• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "함수"에 대한 통합 검색 내용이 308개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
IBM, 왓슨x에서 미스트랄 라지 AI 모델 지원
IBM은 기업이 고품질, 고성능의 다양한 파운데이션 모델을 폭넓게 이용하고, 자사의 필요에 따라 맞춤형으로 배포할 수 있도록 하기 위한 노력의 일환으로 왓슨x.ai(watsonx.ai)에서 미스트랄 라지(Mistral Large) 모델을 제공한다고 발표했다. 인공지능(AI) 개발자를 위한 IBM의 기업용 AI 스튜디오인 왓슨x.ai는 IBM의 그래니트(Granite) 모델 외에도 다양한 오픈소스 및 상용 모델 선택이 가능하며, 이를 용도에 따라 변형하거나 비즈니스 솔루션 및 애플리케이션과 통합해 사용할 수 있다. IBM은 이미 왓슨x.ai 내에서 기업 환경에 적용할 수 있는 소규모 모델인 Mixtral-8x7B를 제공하고 있다. 이 모델은 IBM이 최적화한 모델로, 주어진 시간 동안 처리할 수 있는 데이터의 양이 기존 모델보다 50% 증가했다. 이번에 새롭게 추가된 미스트랄 라지는 서비스형 소프트웨어(SaaS)로 먼저 제공된다. 이제 왓슨x 고객은 추론과 다국어 기능이 필요한 복잡한 전사적 작업을 처리하도록 최적화된 미스트랄 AI의 가장 강력한 모델을 활용할 수 있다. 검색증강생성(RAG) 전문화를 통해 더 장시간의 채팅 상호작용과 대용량 문서 처리가 가능하며, 사용자 정의 함수나 API와 같은 외부 도구에 연결할 수 있고, 뛰어난 코딩 성능으로 특정 용도에 맞는 애플리케이션을 쉽게 구축할 수 있다. 책임감 있는 AI 구축을 위해 안전장치로 사용할 수 있는 ‘가드레일(guardrail)’ 기능이 내장되어 있기도 하다.     아울러, 기업은 이제 왓슨x 플랫폼에서 미스트랄 라지를 통해 데이터 스토어, 프롬프트 랩, 모델 튜닝, 프로세스 모니터링 및 거버넌스 기능을 포함한 추가적인 엔터프라이즈 지원 제품을 활용할 수 있다. 왓슨x 고객은 특정 플랫폼에 종속되지 않고 온프레미스(사내 서버)나 퍼블릭 클라우드 제공업체 등 원하는 환경에서 왓슨x.ai 내 모델을 배포할 수 있다. 빠르게 변화하는 AI 분야에서 기업이 민첩하게 적응하고 인프라 및 개발에 대한 매몰 투자를 피하려면 유연성이 핵심이기 때문이다. IBM은 왓슨 플랫폼에 미스트랄 AI의 상용 모델을 제공함으로써 개방형 멀티 모델 전략을 더욱 확장하고 기업이 혁신, 변화, 확장할 수 있도록 지원한다는 계획이다. 또, 책임감 있게 기업 혁신에 기여하고자 하는 IBM의 의지를 바탕으로, IBM은 한도형 지적 재산권 보상 제도를 통해 미스트랄 라지에 대한 고객 보호를 제공한다고 밝혔다. 이는 IBM이 자사의 AI 모델인 IBM 그래니트 모델에 대한 고객 보증 제도를 적용한 이래 제3자 파운데이션 모델까지 확대한 첫 번째 사례이다.
작성일 : 2024-07-26
혼합 오더 메시 커브
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (10)   이번 호에서는 CFD에 유한요소법을 활용해 더 적은 요소 수로 해석 정확도를 높일 수 있는 곡선형 혼합 오더 메시(Mixed Order Mesh)를 생성하는 방법을 살펴본다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   High-Order 메시 커브는 전산유체역학(CFD) 솔버 커뮤니티에서 유한요소법(FEM)을 활용하는 사람들에게 큰 도움이 될 새로운 기술이다. 유한요소기법은 유한 체적 및 유한 미분 방법과 같은 기존 CFD 방법보다 적은 요소 수로 정확도를 높인다. 선형 요소의 가장자리, 면, 내부에 버텍스(새로운 자유도)를 추가로 도입하여 정확도를 높일 수 있다. 곡선 지오메트리에 인접한 요소의 경우 이러한 새로운 자유도가 지오메트리에 위치해야 하므로 원래 선형 요소의 모양이 변경된다. 메시가 점성이 있는 경계를 향해 요소들이 모여 있는 경우 이 과정은 더 어렵다. 또한 내부 요소의 가장자리와 면은 요소 반전을 방지하기 위해 경계 요소 곡률에 따라 곡선을 만들어야 한다. 케이던스 피델리티 포인트와이즈(Cadence Fidelity Pointwise)에서 사용하는 WCN 스무딩에 대한 연구를 통해 혼합 오더 메시(Mixed Order Mesh)를 사용하여 지오메트리 곡률을 해결할 수 있다. 요소는 곡률이 심한 지오메트리 근처에서는 최대 4차 다항식(quartic)까지 올라갈 수 있으며, 곡률이 심한 지오메트리에서 멀리 떨어진 곳에서는 선형을 유지한다. 메시 평활화 방법은 비용 함수를 사용하여 원하는 요소 모양과 양의 자코비안을 각 요소에 적용한다. 요소가 지오메트리 근처에서 곡선이 될 때 점성 메시 간격이 유지된다. 결과는 복잡한 3D 구성에 대해 표시된다.   지오메트리 선형 메시를 올리고 표면 곡률에 따라 곡선을 그리려면 지오메트리에 쉽게 액세스하고 강력한 초기화 및 평활화 프로세스가 필요하다. 초기화 중에 고차 노드가 지오메트리에 정확하게 배치되고 메시 평활화 중에 표면에 유지되도록 하려면, 지오메트리에 대한 표면 검색작업이 필요하다. 엘리베이트 및 스무딩을 위한 지오메트리 액세스는 메시링크 API¹) 를 통해 제공된다. 메시링크는 지오메트리 및 메시 데이터를 관리하기 위한 라이브러리로, 메시 생성 및 메시 적응 애플리케이션과 관련된 함수를 쿼리할 수 있는 간단한 인터페이스를 제공한다.   혼합 오더 커브 프로세스 혼합 오더 메시 커브는 유효한 선형 메시로 시작하는 프로세스를 사용한다. 프로세스의 주요 구성 요소는 <그림 1>의 순서도에 나와 있다. 이 백서 전체에서 요소의 차수 또는 다항식 차수는 선형, 이차, 입방체와 같은 Q1~4 명명법을 사용하여 표시되며, 이차 요소는 각각 Q1, Q2, Q3, Q4이다. 고차 요소는 라그랑지안 기저 함수를 사용하여 요소의 가장자리, 면, 내부에 고차 노드를 고르게 분포시킨다. 이러한 물리적 노드는 하위 요소와 요소 모양을 적용하기 위해 WCN 방식에 필수이다.   그림 1. 혼합 오더 메시 커브 프로세스의 순서도에는 가장 안쪽 고도 루프를 통과하는 여러 경로가 포함되어 있다. 진입 지점에 따라 색상으로 구분된 화살표를 따라가게 된다.   고도 프로세스는 입력된 선형 메시에서 시작하여 사용자가 요청한 최종 차수인 Qfinal에 도달할 때까지 최대 차수인 Qmax를 한번에 하나씩 증가시킨다. 각 차수 패스동안 먼저 표면 요소와 볼륨 요소의 편차를 테스트한다. 고차 점이 지오메트리에서 너무 많이 벗어나는 서피스 요소(허용 오차 기준)는 높이가 올라가고, 그 섭동이 볼륨에 퍼진다. 마지막으로, 요소 반전을 수정하고 엘리베이션 프로세스에서 생성된 요소의 품질을 개선하기 위해 WCN 메시 스무딩이 수행된다. 각 스무딩 반복 후 각 볼륨 요소의 편차를 다시 테스트하여 추가 높이 조정이 필요한지 여부를 결정한다. 이 프로세스는 모든 요소가 편차 기준을 충족하거나 최종 정도에 도달할 때까지 반복되며, 메시 평활화 프로세스가 수렴한다. 품질 제약 조건은 인접한 요소가 한 차수 이상 차이가 나지 않도록 보장한다. 최종 출력은 같은 차수의 요소 간에 공유되는 고차 노드가 포함된 메시이다. 그러나 차수가 다른 요소 간에 공유되는 면과 가장자리는 동일한 인터페이스 노드를 공유하지 않다. 따라서 내보내기 전에 이러한 인터페이스에서 형상 적합성을 적용한다.   요소 편차 메트릭 편차 메트릭(Deviation Metric)은 엘리먼트 엘리베이션 프로세스 및 메시 스무딩 프로세스의 일부로, 엘리먼트 엘리베이션 프로세스를 제어한다. 편차 메트릭은 곡선 경계 또는 다른 볼륨 요소에 인접한 요소의 가장자리와 면에 있는 테스트 노드의 변위를 측정한다. 이러한 테스트 노드의 변위가 임계값 거리를 초과하면 해당 요소에 상승 플래그가 지정된다. 높이를 트리거하는 임계값은 요소 내의 최소 선형 에지 길이에 입력 편차 임계값 파라미터(일반적으로 1~5%)를 곱한 값이다.   서피스 요소 편차 곡선 경계에 인접한 요소의 경우 편차 메트릭은 6차 가우스 구적법 점 위치에 배치된 테스트 노드를 사용한다. 그런 다음 테스트 노드를 지오메트리에 투영하고, 원래 위치와 투영된 위치 사이의 거리를 측정한다. 편차량은 <그림 2>에서 선형 삼각형의 중심(청록색)에 있는 테스트 노드를 곡선 지오메트리 표면(주황색)에 투영하여 보여준다.   그림 2. 지오메트리에 투영된 표면 요소의 중심에 있는 테스트 노드     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-07-04
[신간] 아바쿠스 교재 발간 - Abaqus와 함께하는 구조해석의 개념과 분석방법
#아바쿠스교재 #CAE # 구조해석 #브이이엔지 ㈜브이이엔지 지음 / 33,000원 / 이엔지미디어   구입하러가기 4차 산업혁명 시대 컴퓨터 응용 해석(CAE : Computer Aided Engineering)은 단순한 설계 보조 도구를 넘어 새로운 기술과의 통합을 통해 산업 전반의 혁신을 주도하는 핵심 요소로 자리 잡고 있다.  Abaqus(아바쿠스)는 다쏘시스템의 SIMULIA(시뮬리아) 제품군 중 대표적인 구조해석 소프트웨어로, 사실적인 시뮬레이션을 위한 최고의 통합 해석 솔루션이다.  Abaqus는 자동차, 항공, 국방, 화학, 의료, 가전 등 다양한 제품의 시뮬레이션을 지원하는 유한요소 모델링 및 유한요소해석 소프트웨어로서, 광범위한 산업 부문에서 엔지니어링 상의 문제를 해결할 수 있는 강력한 솔루션을 제공하여, 널리 사용되고 있다. 이번에 새롭게 발간한 이 책은 Abaqus 사용법뿐만 아니라 관련 필수 이론을 단계별로 습득할 수 있는 새로운 교재이다. 이번 교재는 처음부터 한글로 작성되어 개념적으로 이해하기 쉽고, 연습이 쉬운 워크숍 모델을 포함하고 있다. 특히, 실무 현장에서 쉽게 적용할 수 있는 실질적인 분석 방법과 사례를 제공하여 독자들이 Abaqus를 효과적으로 활용할 수 있도록 도와줄 것이다..  이 책은 구조해석 기본 과정으로, 구조 엔지니어링 분야의 공학자가 CAE의 개념을 쉽게 이해하고, 산업 현장에서 해석을 더 잘 활용하기 위하여 작성되었다. 이 책을 읽고 따라하다 보면 범용 해석 솔루션인 Abaqus를 쉽게 시작하고, 어렵고 복잡한 개념을 하나씩 실무에 적용하여 제조 엔지니어링 분야의 경쟁력을 갖추는데 도움을 줄 것이다. 이 책을 집필한 ㈜브이이엔지는 다쏘시스템의 SIMULIA 전문 파트너로서, 2007년부터 다쏘시스템의 다양한 CAE 솔루션을 공급하며 SIMULIA 전문 교육, 기술 지원 및 엔지니어링 컨설팅 서비스를 제공하고 있다. ㈜브이이엔지는 매년 30회 이상의 Abaqus 기본 교육과 고급 교육을 진행하면서 Abaqus 교재 개발에 대해 끊임없이 고민해 왔으며, 다쏘시스템의 교재를 기반으로 번역, 한글화 한 '초급 및 중급 사용자를 위한 Abaqus 입문서(2013)'와  'Abaqus(아바쿠스)를 이용한 Contact 해석(2014)'을 발간한 바 있다.   지은이 소개 ㈜브이이엔지 ㈜브이이엔지는 다쏘시스템의 SIMULIA 전문 파트너로서 자동차, 전기전자, 에너지, 항공우주, 조선 및 생명공학 등의 산업 전반에서 30년 이상 축적된 노하우와 다양한 경력을 보유한 전문가들로 구성된 CAE 솔루션과 엔지니어링 컨설팅 전문 회사이다.   추천의 글 10여년 전, 언어의 장벽으로 Abaqus 학습에 어려움을 겪는 고객 여러분께 도움이 되고자, 미흡한 영어실력에도 불구하고 최초의 한글 교재를 출판했다. 이후 수많은 도전 과제를 해결하면서, Abaqus 사용법뿐만 아니라 관련 필수 이론을 단계별로 습득할 수 있는, 특히 처음부터 한글로 작성된 교재의 필요성을 오랫동안 절감해 왔다. 이번 교재는 우리의 이러한 갈증을 시원하게 해소해 줄 것이다.  ㈜브이이엔지의 비전은 고객 여러분이 더욱 혁신적이고 효율적인 컴퓨터 응용 해석(CAE)을 수행할 수 있도록 지원하는 것이다. 이 책이 실질적인 도움이 되어 많은 이들에게 유익한 자원이 되기를 진심으로 기대한다.  - ㈜브이이엔지 김창훈 대표   목차 PART 01. 해석(CAE)이란?     1. CAE(Computer Aided Engineering)    8 2. 해석의 목적    9 3. 해석의 효과    11 4. 구조 해석(Structural Analysis)    12 5. 유한 요소법(Finite Element Method)    13 6. 해석 툴의 구성    14 7. 제품 개발에서의 해석    17 함께하기 01. 성형 해석으로 Abaqus 친해지기     19 함께하기 02. C–단면 빔의 횡방향 좌굴    28      PART 02. 응력과 변형률    47 1. 힘    48 2. 응력    51 3. 모멘트    53 4. 변형과 변형률    54 5. 응력 성분    55 6. 변형률 성분    67 7. 구성방정식(Constitutive Law)    69 8. 탄성 계수와 전단 계수의 관계    73 9. Mises 응력    78 10. 체적 탄성 계수    79 함께하기 03. 내압을 받는 실린더 해석(2D)    83 함께하기 04. 1–요소 모델과 프아송 비 비교    94 함께하기 05. 변형 모드별 주 응력 방향 확인    124 함께하기 06. 고무 가스켓(gasket) 씰링 해석    153      PART 03. 유한 요소법    163 1. 요소, 절점 및 자유도(DOF, Degree Of Freedom)    164 2. 주요 요소    166 함께하기 07. 구조 요소를 이용한 C–단면 빔의 횡방향 좌굴 해석    181      PART 04. 해석의 구성 요소    193 1. 해석 신뢰성    194 2. 해석의 구성 요소    194 함께하기 08. 선형 해석과 비선형 해석    211 함께하기 09. 컨트롤암의 좌굴 해석    222      PART 05. 선형 해석과 비선형 해석    239 1. 선형 해석    240 2. 비선형의 요인    243 함께하기 10. 3점 굽힘 시험    250      PART 06. 정적 해석과 동적 해석    271 1. 정적 해석(Static Analysis)    272 2. 동적 해석(Dynamic Analysis)    273 3. 과도 응답(Transient Response)    276 4. 고유 진동수 및 고유 모드의 의미    278 5. 주파수 영역과 복소수 표현    282 6. 고유 진동수 및 고유 모드의 추출    289 7. 주파수 응답 함수    292 함께하기 11. 공진 구조물 (1) – 고유 진동수 해석    296 함께하기 12. 공진 구조물 (2) – 주파수 응답 해석    313 함께하기 13. 공진 구조물 (3) – 동적 과도 해석(Implicit vs Explicit)    318      PART 07. 해석 재질 물성(탄소성 재질)    335 1. 단순 인장 시험    336 2. 진 응력(True Stress)과 진 변형률(True Strain)    341 3. Mises 소성 모델    347 함께하기 14. 단순 인장 시험과 탄소성 재질 변환    350      PART 08. 해석 재질 물성(고무 재질)    365 1. 고무 재질의 특성    366 2. 고무 재질의 응력–변형률 시험    367 3. 고무 재질 모델    370 4. 재질 안정성(Material Stability)    373 함께하기 15. Abaqus/CAE Material Evaluation 기능    375 함께하기 16. 고무 부싱(bushing)의 동적 과도 해석    381  
작성일 : 2024-06-28
BARAM v24.0 공개 (LES/DES, Passive Scalar) 및 넥스트폼 채용 공고
@media only screen and (max-width:640px) {.stb-container {}.stb-left-cell,.stb-right-cell {max-width: 100% !important;width: 100% !important;box-sizing: border-box;}.stb-image-box td {text-align: center;}.stb-image-box td img {width: 100%;}.stb-block {width: 100%!important;}table.stb-cell {width: 100%!important;}.stb-cell td,.stb-left-cell td,.stb-right-cell td {width: 100%!important;}img.stb-justify {width: 100%!important;}}.stb-left-cell p,.stb-right-cell p {margin: 0!important;}.stb-container table.munged {width: 100% !important; table-layout: auto !important; } .stb-container td.munged {width: 100% !important; white-space: normal !important;}               BARAM v24.2.0 & NextFOAM 2405 및 WSL 이미지 공개 교육 안내 넥스트폼 채용 공고             SW 소식 >             BARAM v24.2.0 공개 >             BARAM v24.2.0이 공개되었습니다. BARAM v24.2.0에는 LES (Large Eddy Simulation), DES (Detached Eddy Simulation), UDS (User-Defined Scalar)와 격자 Gap Refinement 등 다양한 기능이 추가되었습니다. (링크)를 누르시면 BARAM v24.2.0 안내 페이지로 이동합니다.  이외에도 baramFlow tutorials 2개, baramMesh tutorials 2개가 추가되었습니다. (링크)에서 확인해주세요.             baramFlow New Features LES (Large Eddy Simulation), DES (Detached Eddy Simulation) 기능 포함 Non-Reflecting 경계 조건 추가 UDS (User-Defined Scalar) 기능 포함   baramFlow Improvement SST k-ω, Spalart-Allmaras 모델의 벽함수 개선 관리자 권한 실행 시, 초기화 에러 수정 Case wizard에서 flow type 제거 Maximum Viscosity Ratio 설정 가능 Monitoring 그래프의 사용자 편의성 개선             baramMesh New Features Gap refinement 기능 추가 Small gap에 자동으로 격자를 refine해주는 기능 Multi-Solid STL import 기능 추가   baramMesh Improvement baramMesh STL import 기능 개선 Cancel 버튼이 작동하지 않는 버그 수정                         NextFOAM v2405 및 WSL 이미지 공개 >             NextFOAM v2405가 출시 되었습니다. 이번 버전에서는 NextFOAM 솔버가 설치된 WSL 이미지가 출시되었습니다. Windows 유저들도 NextFOAM 솔버를 쉽게 설치 및 사용하실 수 있게 되었습니다. (링크)를 클릭하시면 NextFOAM 솔버 WSL 이미지의 설치 가이드를 확인하실 수 있습니다.   교육 소식 >             6월 BARAM을 활용한 CFD 실전 교육 >             BARAM을 활용한 CFD 실전 교육 6월 BARAM을 활용한 CFD 실전 교육에 대해 안내드립니다. CFD 기본 이론, 개념, 과정 설명과 예제 실습을 통해 CFD를 처음 접하시는 분들의 이해를 도와드립니다. 실습은 공개소스 S/W인 BARAM을 사용하므로 교육 후에도 제한 없이 사용하실 수 있습니다. 일정 : 6월 27일 ~ 6월 28일 (링크)를 클릭하시면 6월 BARAM을 활용한 CFD 실전 교육 내용을 확인하실 수 있습니다.                         7월 OpenFOAM 사용자 교육 >             7월 OpenFOAM 사용자 교육에 대해 안내드립니다. OpenFOAM에 관심은 잇으나 첫 발을 내딛지 못한 고객 여러분께 도움을 드리고자 일정 : 7월 24일 ~ 7월 26일 (링크)를 클릭하시면 7월 OpenFOAM 사용자 교육 내용을 확인하실 수 있습니다.             일반 소식 >             야외 공연장 특화형 안전사고 위험 실시간 예측 방치 시뮬레이터 개발 과제 수주             넥스트폼이 문화체육관광부의 과제를 수주하였습니다. 이번 과제는 '야외 공연장 특화형 안전사고 위험 실시간 예측 방지 통합운영관리플랫폼 개발'을 목표로 아래 6가지 목표로 과제를 수행합니다.    1. 실측 정보 기간 가상 공간 생성 도구 및 시뮬레이터 개발 2. 야외 공연장 특화형 군중 밀집 추적 도구 및 시뮬레이터 개발 3. 복합센서 기반 실시간 군중 밀집도 및 이상 상황의 위험도 분석기술 개발 4. 야외 공연장 특화형 군중 밀집 안전사고 예측 기술 개발 및 인터페이스 제작 5. 선별 관제 모니터링 시스템 및 사고 대응 체계 개발 6. 국가 재난 안전망 연계 사고 대응 시나리오 기반 가상 훈련 및 검증   이를 통해, 야외 공연장 및 시설에서 보다 안전하게 관람을 즐길 수 있는 문화 시설을 만들 수 있도록 과제를 수행할 예정입니다.             대기오염 확산 시뮬레이션 SaaS 개발 및 실증 과제 수주              (주) 넥스트폼이 한국지능정보사회진흥원의 '대기오염 확산 시뮬레이션 SaaS 개발 및 실증 과제'를 수주하였습니다.  이번 과제는 공중 보건과 환경에 심각한 영향을 주는 대기 오염 확산 문제를 분석하고 대안을 검토, 평가할 수 있는 시뮬레이션 Saas를 개발, 실증하여 국내 SW 경쟁령 강화 및 디지털 트윈 확산 기반 마련과 공공(LX 플랫폼)이 보유한 양질의 3D 공간 데이터와 민간 기업의 시뮬레이션 및 SaaS 구축기술 역량을 결합하여 디지털 행정 혁신 기반 마련 및 글로벌 디지털 경쟁력 확보를 위한 과제입니다.  주요 사업 내용으로는 공공 플랫폼 기반 서비스 구축, 대기 오염 확산 시뮬레이션 소프트웨어의 클라우드 기반 SaaS 모델 구축, 수요기관 현장 실증 시험 진행이 있습니다.             신재렬 수석, 정황희 선임연구원 한국연소학회 우수 논문상 수상             우주기술팀 신재렬 수석과 정황희 선임연구원이 (사)한국연소학회에서 우수 논문상을 수상하였습니다.  신재렬 박사님과 정황희 선임연구원님께서 진행하신 연구는 "Hypergolic 추진체에 관한 수치 연구"라는 제목으로 hypergolic 열유동 현상을 이해하기 위해 MMH/NTO 축소 반응 기구를 구현하고, 점화 지연에 대한 수치 연구를 진행하였습니다. 그리고 이전 실험 결과에 대해 1차원 수치 해석 결과와 비교하였으며, 가스 상에 대한 2차원 열유동 수치해석을 수행하고 그 결과를 기술하였습니다. 연구 결론으로 축소 반응기구의 점화 지연 및 온도의 타당한 결과를 확인하였으며, 이를 확장한 2차원 평행 유동 해석을 통해 NTO/NO2의 분사 속도에 따른 점화 현상을 확인하였습니다.             (주) 넥스트폼 CFD 엔지니어 채용 공고             (주) 넥스트폼에서 CFD 엔지니어를 채용합니다. 모집 분야 : CFD 해석 및 S/W 개발 모집 인원 : 신입/경력 O명 직무 내용 CFD S/W를 활용한 열유체 해석 및 컨설팅 CFD 해석 S/W 개발 개발 프로그램에 대한 기술 지원 지원 자격 : 열유체 관련 전공자로 석사 학위 이상 소지자 관련 학과 : 기계, 항공우주, 조선해양, 화공, 건축, 토목 등 우대 사항 : CFD S/W 경험자, OpenFOAM 경험자, in-house code 경험자 근무 조건 지역 : 서울 정규직, 4대보험, 주 5일 근무, 연차 휴가 혜택 장기 근속자 안식월 (유급 1개월) 12월 마지막주 특별 유급휴가 자율출퇴근 (병역특례 제외) 대체 휴무 - 회사 내규로 토요일이 중복되는 공휴일 대체 휴무 지원 학회 발표 인센티브, 학회 참가 지원 기타 : 전문연구요원 병역특례 가능 문의처 : (주) 넥스트폼 채용 담당자 Tel. 070-8796-3025, kjlee@nextfoam.co.kr 마감 : 채용 시             WHAT IS OPENFOAM? OpenFOAM은 오픈소스 CFD 소프트웨어이다. GNU GPL 라이센스를 사용하고 있어 누구나 자유롭게 사용이 가능하며 수정 및 재배포를 할 수 있다.       WHAT IS MESHLESS CFD? 질점격자 기반의 CFD해석 기법으로 FVM해석 기법의 보존성을 갖추고 있으며 전처리 작업시간을 획기적으로 줄일 수 있습니다.FAMUS는 무격자 기법의 CFD 해석 SW 입니다.       WHAT IS BARAM SERIES? BARAM은 넥스트폼이 개발한 OpenFOAM CFD 해석 프로그램입니다. 넥스트폼이 개발한 OpenFOAM Solver와 Utility를 GUI 기반으로 사용이 가능합니다.           수신거부
작성일 : 2024-06-07
지멘스, AI 가속기 개발 돕는 SoC 설계 솔루션 발표
지멘스 디지털 인더스트리 소프트웨어, 지멘스 EDA 사업부는 애플리케이션별 집적 회로(ASIC) 및 시스템 온 칩(SoC)에서 신경망 가속기의 상위수준합성(HLS) 솔루션인 캐터펄트 AI NN(Catapult AI NN)을 발표했다.  캐터펄트 AI NN은 AI 프레임워크에서 신경망 기술(neural network description)에서 시작하여 C++로 변환하고, 이를 반도체칩 설계의 프로그램 언어인 베릴로그(Verilog) 또는 VHDL의 RTL(register transfer level) 가속기로 합성하여 실리콘에서 전력, 성능 및 면적(PPA)에 최적화된 하드웨어 설계를 변환 및 최적화시켜 구현할 수 있도록 지원하는 솔루션이다. 캐터펄트 AI NN은 머신 러닝 하드웨어 가속을 위한 오픈 소스 패키지인 hls4ml과 상위수준합성(HLS)을 위한 지멘스의 캐터펄트 HLS 소프트웨어를 결합시켰다. 캐터펄트 AI NN은 미국 에너지부 산하 연구소인 페르미연구소(Fermilab) 및 기타 hls4ml의 주요 기여자들과 협력하여 개발되었으며, 맞춤형 실리콘의 전력, 성능 및 면적에 대한 머신러닝 가속기 설계의 고유한 요구 사항을 해결한다.     AI(인공지능)의 실행시간 및 머신러닝 작업이 기존 데이터센터는 물론, 소비자 가전부터 의료 기기까지 모든 분야로 이전됨에 따라, 전력 소비를 최소화하고 비용을 절감하며 최종 제품의 차별화를 극대화하기 위한 ‘적절한 크기의’ AI 하드웨어에 대한 요구가 빠르게 증가하고 있다. 그러나 대부분의 머신러닝 전문가들은 합성 가능한 C++, Verilog 또는 VHDL보다는 텐서플로우(TensorFlow), 파이토치(PyTorch), 케라스(Keras)와 같은 반도체칩 설계 프로그램 언어 도구로 작업하는 것이 더 익숙하다. AI 전문가가 적절한 크기의 ASIC 또는 SoC 구현으로 머신러닝 애플리케이션을 가속화할 수 있는 간편한 방법이 지금까지는 없었다. 머신러닝 하드웨어 가속을 위한 오픈 소스 패키지인 hls4ml를 사용하면 텐서플로우와 파이토치, 케라스 등과 같은 AI 프레임워크에 기술된 신경망에서 C++를 생성하여 이러한 간극을 매울 수 있다. 그런 다음 C++를 FPGA, ASIC 또는 SoC 구현을 위해 배포할 수 있다. 캐터펄트 AI NN은 hls4ml의 기능을 ASIC 및 SoC 설계로 확장한다. 여기에는 ASIC 설계에 맞게 조정된 특별한 C++ 머신 러닝 함수의 전용 라이브러리가 포함되어 있다. 설계자는 이러한 함수를 사용하여 C++ 코드로 구현함에 있어 지연 시간 및 리소스 절충을 통해 PPA를 최적화할 수 있다. 또한 설계자는 이제 다양한 신경망 설계의 영향을 평가하고 하드웨어에 가장 적합한 신경망 구조를 결정할 수 있다.  캐터펄트 AI NN은 현재 얼리 어댑터들이 사용 가능하며, 2024년 4분기에 모든 사용자가 사용할 수 있게 될 예정이다. 지멘스 디지털 인더스트리 소프트웨어의 모 모바헤드(Mo Movahed) 상위수준설계, 검증 및 전력 부문 부사장 겸 총괄 매니저는 “소프트웨어 신경망 모델을 하드웨어로 구현하기 위해 수작업으로 변환하는 과정은 매우 비효율적이고 시간이 많이 걸리며 오류가 발생하기 쉽다. 특히 특정 성능, 전력 및 면적에 맞춘 하드웨어 가속기의 변형을 만들고 검증할 때 더욱 그렇다”면서,  “과학자와 AI 전문가가 신경망 모델 설계와 같은 산업 표준 AI 프레임워크를 활용하고 이러한 모델을 전력, 성능 및 면적(PPA)에 최적화된 하드웨어 설계를 위해 원활하게 합성할 수 있도록 지원함으로써 AI 및 머신러닝 소프트웨어 엔지니어에게 완전히 새로운 가능성의 영역을 개척하고 있다. 새로운 캐터펄트 AI NN 솔루션을 통해 개발자는 소프트웨어 개발 과정에서 최적의 PPA를 위한 신경망 모델을 자동화하고 동시에 구현할 수 있어 AI 개발의 효율성과 혁신의 새로운 시대를 열 수 있다”고 전했다.
작성일 : 2024-05-31
매스웍스, 의료 소프트웨어 개발 가속화 위한 엔비디아 홀로스캔 통합 기능 출시
매스웍스는 의료 기기 구축을 위한 엔비디아의 실시간 AI 컴퓨팅 소프트웨어 플랫폼인 엔비디아 홀로스캔(NVIDIA Holoscan)에서 매트랩(MATLAB)을 사용할 수 있는 통합 기능을 발표했다. 의료기기 엔지니어는 실시간 데이터 처리와 추론을 위해 기존의 매트랩 알고리즘과 함수를 GPU 가속 엔비디아 홀로스캔 오퍼레이터(Holoscan Operator)로 래핑하여, 스트리밍 데이터를 분석하고 시각화 애플리케이션의 개발 및 배포를 가속화할 수 있다. 의료기기 엔지니어는 최첨단 소재와 전자기기 활용 기술의 속도감 있는 혁신과 더불어 복잡하게 변화하는 국제 규제를 준수해야 한다. 이로 인해 많은 기기가 시장에 출시된 지 얼마 지나지 않아 구형이 되었고, ‘소프트웨어 의료기기(SaMD)’의 등장을 촉진시켰다. 소프트웨어 의료 기기는 하드웨어에 종속되지 않고 의료 기기의 사용 목적에 부합하는 기능을 가지며 독립적인 형태의 소프트웨어만으로 이뤄진 의료 기기를 말한다. 엔지니어는 소프트웨어 의료기기가 시장에서 지속적인 경쟁력을 유지할 수 있도록 소프트웨어 정의 워크플로를 개발하여 초기 배포 이후의 추가 소프트웨어 기능을 통합할 수 있게 해야 한다. 엔비디아 홀로스캔은 센서 처리 플랫폼으로, 실시간 인사이트를 제공하는 AI 및 고성능 컴퓨팅 애플리케이션의 개발 및 배포를 간소화한다. 또한 에지에서 스트리밍 데이터의 확장 가능한 소프트웨어 정의 처리에 필요한 풀 스택 인프라를 제공해 최신 AI 애플리케이션을 임상 환경에 도입할 수 있도록 지원한다. 의료기기 엔지니어는 홀로스캔과 매트랩의 통합 기능을 통해 영상 및 신호 처리, 필터링, 변환, 딥러닝 알고리즘과 관련된 기존의 내장된 행렬 연산과 복잡한 툴박스 함수를 사용할 수 있다. 매트랩으로 홀로스캔 파이프라인을 구현하려면 매트랩 함수 생성, GPU 코더(GPU Coder)를 통한 가속화된 CUDA 코드 생성, 홀로스캔 오퍼레이터 래퍼 생성 및 새로운 매트랩 오퍼레이터(MATLAB Operator)를 사용한 홀로스캔 애플리케이션 재구축의 4 단계를 거쳐야 한다. 이러한 과정으로 구축된 소프트웨어 정의 워크플로는 매트랩과 홀로스캔의 추가적인 통합 검증 및 확인 기능을 통해 IEC 62304 등의 산업 규정 및 표준을 준수하도록 할 수 있다.     엔비디아의 데이비드 뉴올니(David Niewolny) 의료 기술 부문 사업 개발 책임자는 “의료 기술 산업은 인공지능에 의해 혁신을 거듭하고 있다”며, “엔비디아와 매스웍스는 의료 등급의 엔비디아 홀로스캔 플랫폼 내에서 성장 중인 매트랩 개발 커뮤니티에 호환성 높은 개발 환경을 제공함으로써 의료 기술 분야의 AI 기반 혁신을 가속화하고 있다”고 말했다. 매스웍스의 데이비드 리치(David Rich) 제품 마케팅 부서장은 “이제 엔지니어들은 엔비디아 홀로스캔을 통해 매트랩 함수를 작성하고 수천 배 더 빨리 실행할 수 있다”며, “수백만 명의 고객이 산업 규정과 표준을 준수하는 제품을 설계, 개발 및 테스트하고자 하는 가운데, 업계 리더인 엔비디아와의 협업으로 의료 기기 혁신을 주도할 수 있게 됐다”고 말했다.
작성일 : 2024-05-09
시뮤필의 복합재 수지 해석 기능 소개
시뮤텐스 소프트웨어를 활용한 복합소재 해석 (2)   시뮤텐스(SIMUTENCE)의 시뮤필(SimuFill)은 성형 프로세스 모델링을 위한 기존 소프트웨어 아키텍처(아바쿠스 및 몰드플로우 플러그인)를 개선하여 고급 압축 및 사출 성형 분석이 가능하다. 시트 몰딩 컴파운드(SMC), 장섬유 강화 열가소성 수지(LFT) 및 유리 매트 열가소성 수지(GMT)의 압축 성형은 단섬유 섬유 복합재에 가장 많이 적용되는 제조 공정 중 하나이다. 그러나 이러한 재료를 성형하면 부분적으로 채워진 캐비티(미충진 영역)가 수반될 수 있어, 섬유 배향의 변화와 같은 흐름에 따른 효과 분석이 필요하다. ■ 자료 제공 : 씨투이에스코리아, www.c2eskorea.com   시뮤필(SimuFill) 제품을 통해 제공되는 몰드플로우 애드온(Moldflow Add-on)은 PVT 거동을 경화도의 함수로 모델링할 수 있으며, 각각 열가소성 수지와 열경화성 수지의 결정화 및 경화 동역학을 예측하는 것이 포함된다.   LFT 스트랜드에 대한 섬유 배향 초기화 유동 길이가 충분히 짧은 경우 초기 섬유 배향은 최종 섬유 배향에 큰 영향을 미친다. LFT 스트랜드(strands)에서 국부적인 섬유 배향은 불균일하며 압출 공정을 통해 결정된다. 시뮤필을 사용하면 분석 방정식을 사용하여 LFT 스트랜드의 로컬 섬유 배향을 초기화할 수 있다.     결정화 및 경화 동역학 시뮤필을 사용하면 열가소성 재료(LFT, GMT)의 결정화 역학과 열경화성 재료(SMC)의 경화 역학을 예측할 수 있다. 이는 결정화/경화도를 초기 조건으로 고려하여 금형 충진 및 부품 변형/스프링을 정확하게 예측할 수 있다. 시뮤필은 아바쿠스(Abaqus)의 후 변형 분석용 추가 기능인 시뮤워프(SimuWarp)에서도 사용되는 몰드플로우용 Nakamura-Ziabicki 모델(결정화 모델)을 제공한다.     PVT 모델링 PVT 거동의 정확한 모델링은 열 신장 및 수축으로 인한 잔류 변형률을 정확하게 예측하는 데에 중요하다. 잔류 변형은 잔류 응력과 변형을 유발한다. 시뮤필은 열가소성 수지와 열경화성 수지 모두에 대한 경화도의 함수로서 PVT 거동을 예측하기 위한 정교한 모델을 제공한다.     프레스 톤수 최적화 프레스 톤수는 제조에 매우 중요하고 자본 투자에 있어 비용을 유발하는 요소이다. 복잡한 재료 거동, 설계 반복 및 처리 전략은 필요한 공정 톤수에 큰 영향을 미친다. 시뮤필을 사용한 성형 시뮬레이션은 공정력을 신뢰할 수 있는 추정을 가능하게 하므로 자본 투자를 줄이는 데에 핵심 역할을 한다.     초기 Charge 성형 대부분의 시뮬레이션 접근 방식은 재료 흐름이 시작되기 전에 복잡한 초기 Charge 구성의 성형을 포착하지 못한다. 시뮤필을 사용하면 복잡한 초기 Charge 구성을 설명하기 위해 재료 성형 및 재료 흐름을 예측하는 순차적 접근 방식이 가능하다. 초기 Charge 구성을 고려하고 최적화하면 완전한 금형 충진과 공정 시간 단축이 보장된다.       ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02
PyMAPDL의 기초부터 활용까지
앤시스 워크벤치를 활용한 해석 성공사례   파이앤시스(PyAnsys)는 파이썬(Python)을 활용하여 앤시스(Ansys) 제품을 사용할 수 있는 라이브러리를 뜻한다. 파이앤시스는 구조해석과 관련한 PyMAPDL, PyMechanical과 전처리 및 후처리에 대한 PyDPF가 있다. 이와 같은 라이브러리를 이용하면 파이썬 내에 있는 패키지와 함께 다양한 작업이 가능해진다. 이번 호에서는 파이앤시스 중에서도 PyMAPDL에 대한 사용 방법과 활용 예시를 소개하고자 한다.   ■ 노은솔 태성에스엔이 구조 3팀 매니저로 구조해석 및 자동화 프로그램에 대한 기술 지원을 담당하고 있다. 이메일 | esnoh@tsne.co.kr 홈페이지 | www.tsne.co.kr   앤시스에서 구조, 열, 음향 등 다양한 해석에 사용되는 유한요소 솔버 중 하나인 Mechanical APDL은 명령어를 기반으로 구동된다. 복잡한 연산이나 매개변수 설정 및 자동화 기능이 가능하기 때문에 여전히 많이 사용되고 있다. 하지만 앤시스 워크벤치(Ansys Workbench)의 제한적인 기능을 활용할 경우, 추가적으로 APDL 명령어를 사용해야 한다. 말하자면 APDL 명령어로 여러 기능을 구현할 수 있지만, 넓은 범위에서 적용하기에는 한계가 있는 것이다. 예로 머신러닝이나 딥러닝과 관련한 라이브러리인 텐서플로(TensorFlow)나 케라스(Keras) 등은 APDL 명령어 내에서는 사용할 수 없으며, 파이썬과 APDL 연동에도 한계가 있다.  이 때 PyMAPDL 라이브러리를 사용하면 파이썬 내에서 APDL을 사용하기 때문에 활용도가 넓어진다. 이번 호에서는 PyMAPDL의 사용 방법과 활용 예시를 다뤄보고자 한다.    PyMAPDL 사용 방법 PyMAPDL은 파이썬에서 사용될 때 gRPC(Google Remote Procedure Call)를 기반으로 파이썬 명령어를 APDL 명령어로 변환하여 MAPDL 인스턴스(Instance)에 전송하고, 결과를 파이썬으로 다시 반환한다. 이러한 작업 과정 때문에 파이썬과 MAPDL 간 원활한 데이터 통신이 가능해지며, 다수의 MAPDL 인스턴스를 생성하여 다른 명령으로 동시 작업 또한 가능하다.   그림 1. PyMAPDL gRPC   먼저 PyMAPDL을 사용하기 위해서 앤시스 메커니컬(Ansys Mechanical)이 설치되어 있어야 하며, 관련 라이선스를 보유하고 있어야 한다. 현재 파이앤시스 홈페이지에 따르면 파이썬 3.8 이상 버전을 지원하고 있으며, gRPC 기반으로 사용하기 위해서 앤시스 2021 R1 이상을 권장한다. 파이썬과 앤시스 모두 설치되어 있는 환경이라면 추가적으로 PyMAPDL 라이브러리를 설치해야 한다. 터미널 창에 ‘pip install ansys-mapdl-core’ 한 줄의 입력으로 쉽게 설치되며, 버전을 따로 지정하지 않을 경우 최신 버전으로 설치된다. PyMAPDL은 <그림 2>와 같이 ‘launch_mapdl’ 함수를 호출하여 사용한다. 이는 Mechanical APDL Product Launcher를 실행하는 것과 유사하다. 해당 함수를 활용할 때 입력 가능한 주요 인자들을 입력하여 작업 폴더 위치나 파일 이름, 계산 방식 및 라이선스 등을 지정할 수 있다.    그림 2. PyMAPDL 실행 명령어   기존에 APDL에서 육면체 형상을 모델링하여 요소를 생성하는 과정은 <그림 3>과 같이 작성되고, 동일한 작업을 PyMAPDL로는 <그림 4>와 같이 구성할 수 있다. 작성된 APDL과 PyMAPDL 명령어를 비교하면 형태가 매우 유사한 것을 볼 수 있다. 이 때 PyMAPDL은 파이썬에서 두 가지 방식으로 사용된다. 첫 번째는 ‘run’ 명령어를 활용하여 APDL 명령어를 스트링(string)으로 입력해 직접 실행하는 방법이며, 두 번째는 파이썬 명령어로 변환해서 처리하는 방법이다.   그림 3. MAPDL 모델링 및 요소 생성 예시   그림 4. PyMAPDL 모델링 및 요소 생성 예시     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02
오픈AI CLIP 모델의 이해/코드 분석/개발/사용
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 생성형 AI의 멀티모달 딥러닝 기술 확산의 계기가 된 오픈AI(OpenAI)의 CLIP(Contrastive Language-Image Pre-Training, 2021) 코드 개발 과정을 분석하고, 사용하는 방법을 정리한다.    ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 이메일 | laputa99999@gmail.com 페이스북 | www.facebook.com/laputa999 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | http://www.facebook.com/groups/digestpodcast CLIP은 구글이 개발한 자연어 번역 목적의 트랜스포머 모델, 비전 데이터 변환에 사용되는 VAE(Variational Autoencoder) 개념을 사용하여 멀티모달 학습 방식을 구현하였다. 이번 호에서는 그 과정을 설명하고 파이토치로 직접 구현하는 과정을 보여준다. CLIP을 이용하면 유튜브, 넷플릭스와 같은 영상에서 자연어로 질의해 해당 장면을 효과적으로 검색할 수 있다. 참고로, CLIP에서는 트랜스포머가 핵심 컴포넌트로 사용되었다. CLIP과 같이 트랜스포머가 자연어 번역 이외에 멀티모달의 핵심 기술이 된 이유는 비정형 데이터를 연산 가능한 차원으로 수치화할 수 있는 임베딩 기술의 발전과 트랜스포머의 Key, Query, Value 입력을 통한 여러 학습 데이터 조합이 가능한 특징이 크게 작용했다.    그림 1. 멀티모달 시작을 알린 오픈AI의 CLIP 모델(Learning Transferable Visual Models From Natural Language Supervision, 2021)   트랜스포머와 VAE를 이용한 멀티모달 CLIP 네트워크를 좀 더 깊게 파헤쳐 보도록 한다. 앞서 설명된 트랜스포머, 임베딩과 관련된 개념에 익숙하다면, CLIP을 이해하고 구현하는 것이 그리 어렵지는 않을 것이다.    CLIP에 대한 이해 오픈AI에서 개발한 CLIP 모델은 공유 임베딩 공간 내에서 이미지 및 텍스트 형식을 통합하는 것을 목표로 했다. 이 개념은 기술과 함께 이미지와 텍스트를 넘어 다른 양식을 수용한다.(멀티모달) 예를 들어, 유튜브 등 비디오 애플리케이션 내에서 텍스트 검색 성능을 개선하기 위해 공통 임베딩 공간에서 비디오 및 텍스트 형식을 결합하여 모델을 학습시켰다. 사실, 임베딩 텐서를 잠재 공간(Latent Space)으로 이기종 데이터를 변환, 계산, 역변환할 수 있다는 아이디어는 VAE 기술, 구글의 트랜스포머 논문(2017)을 통해 개발자들 사이에 암시되어 있었다. 이를 실제로 시도해본 연구가 CLIP이다.  참고로, CLAP(Contrastive Language-Audio Pretraining)은 동일한 임베딩 공간 내에서 텍스트와 오디오 형식을 통합하는 또 다른 모델로, 오디오 애플리케이션 내에서 검색 기능을 개선하는 데 유용하다. CLIP은 다음과 같은 응용에 유용하다. 이미지 분류 및 검색 : CLIP은 이미지를 자연어 설명과 연결하여 이미지 분류 작업에 사용할 수 있다. 사용자가 텍스트 쿼리를 사용하여 이미지를 검색할 수 있는 보다 다양하고 유연한 이미지 검색 시스템을 허용한다. 콘텐츠 조정 : CLIP은 부적절하거나 유해한 콘텐츠를 식별하고 필터링하기 위해 이미지와 함께 제공되는 텍스트를 분석하여, 온라인 플랫폼의 콘텐츠를 조정하는 데 사용할 수 있다. 참고로, 메타 AI(Meta AI)는 최근 이미지, 텍스트, 오디오, 깊이, 열, IMU 데이터 등 6가지 양식에 걸쳐 공동 임베딩을 학습하는 이미지바인드(ImageBind)를 출시했다. 두 가지 모달리티를 수용하는 최초의 대규모 AI 모델인 CLIP은 이미지바인드 및 기타 다중 모달리티 AI 시스템을 이해하기 위한 전제 조건이다. CLIP은 배치 내에서 어떤 N×N(이미지, 텍스트) 쌍이 실제 일치하는지 예측하도록 설계되었다. CLIP은 이미지 인코더와 텍스트 인코더의 공동 학습을 통해 멀티모달 임베딩 공간을 만든다. CLIP 손실은 트랜스포머의 어텐션 모델을 사용하여, 학습 데이터 배치에서 N개 쌍에 대한 이미지와 텍스트 임베딩 간의 코사인 유사성을 최대화하는 것을 목표로 한다.  다음은 이를 설명하는 의사코드이다. 1. img_en = image_encoder(I)   # [n, d_i] 이미지 임베딩 인코딩을 통한 특징 추출  2. txtxt_emdn = textxt_emdncoder(T)    # [n, d_t] 텍스트 임베딩 인코딩을 통한 특징 추출 3. img_emd = l2_normalize(np.dot(img_en, W_i), axis=1)    # I×W 결합(조인트) 멀티모달 임베딩 텐서 계산 4. txt_emd = l2_normalize(np.dot(txtxt_emdn, W_t), axis=1)  # T×W 결합(조인트) 멀티모달 임베딩 텐서 계산 5. logits = np.dot(img_emd, txt_emd.T) * np.exp(t)   # I×T * E^t 함수를 이용한 [n, n]코사인 유사도 계산 6. labels = np.arange(n) 7. loss_i = cross_entropy_loss(logits, labels, axis=0)  # 이미지 참값 logits과 예측된 label간 손실 8. loss_t = cross_entropy_loss(logits, labels, axis=1)  # 텍스트 참값 logits과 예측된 label간 손실 9. loss = (loss_i + loss_t)/2   # 이미지, 텍스트 손실 평균값   실제 오픈AI 논문에는 <그림 2>와 같이 기술되어 있다.(동일하다.)   그림 2     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02
[포커스] 빌드스마트포럼 2024, Al와 메타버스의 시너지로 변화하는 AEC 탐구
빌딩스마트협회는 4월 16일 논현동 건설회관 대회의실에서 빌드스마트 포럼(buildSMART FORUM) 2024를 개최했다. 빌드스마트 포럼 2024에서는 ‘변화하는 AEC : 생성형 Al와 메타버스의 시너지’라는 주제 아래 최근 화제로 떠오르고 있는 생성형 AI와 메타버스가 AEC에서 어떻게 활용되고 있고, 앞으로는 어떻게 발전하며, 업계에서는 어떻게 대응해야 하는지 확인하는 자리를 가졌다. ■ 최경화 국장     이번 포럼에서는 카이스트 손훈 교수, DL이앤씨 이상영 담당, 카이스트 김영철 교수가 기조연설을 진행하였으며, 데이튼대학의 김남균 교수, 에스엘즈 정재헌 대표, 수민함디자인의 함수민 대표, 홍콩폴리텍대학 키이춘(KEE Yee Chun) 교수, 홍콩시립대 하오정(Hao Zheng) 교수 등이 국내외의 다양한 AI 및 메타버스, 그리고 스마트건설 사례와 가능성에 대하여 발표했다.  빌딩스마트협회 안대호 회장은 “다양한 조건을 고려하여 최적의 설계를 도출할 수 있는 생성 Al와 가상공간에서의 협업을 가능케 하는 메타버스 기술의 접목은 시간과 비용을 절감하면서도 혁신적으로 설계 및 시공 프로세스를 개선할 것이다. 이를 통해 우리 산업의 디지털 전환속도를 더욱 가속화하고 획기적인 변화를 만들어낼 수 있을 것으로 기대한다”면서, “이번 포럼이 AEC 산업 변화의 기폭제가 되기를 바란다”고 말했다.   콘퍼런스 주요 발표 소개  DL이앤씨 이상영 담당은 “DL은 2009년부터 BIM을 도입했고, 2017년부터는 BIM으로 건설관리 혁신을 위한 본격적인 노력을 시작했다. 공사관리, 원가관리, 설계관리, MEP 등 다양한 분야에서 건설을 혁신할 수 있는 BIM 시스템을 개발했고, 개발된 시스템을 현업과 프로젝트에 적용하고 있다”고 소개했다.  BIM 시스템을 개발함에 있어서 추구하는 원칙은 개발이 완료되면 즉시 현업에 적용하고 사용 가능한 현실적인 시스템이어야 한다는 것이다. 그렇게 하기 위해서는 내재화하여 만들어져야 하고, 비용 측면에서는 신기술임에도 기존 비용과 동등 이하로 책정되어야 하며, 프로세스 측면에서는 동등 이하의 시간이 소요되어야 한다. 이를 위해 BIM 조직을 갖추고, 비용 절감을 위한 자동화와 공급망을 구축하며, 중요 알고리즘의 기획을 내부 인력으로 자체적으로 수행하고 있다고 밝혔다.  또한 “이제부터는 DL이앤씨가 직접 만든 BIM과 스마트 기술을 내부에서만 활용하는 것이 아니라 활용 범위를 확장하여 건설사의 비즈니스 모델이 신축공사에 치중되어 있는 현실을 타파하고, 스마트 건설 서비스로 사업 영역을 확대하여 대한민국의 건설 기술을 한 단계 성장시키고 건설사의 새로운 수익 모델을 창출하는데 이바지해 나갈 것”이라고 밝혔다. 한국과학기술원 김영철 부교수는 최근 KAIST 스마트시티연구센터와 KAIST 도시설계연구실에서 인공지능을 도시 분석과 도시 설계에 접목하려는 시도의 연구 결과를 소개했다. 그리고, 새롭게 개발되고 발전하는 인공지능 기술은 도시 분석과 설계 분야에도 많은 변화를 줄 수 있어 효과적으로 활용하기 위해서는 적극적 고려가 필요하다고 밝혔다.  한국과학기술원 손훈 교수는 지난 30년간 스마트 센싱 기술 연구 개발, 현장 적용, 실용화 및 상용화를 수행하면서 개인적으로 취득한 경험 및 앞으로 스마트 센싱 기술의 상용화를 위해 노력해야 하는 부분에 대해서 소개했다. 에스엘즈 정재헌 대표는 AEC 분야에서 알고리즘의 단순연산율 넘어 ‘Al를 통해 무엇을 만들고 의미를 담을지에 대한 고민의 흔적을 소개했다. 첫 번째로 연산과 검측, 예즉 가능한 Al를 만드는 긴 여정을 소개하고, 두 번째로 연산 결과물의 자동생성 과정을 자체 개발한 GE/SE 알고리즘 사례, CPU와 GPU 병렬연산을 통한 BIM 자동생성 전략에 대해 소개했다. 이와 함께 Al로 생성된 결과물들을 시각화 및 AR 내에서 동작하는 방법을 통해 시공성과 현장성을 높이는 기술에 대해 발표했다.     빌딩스마트협회 정기총회 개최와 주요 사업 소개 빌딩스마트협회는 제27회 정기총회를 개최하고, 안대호 회장(나우동인건축사사무소 대표)을 연임하기로 의결했다.  빌딩스마트협회는 한국공항공사 ‘공항시설정보 통합관리시스템(KAC-BIM)’ 기반체계 구축용역(2021. 7~2024. 3), 인공지능 기반의 건축설계 자동화 기술개발(2021. 4~2025. 12), 광역단위 노후건축물 디지털 안전워치 기술개발(2022. 4~2025. 12) 등 연구 사업들을 진행하고 있으며, BIM AWARD, 콘퍼런스와 포럼, 교육 및 자격 사업 등을 진행하고 있다.      ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-05-02