 비용이 크기 때문에, 사전 검토 단계에서 과열 영역 탐색을 도입하고 문제 발생 가능성이 높은 부분에 대해 예방할 필요가 있다. 따라서 이번 호에서는 앤시스 워크벤치 애디티브를 활용하여 해석적으로 과열 영역을 확인하고, 실제 제작된 제품과 비교함으로써 신뢰성을 확보하고자 하였다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-07-04
[포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2024, 제조산업의 디지털 전환 전략과 사례 소개 (1)
‘PLM/DX 베스트 프랙티스 컨퍼런스 2024’가 지난 6월 13~14일 온라인으로 진행됐다. 한국산업지능화협회, 한국CDE학회, 캐드앤그래픽스가 공동 주최하는 이번 행사는 20주년을 맞아 이름을 바꾸었으며, 제품/제조 데이터와 프로세스를 통합 관리하는 PLM(제품 수명주기 관리)과 함께 제조산업의 혁신을 위한 디지털 전환(DX)에 대해 폭넓게 짚어보는 기회가 되었다. ■ 정수진 편집장   ▲ HL만도 배홍용 CTO, 한국산업지능화협회 PLM 기술위원회 서효원 위원장, 캐드앤그래픽스 최경화 국장   한국산업지능화협회 PLM기술위원회 위원장인 KAIST 서효원 교수는 인사말에서 “과거에는 설계/제조 정보의 생성, 관리, 활용 등이 구조적이고 전형적인 방법에 의존해 왔다. 한편, 최근 생성형 AI 특히 GPT의 출현으로 인해 PLM의 역할이 재조명되고 있다”고 짚었다. GPT의 기반인 생성형 초거대 언어 모델(LLM) 등을 통하여 유연적이고 비정형적인 방법이 가능해지고, 자연어 기반의 대화형 인터페이스가 가능해져 설계/제조의 생산성을 높일 수 있다는 설명이다. 또한, 서효원 교수는 “LLM을 기반으로 설계/제조 현장의 핵심 이슈인 데이터의 연결, 하이퍼링크 통합 등의 자동화가 가능해지며, 이를 통해 과거 PLM 적용에 있어서 문제로 여겨졌던 부분을 해결할 수 있다는 기대가 커지고 있다”고 전했다.   ▲ 한국산업지능화협회 PLM기술위원회 서효원 위원장(KAIST 교수)   이번 행사에서는 ‘PLM 베스트 프랙티스 적용 사례 & DX 전략(6월 13일)’과 ‘디지털 전환을 위한 신기술과 솔루션(6월 14일)’이라는 두 개의 트랙에서 14편의 발표를 통해 다양한 내용이 소개됐다.   ■ 함께 읽기 : [포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2024, 제조산업의 디지털 전환 전략과 사례 소개 (2)   변화에 대응하기 위한 자동차 산업의 혁신 노력 행사 첫째 날인 6월 13일 기조연설에서 HL만도의 배홍용 CTO는 ‘오토모티브 인더스트리의 새로운 지평선에서’라는 주제로, 자동차 산업이 최근 겪고 있는 변화와 대응 방향에 대해 소개했다. 전기자동차(EV)의 성장세는 분명해 보인다. 전기자동차의 성장에 따라 DC-DC 컨버터, 차저, 구동용 모터, 인버터 관련 기업은 호황을 기대하는 반면 전기자동차에는 쓰이지 않는 엔진, 트랜스미션, 스타터, 클러치, 토크 컨버터 관련 기업은 변화에 따른 충격에 대비할 필요성을 느끼고 있다. 자율주행에 대해서는 긍정적 전망과 부정적 전망이 뒤섞여 있지만, 장기적으로 변화의 물결은 피할 수 없을 전망이다. 높은 개발 비용과 생산 비용, 법규 마련의 지연, 그리고 낮은 기술적 성숙도로 인해 본격적인 자율주행의 도입은 당초 기대보다는 늦어질 것으로 보인다. 전통적인 자동차 외에 친환경 동력과 근거리 주행을 특징으로 하는 마이크로 모빌리티는 착실히 성장하면서 산업계에서도 대응을 강화하고 있으며, 소프트웨어 정의 차량(SDV)은 하드웨어 공급사인 OEM뿐 아니라 소프트웨어 공급사까지 참여하는 새로운 산업 생태계를 만들고 있다. HL만도에서도 ‘데이터 주도’와 ‘자동차의 통합 제어’라는 두 개의 축을 중심으로 개발 및 사업을 전개하고 있다. 배홍용 CTO는 “자동차 산업이 복잡해지고 변경 빈도가 높아지는 상황에서, 프로세스를 가볍게 만들고 신뢰성을 확보하는 것이 과제가 되고 있다”면서, “설계와 검증을 세분화하면서 효율적인 개발 방법을 마련할 필요성이 커지고 있다. 또한 AI의 도입, 디지털 전환(DX), 협업 및 자동화 플랫폼 등 다양한 영역에 걸친 산업 생태계의 노력이 요구된다”고 전했다.   ▲ HL만도 배홍용 CTO   UAM이 가져 올 생태계의 파괴적 혁신 한국항공우주연구원(KARI)의 황창전 UAM연구부장은 ‘모빌리티 혁명, UAM 현황과 미래’를 주제로 한 기조연설을 진행했다. UAM(도심 항공 모빌리티)은 수직이착륙이 가능한 전기 항공기(eVTOL)뿐 아니라 퍼스트 마일부터 라스트 마일까지 커버하는 모빌리티 서비스(MaaS), 도심내 이착륙장, 간편한 시큐리티 체크인, 자율주행 등 다양한 기술과 산업이 연관된 개념이다. 2019년에 약 200개의 UAM 비행체가 개발되었는데 현재는 1000개로 크게 늘었으며, 모건 스탠리는 2040년 UAM 시장 규모를 1조 5000억 달러로 전망하고 있다. 이처럼 UAM은 모빌리티 분야에서 파괴적인 변화(disruptive change)를 이끄는 ‘게임 체인저’가 되고 있다. 다양한 산업 분야를 포괄하는 만큼 eVTOL 개발, 비행 제어 소프트웨어, 교통 관리 체계, 버티포트 인프라, 통신망과 내비게이션 등에 걸친 산업계의 기술 확보 움직임과 함께 정부의 지원 로드맵도 진행 중이다. 황창전 부장은 “산업화에 성공하면 항공기, MRO(유지 . 보수 . 운영), 운항 관리 등 세 가지 기술을 토털 패키지화해서 수출도 가능하며, 이런 기술의 개발 과정에 PLM이나 디지털 전환을 적용할 수 있을 것”이라고 짚었다.   ▲ 한국항공우주연구원 황창전 UAM연구부장   제품 개발과 생산 분야의 디지털 혁신 노력 소개 LG CNS SINGLEX 정현길 위원은 ‘개발·양산 라이프사이클 품질 관리의 발전 방향’을 주제로 한 발표에서 LG 그룹의 품질 관리 프로세스 구축 과정과 향후 발전 방향에 대해 소개했다.  LG 그룹의 개발 품질 관리 솔루션 프로젝트를 통해 구축된 싱글렉스(SINGLEX) 플랫폼은 제품 기획부터 마케팅, 영업, 구매, 제조, 물류, R&D/품질, 고객 서비스, HR, 경영 관리, 보안, IT 관리 등 총 32개 영역의 서비스를 제공한다. 이 가운데 R&D/품질 영역은 ▲개발 프로젝트를 관리하는 PMS ▲양산 품질을 관리하는 QMS ▲위험 재발 방지 활동을 지원하는 FMA ▲소프트웨어 프로젝트를 관리하는 ALM ▲시스템의 범위 및 현황을 연계하여 전체 업무를 관리할 수 있는 SPM  등 5개의 주요 시스템으로 이루어져 있다. 정현길 위원은 “솔루션의 완성도를 위해서 약 28만 건의 품질 검증과 수많은 현업 전문가의 의견을 반영해서 1500건 이상의 업그레이드를 실시했다. 그 결과 현재 LG 그룹 계열사에서 완성도 높은 서비스를 이용하고 있고, 이를 기반으로 대외 사업으로 확대를 추진 중”이라고 전했다.   ▲ LG CNS SINGLEX 정현길 위원   PTC코리아의 이봉기 상무는 ‘LS 일렉트릭 디지털 스레드 적용 사례 및 PTC AI 혁신 전략’에 대해 발표했다.  디지털 스레드의 기본 개념은 가치사슬 전반에 걸쳐서 필요한 대상에게 필요한 시점에 필요한 맥락으로 정보를 제공하기 위해, 전체 라이프사이클에 걸쳐서 물리적 세계와 디지털 세계의 정보를 엮어주는 것이다. 디지털 스레드의 궁극적인 목표는 기업 전체 가치사슬의 최적화이다. 이런 관점에서 최근의 디지털 전환 프로젝트가 보이는 한계를 해소할 수 있는 대안으로 디지털 스레드가 주목받고 있다. 이봉기 상무는 “디지털 전환 프로젝트가 성공하기 위해서는 디지털 스레드의 개념을 잘 이해하고, 이를 기업 전체의 목표와 부합하도록 연계하는 것이 중요하다”면서, “이를 통해 엔지니어링 단계를 넘어 제조 효율성, 서비스 최적화, 제품 운영 관리 등 기업의 가치사슬 전반에 걸쳐 기업의 디지털 전환을 이룰 수 있을 것”이라고 전했다. 또한, “PTC는 SaaS(서비스형 소프트웨어)와 생성형 AI 등의 기술에 대해서도 디지털 스레드를 기반으로 기업의 비즈니스 목표 달성을 지원할 수 있는 방향으로 접근하고 있다”고 덧붙였다.   ▲ PTC코리아 이봉기 상무   아비바코리아의 강창훈 상무는 ‘프로세스 산업에서의 디지털 트윈 적용 사례’에 대해 발표했다. 정유, 화학 등 프로세스 산업은 긴 라이프사이클을 갖고 있으며, 많은 인원과 대형 설비가 투입되는 자본집약적 성격을 갖고 있다. 공정 자체도 물리화학적인 변화를 포함하고 있으며 복잡한 것이 특징이다. 프로세스 산업은 자동화와 플랫폼화를 거쳐 데이터 기반의 실시간 최적화 등의 방향으로 발전해 왔는데, 최근에는 IoT(사물인터넷), AI, 디지털 트윈이 활발히 도입되고 있는 상황이다. 강창훈 상무는 “특히 2D/3D 설계와 시공 데이터를 통합하고 조회할 수 있는 엔지니어링 디지털 트윈 플랫폼을 구축하고 있는 것이 주요한 흐름”이라고 전했다. 플랜트 사용자들은 실시간 모니터링과 분석을 통해 유기적으로 협업할 수 있으며, 궁극적으로 데이터 기반의 의사결정 환경을 구축할 수 있다. 또한 운영 데이터를 활용해 AI/머신러닝 기반의 설비 예측 분석을 통해 설비의 이상징후를 조기에 감지하며, AI를 활용하여 디지털 트윈에 구축된 다양한 정보에 신속하게 접근하는 챗봇을 활용할 수도 있다.   ▲ 아비바코리아 강창훈 상무   TYM의 김대용 CDO는 TYM의 ‘PLM/디지털 전환/디지털 트윈 구축 사례’를 소개했다.  트랙터, 콤바인, 이양기 등 농기계와 디젤엔진에 이르는 제품을 개발/생산하고 있는 TYM은 PLM으로 대표되는 제품 지능화, 스마트 공장과 관련된 공정 최적화, 고객 경험을 강화하는 스마트 서비스 등을 중심축으로 삼아 디지털 전환을 추진 중이다. TYM이 설정한 PLM의 목적은 ‘고객 가치를 창출하고 고객 맞춤형 제품 개발의 리드 타임을 줄이기 위해서 프론트로딩을 할 수 있는 통합 R&D 인프라를 구축하는 것’이다. 또한 TYM은 제품/부품의 형상과 공장 데이터를 유기적으로 연결하는 디지털 트윈을 구축하고 있다. 디지털 트윈을 기반으로 트랙터 조립 공정의 실시간 상태를 모니터링하고 현장 데이터를 수집할 수 있도록 했다. 김대용 CDO는 “이외에도 TYM은 RTLS를 이용해서 파트너사 및 협력사 사이에 공급망 현황이나 재고 현황 데이터를 실시간 수집/분석하고 시각화하는 AI 서비스의 연구개발을 진행 중”이라고 전했다.   ▲ TYM(티와이엠) 김대용 CDO   지멘스 디지털 인더스트리 소프트웨어의 한석주 본부장은 ‘AI 및 클라우드 기술을 활용한 팀센터의 미래 PLM : 디지털 스레드의 역할’이라는 주제로 발표를 진행했다. PLM은 업무의 효율 향상에 중점을 두고 진화를 계속하고 있다. 제조산업에서 제품을 개발하는 라이프사이클의 속도를 높이는 것이 중요하게 여겨지고 있으며, 이에 맞춰 PLM은 과거의 CAD 데이터 관리를 넘어 디지털 스레드를 기반으로 해서 제품 개발 사이클을 가속화하는 형태로 발전하고 있다는 것이 한석주 본부장의 설명이다. 한석주 본부장은 “지멘스는 디지털 전환을 가속화하기 위한 포괄적인 솔루션 포트폴리오인 ‘엑셀레이터’를 통해 제품을 이제 디자인하고, 현실화하고, 최적화하는 전체 폐순환(closed-loop) 라이프사이클을 가속화할 수 있도록 지원한다”고 소개했다. 또한 “지멘스는 인더스트리 디지털 스레드, 클라우드, 인더스트리 메타버스를 통해서 PLM의 효율을 더욱 강화할 수 있게 돕고자 한다”고 덧붙였다.   ▲ 지멘스 디지털 인더스트리 소프트웨어 한석주 본부장   관련 기사 함께 보기 [포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2024, 제조산업의 디지털 전환 전략과 사례 소개 (2)   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-07-02
다쏘시스템, “3D익스피리언스 플랫폼으로 대규모 건축 프로젝트 관리 및 효율 개선”
다쏘시스템은 복합 외벽과 철골 구조물 설계를 전문으로 하는 이탈리아 건축 엔지니어링 기업 VLP앤파트너스(VLP and Partners)가 자사의 클라우드 기반 3D익스피리언스 플랫폼을 사용하여 점점 더 복잡해지는 대규모 건축 프로젝트를 관리하고 있다고 발표했다. 다쏘시스템의 3D익스피리언스는 프로젝트 관계자들에게 높은 수준의 유연성과 3D 모델 기반 건축 데이터에 대한 실시간 접근성을 동시에 제공한다. VLP앤파트너스는 3D 익스피리언스를 통해 복잡한 표면을 설계함에 있어 높은 품질과 정밀성을 확보하고, 건물 설계를 효율적으로 관리하고, 협력적인 방식으로 버추얼 트윈을 활용할 수 있게 됐다. VLP앤파트너스는 3D 모델링 전문 엔지니어와 건축가, 그리고 열, 철골 및 파사드 클래딩(cladding) 계산을 담당하는 구조 엔지니어들로 구성돼 있다. VLP앤파트너스는 차세대 커튼월(curtain wall)과 고층 건물, 복잡한 형상을 가진 각종 구조물 등을 제작하는 데 활용하고 프로젝트 개발 프로세스를 단축하기 위한 최첨단 파사드 설계 기술을 필요로 했다. 또한 비용을 절감하는 동시에 생산 요건을 최적화하고, 이전 모델과 도면을 재사용할 수 있으면서, 혁신적인 솔루션을 찾아야 했다. VLP앤파트너스는 다쏘시스템의 설계 애플리케이션을 수년간 사용한 후, 3D익스피리언스 플랫폼을 기반으로 한 '경험에서 시공까지(From Experience to Construction)’ 산업 솔루션 경험을 통해 단일 가상 환경에서 건축 설계와 프로젝트를 관리하고, 모든 유형의 건축 및 엔지니어링 과제를 협업을 통해 해결하기 시작했다.     클라우드 상의 구현을 통해 VLP앤파트너스는 물리적 IT 인프라 없이도 3D익스피리언스 플랫폼을 즉시 활용할 수 있었다. 또한, 확장성을 기반으로 한 개선된 유연성과 고객과 원활하게 상호작용할 수 있는 기능을 통해 새로운 업무 수행 방식을 구현할 수 있었다. VLP앤파트너스의 시몬 루칸젤리(Simone Lucangeli) 공동 창립자 겸 파트너는 “VLP앤파트너스는 신속하고 효율적으로 협업할 수 있는 최상의 방법을 고객과 함께 정립하고자 지속적인 노력을 기울이고 있으며, 이러한 부분에 있어 3D익스피리언스 플랫폼이 큰 도움이 된다. 이제 클라우드를 통해 3D 모델을 고객과 공유할 수 있게 됐으며, 앞으로 더욱 많은 고객이 이 같은 방식을 통해 우리와 상호작용하고 정보를 공유하며 최상의 솔루션을 찾을 수 있기를 기대한다”고 말했다. 다쏘시스템의 레미 도니어(Remi Dornier) 건축·엔지니어링·건설 부문 부사장은 “오늘날 기업은 구조물과 시스템을 아름답고 효율적으로 구축해야 할 뿐만 아니라 설계 시 장기적 지속 가능성을 고려하고 여러 이해관계자를 위한 다양한 문제까지 해결해야 한다. 3D익스피리언스 플랫폼은 모든 데이터와 정보를 중앙 집중화하고 통합해 지식과 노하우를 가상화할 수 있도록 지원한다. VLP앤파트너스는 그들의 기술과 전문성을 다쏘시스템의 3D 기술과 결합해 복잡한 프로젝트를 간소화하고 혁신성과 성과를 높일 수 있다. 이는 수천 개의 요소를 관리해야 하는 대규모 프로젝트에서도 적용된다”고 말했다.
작성일 : 2024-07-01
크레아폼 코리아, ‘이노베이션 포럼’에서 3D 측정 트렌드 및 신제품 소개
3D 측정 솔루션 공급사인 크레아폼(Creaform)이 산업계 측정 트렌드를 공유하는 한편 실제 적용 사례를 소개하는 ‘크레아폼 코리아 이노베이션 포럼 2024’를 6월 13일 개최했다. 크레아폼 이노베이션 포럼은 3년 연속 개최되고 있는 오프라인 행사로, 올해는 ‘3D 측정으로 혁신하는 제조 산업의 미래’라는 주제로 진행됐다. 이번 포럼에서는 ▲디지털 측정의 혁신 ▲고객 애플리케이션별 3차원 측정 솔루션 활용 사례와 솔루션 선택 가이드 ▲3D 스캐너 활용 자동차 용접부 인라인 품질검사 자동화 솔루션 ▲버티컬 마우스 조작 성능 개선을 위한 솔루션 및 ▲측정 자동화 혁신을 위한 안내 등의 내용이 소개됐다. 최근 크레아폼은 ‘혁신의 실현’이라는 신규 브랜딩을 발표했다. 새 브랜딩에 대해 크레아폼은 “직관적인 스캔 및 측정을 통한 만족감, 스캐너를 통한 고객 문제 해결에 주목하면서, 혁신적인 기술을 활용한 하드웨어, 소프트웨어, 엔지니어링 서비스를 제공하겠다는 의지를 담았다”고 설명했다.   ▲ 핸디스캔 블랙+ 엘리트   한편, 이번 행사에서는 크레아폼의 신제품도 소개됐다. 핸디스캔 블랙+ 엘리트(HandySCAN BLACK+|Elite)와 핸디스캔 실버(HandySCAN SILVER), 핸디스캔 실버 엘리트(HandySCAN SILVER|Elite)는 향상된 정밀도와 사용자 경험을 제공할 수 있도록 설계됐다. 핸디스캔 블랙+ 엘리트는 0.020mm + 0.015mm/m의 최적화된 공간 정확도를 사용할 수 있게 됐다. 또한 새롭게 추가된 플렉스 볼륨(Flex Volume)을 통해 더 큰 스캐닝 측정 볼륨을 제공하며, 근거리(200mm)에서 원거리(700mm)까지 스캔 가능 거리를 손쉽게 조정할 수 있다. 핸디스캔 실버 시리즈는 제품 개발에 특화된 3D 스캐너로 인체공학적 디자인과 함께 해상도가 향상돼 복잡한 형상 스캔을 지원하며, 다양한 표면 유형을 측정할 수 있도록 해 활용도를 높였다.   ▲ 메트라스캔 블랙+   광학 CMM 3D 스캐너인 메트라스캔 블랙+(MetraSCAN BLACK+)와 메트라스캔 블랙+ 엘리트(MetraSCAN BLACK+|Elite)는 ISO 10360 인증을 추가하여 정교한 측정을 요구하는 품질 관리에 특화된 제품으로, 대형 부품을 간단하고 정확하게 측정하는 기능을 강화했다. ‘자동화 키트 솔루션’은 크레아폼의 핸드헬드 3D 스캐너 라인업을 자동화 측정 솔루션으로 변환하고 코봇, 디지털 트윈 소프트웨어 및 워크스테이션과 결합해 경제적인 품질 관리 경험을 제공하는 하이브리드 솔루션이다.   ▲ 자동화 키트 솔루션   크레아폼 사업부의 김건아 본부장은 이번 행사에 대해 “최근 화두인 디지털 트윈과 함께 제조업 측정 혁신 기술을 담은 신제품 소개와 제조 산업에 적용하고 있는 측정 산업계의 노력을 활발히 공유하는 기회가 되었다”고 평가했다.
작성일 : 2024-06-14