• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "프로세스"에 대한 통합 검색 내용이 3,470개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
지멘스, 최적화된 제품의 빠른 출시 지원하는 NX 업데이트 발표
지멘스 디지털 인더스트리 소프트웨어는 지멘스 엑셀러레이터(Siemens Xcelerator) 포트폴리오의 하나이자 신규 기능으로 강화된 주력 제품 엔지니어링 소프트웨어인 NX의 최신 업데이트를 발표했다. 이를 통해 모든 산업 분야의 설계자와 제조업체가 보다 우수하고 최적화된 제품을 빠르게 시장에 출시할 수 있도록 지원하는 것이 지멘스의 목표다. NX X 소프트웨어는 업계에서 수년 동안 사용해 온 NX 소프트웨어와 동일한 제품으로 클라우드에서 제공되며, 제품 수명주기 관리(PLM)를 위한 팀센터(Teamcenter) 포트폴리오 기반 내장형 데이터 관리 기능으로 더욱 강화된 제품이다. 지멘스의 서비스형 클라우드 소프트웨어 인프라에 정보가 저장돼 더 높은 유연성, 확장성, 협업을 제공하는 NX를 활용할 수 있다. NX X는 강화된 클라우드 기반 제품 엔지니어링으로, 원활한 협업을 위한 안전한 데이터 관리와 함께 데스크톱 설치 또는 아마존 웹 서비스(AWS)를 통한 브라우저 스트리밍을 지원한다. 또한 팀센터 X(Teamcenter X) 소프트웨어가 NX에 빌트인돼 데이터 관리 기능을 강화해 사용자에게 향상된 유연성과 기본 협업 기능을 제공하고 IT 관리에 낭비되는 시간을 줄여준다. 또한 유연하고 확장 가능한 라이선스를 통해 고객이 NX 기본 기능 외 애드온(Add-on) 모듈과 고급 NX 기능에 액세스할 수 있는 탄력적이고 비용 효율적인 방법도 제공한다. 110개 이상의 제품을 사용할 수 있으므로 고객의 워크플로에 가장 적합한 애드온을 탐색해 프로젝트의 요구 사항에 따라 유연하게 맞춤화할 수 있다. NX X는 새로 발표된 젤 X(Zel X) 소프트웨어와 연동해 사용할 수 있다. NX와 동일한 아키텍처를 기반으로 하는 젤 X는 지멘스의 차세대 브라우저 기반 엔지니어링 앱으로, NX 등 기타 엑셀러레이터 솔루션과 통합돼 제조 공정과 현장 운영을 간소화한다.     NX 이머시브 익스플로러(NX Immersive Explorer)는 데스크톱과 가상 현실 모두에서 높은 사실감으로 설계 검토, 가상 커미셔닝, 이해관계자 승인에 게이밍 수준의 환경을 제공한다. 2024년 12월에 출시되는 NX 이머시브 익스플로러는 주요 HMD 하드웨어 옵션을 지원하며, 사용자는 상호 작용 가능한 몰입형 포토리얼리즘으로 설계 프로세스 초기에 귀중한 인사이트를 얻을 수 있어 실제 프로토타입 제작에 드는 비용을 절감할 수 있다. 전체 어셈블리 관점에서 특정 부품에 집중하고, 개별 구성 요소를 검토하고, 마크업과 메모를 추가해 설계 검토 결과를 문서화할 수 있는 기능을 통해 완전히 새로운 관점에서 설계 프로세스를 수행할 수 있다. 한편, 지멘스는 NX의 AI 지원 설계 도구로 프로세스를 개선하고 가속할 수 있다고 소개했다. 토폴로지 최적화, 퍼포먼스 프레딕터(Performance Predictor), 자이로이드 모델링을 비롯한 새로운 AI 지원 도구가 명령 예측, 선택 예측 등 기존 도구와 결합돼 효율성을 높인다. 퍼포먼스 프레딕터는 개별 부품의 재질 선택에 의한 구조적 해석 결과에 중점을 둔 AI 기반 설계 시뮬레이션 도구이다. 설계자의 설계 변경에 의한 실시간 해석 결과를 통해 설계를 검증해 비용이 많이 드는 오류를 사전에 제거함으로써 혁신 프로세스의 속도를 높일 수 있도록 지원한다. AI 기반 토폴로지 최적화, 새로운 자이로이드 격자 기능을 활용한 내부 채우기 설계 기능과 2023년 도입된 디자인 스페이스 익스플로러(Design Space Explorer) 기능을 결합하면 설계자는 필요에 따라 성능을 발휘하는 최적의 부품을 만들 수 있다. 더불어 경량화 연구를 수행하고 적절한 경우 적층 제조를 활용할 수 있다. 이외에도 지멘스는 ▲정밀한 공구 경로 제어를 제공해 최적화된 가공과 우수한 표면 마감을 지원하는 고급 홀메이킹(holemaking)을 비롯해 부품 제조 속도와 제어 극대화를 위한 NX CAM 및 NX 에디티브 매뉴팩처링(AM) ▲NX, 캐피탈(Capital), 익스페디션(Xpedition), 팀센터를 통합해 전자와 기구 설계 팀 간 원활한 데이터 흐름과 협업을 가능케 하는 Managed Environment for Electronics Design을 비롯해 전기, 반도체 산업을 위한 향상된 기능 ▲건축, 엔지니어링, 건설(AEC) 워크플로를 위한 단일 다분야 플랫폼을 지원하는 종합적인 건설 정보 모델링(BIM) 도구 세트를 제공하는 NX BIM 기능 등의 업데이트를 소개했다.
작성일 : 2024-07-15
[PLM/DX 베스트 프랙티스 컨퍼런스 2024] 발표자료 다운로드 안내
[PLM/DX 베스트 프랙티스 컨퍼런스 2024] 발표자료 다운로드 안내입니다. 올해 20회째를 맞은 ‘PLM/DX 베스트 프랙티스 컨퍼런스 2024(구 PLM 베스트 프랙티스 컨퍼런스’)’가 지난 6월 13일~14일까지 온라인으로 진행됐습니다. ‘DX를 위한 디지털 트윈, AI와 PLM’을 주제로 한 이번 PLM 컨퍼런스에서는 제조산업 전반의 혁신과 재도약을 위해 디지털 트윈과 AI 등 첨단 기술의 활용 방안을 모색하고, 디지털 전환(DX) 시대에 PLM의 새로운 가치를 발견할 수 있는 기회로 마련됐습니다. 이번 행사에 참여해 주신 모든 분들께 감사드립니다. [PLM/DX 컨퍼런스 2024 관련 기사]  한국산업지능화협회 PLM기술위원회 위원장인 KAIST 서효원 교수는 인사말에서 “과거에는 설계/제조 정보의 생성, 관리, 활용 등이 구조적이고 전형적인 방법에 의존해 왔다. 한편, 최근 생성형 AI 특히 GPT의 출현으로 인해 PLM의 역할이 재조명되고 있다”고 짚었다. GPT의 기반인 생성형 초거대 언어 모델(LLM) 등을 통하여 유연적이고 비정형적인 방법이 가능해지고, 자연어 기반의 대화형 인터페이스가 가능해져 설계/제조의 생산성을 높일 수 있다는 설명이다. 또한, 서효원 교수는 “LLM을 기반으로 설계/제조 현장의 핵심 이슈인 데이터의 연결, 하이퍼링크 통합 등의 자동화가 가능해지며, 이를 통해 과거 PLM 적용에 있어서 문제로 여겨졌던 부분을 해결할 수 있다는 기대가 커지고 있다”고 전했다. [포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2024, 제조산업의 디지털 전환 전략과 사례 소개 (1) [포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2024, 제조산업의 디지털 전환 전략과 사례 소개 (2) [아젠다] PLM/DX 베스트 프랙티스 컨퍼런스 2024 발표자료는 정보 제공에 동의한 자료만 제공됩니다. 아래 아젠다에 PDF 마크가 표시되어 있는 발표자료가 공개된 내용입니다.  [PLM/DX 베스트 프랙티스 컨퍼런스 2024] 유료결제완료 발표자료 요청 이번 컨퍼런스에 참여하지 않았던 분들은 유료 결제 후에 발표자료를 다운로드 받으시기 바랍니다. 다만 홈페이지 다운로드 용량 제한으로 인하여 전체 자료를 다운로드 할 수 있게 하는데 제약이 있어 첨부한 파일에는' PLM/DX 컨퍼런스 2024' 가이드 파일만 올려 두었습니다. 결제완료 후 메일(plm@cadgraphics.co.kr)로 연락주시면 대용량 추가 자료를 별도로 보내드립니다. 홈페이지에서 직접 결제하는데 문제가 있다면 당사로 연락주시기 바랍니다.   메일 제목 :  [PLM/DX 컨퍼런스 2024] 유료결제완료 발표자료 요청 내용 : 결제시 회원명 / 전화 / 이메일 메일 보낼 곳 : plm@cadgraphics.co.kr 문의 : PLM컨퍼런스사무국 (02-333-6900) [PLM/DX 베스트 프랙티스 컨퍼런스 2024]  아젠다 1일차 [개회사] 한국산업지능화협회 PLM 기술위원회 서효원 위원장(카이스트 교수)  [기조연설] Automotive Industry의 새로운 지평선에서 / HL만도 배홍용 CTO 개발 · 양산 Lifecycle 품질 관리의 발전 방향 / LG CNS SINGLEX 정현길 위원 LS 일렉트릭 디지털 스레드 적용 사례 및 PTC AI 혁신 전략 / PTC코리아 이봉기 상무  프로세스 산업에서의 Digital Twin 적용 사례 / 아비바코리아 강창훈 상무 PLM/DX/디지털 트윈 사례 / TYM (티와이엠) 김대용 CDO AI 및 Cloud 기술을 활용한 Teamcenter의 미래 PLM: 디지털 쓰레드의 역할 / 지멘스 디지털 인더스트리 소프트웨어 한석주 본부장 [기조연설] 모빌리티 혁명, UAM 현황과 미래 / 한국항공우주연구원 황창전 UAM연구부장 2일차 [격려사] 한국CDE학회 유병현 회장(한국과학기술연구원) [기조연설] AI를 품은 제조업의 서비스 혁신 / SK경영경제연구소 김지현 부사장 [기조연설] 다양한 산업에서 적용되는 Vision AI의 현재와 미래 / 씨이랩 이문규 책임리더  기업과 부서에서 3D 데이터 활용을 통한 3D 데이터 공유 및 디지털화 실현 / 아이지피넷 윤정두 차장 MULTI-CAD 환경에서의 협업방안 / 다쏘시스템코리아 에노비아 브랜드 세일즈 부문 정유선 대표 사례를 통해 알아보는 데이터 플랫폼 구축을 통한 비용 절감 및 비즈니스 성장 실현 방안 / 스노우플레이크 박경호 영업대표 디지털 트윈을 위한 지능형 경량화/최적화 모델 생성 방안 / 팀솔루션 서경진 상무 생성형 AI 동향과 제조엔지니어링 적용 방법 / 연세대학교 송경우 교수
작성일 : 2024-07-11
오토데스크 웨비나 | 플랜트 BIM 설계의 모든 것: 실제 사례 중심으로 배우는 실무 지침(7/10)
  실제 적용사례를 통해 알아보는 전공종 플랜트 BIM 설계 프로세스 글로벌 경기 침체의 영향으로 국내 반도체 설비 투자가 예상보다 더디게 진행되고 있습니다. 하이테크 플랜트 EPC사 및 엔지니어링 협력사에서는 수익성 개선과 비용 절감이라는 도전 과제를 마주하고 있습니다.  또한, 친환경 에너지에 대한 수요 증가에 따라 2차 전지 제조 공장 등 산업용 플랜트 프로젝트가 증가하는 추세로, 잦은 설계 변경과 짧은 공사 기간에 대응이 유리한 Revit 기반의 전공종 BIM 설계 전환에 대한 니즈도 계속해서 늘어나고 있습니다. 즉, 기존 인력과 IT 자원의 활용을 최대화하면서 동시에 향후 경기 회복 시 빠르게 프로젝트를 수주하고 설계를 진행할 수 있도록 BIM 전환에도 대비하여야 합니다. 본 웨비나에서는, AEC Collection에 포함된 다양한 제품을 활용하여, 플랜트 엔지니어링사에서 추가적인 3D 소프트웨어 비용을 절감하면서도 전공종 플랜트 Full BIM을 구현할 수 있는 방안을 제시합니다. 또한 여러 공종간의 협업을 효율화하여 공사 기간을 단축하고 인건비를 절감할 수 있는 다양한 방안을 함께 소개합니다. 지금 등록하세요! 자세히 보기         [웨비나 주요 아젠다] 플랜트 엔지니어링의 각 공종 단계별 도전과제와 해결 방안 플랜트 분야 전공종 BIM 도입 사례: 하이테크엔지니어링 플랜트 시공 BIM 프로세스 [웨비나 참석 대상] 플랜트 프로젝트에 유관된 MEP 엔지니어링 설계 실무자 플랜트 엔지니어링 프로젝트 매니저 배관 3D 설계를 Revit과 연계하여 다공종 협업을 효율적으로 구축하고자 하는 EPC 담당자 AEC Collection 활용도를 높이고자 하는 플랜트 엔지니어링/MEP 분야 사용자   *라이브 세션 참석이 어렵더라도 걱정하지 마세요! 웨비나를 등록하신 모든 분께는 세션 레코딩을 보내 드립니다. 지금 바로 등록하세요.        발표자 소개     조준연 부장 | Autodesk AEC Solution Engineer 카타르 국립박물관 등 시공BIM 실무 담당     이경미 이사 | SCK SCK AEC 사업부 (전) 포스코엔지니어링 화공 BIM Manager     조수민 | 하이테크엔지니어링 플랜트 건축분야 하이테크엔지니어링 BIM 실무 담당    
작성일 : 2024-07-09
다쏘시스템, 애경산업에 3D익스피리언스 플랫폼 기반 PLM 솔루션 구축
다쏘시스템이 애경산업과 협력하여 3D익스피리언스 플랫폼 기반 PLM(제품 수명주기 관리) 시스템을 구축한다고 밝혔다.  애경산업은 1954년 설립 이래 지속적인 기술 혁신을 통한 신기술 기반의 고부가가치 제품 개발을 통해 뷰티와 라이프 케어의 혁신을 주도하는 생활뷰티 기업이다. 현재 국내뿐 아니라 글로벌 시장으로 확대를 가속화하며 사업 성장성을 지속적으로 강화하고 있다. 이번 다쏘시스템과의 PLM 시스템 구축은 디지털 시스템 강화를 통해 제품 개발 과정의 효율성을 높이고자 하는 애경산업과 PLM을 넘어 디지털 트랜스포메이션을 지원하는 플랫폼을 지향하고, 엔드-투-엔드 비즈니스 실행과 데이터 협업을 위한 토털 플랫폼 솔루션을 제공하는 다쏘시스템의 시너지가 결합하며 성사됐다. 다쏘시스템은 “애경산업은 로레알, 클라랑스, P&G 등 다수 글로벌 기업들 및 동서식품, 삼성웰스토리, 롯데중앙연구소 등 국내기업 협업을 통해 축적한 다쏘시스템의 노하우와 기술력, 소비재 산업에 대한 전문성으로 다쏘시스템을 택했다”고 밝혔다. 이번 PLM 구축을 통해 애경산업은 ▲ NPD(New Product Development) 프로세스 및 프로젝트 관리 디지털화 ▲ 마케팅 업무 및 표시사항 관리 디지털화 ▲ 제품 정보, 포뮬레이션 통합 관리 및 연계성 확보 ▲ PLM 플랫폼을 통한 표준 업무지원 환경 마련 등을 이룰 전망이다. 다쏘시스템의 단일 플랫폼 기반으로 고도화된 PLM은 전사적인 디지털 트랜스포메이션을 가속화하고 빠르게 변화하는 소비자 트렌드에 대한 신속한 대응이 중요한 FMCG(Fast Moving Consumer Goods) 기업의 신제품 기획부터 상품 출시까지의 협업 중심 프로세스를 시스템화해 개선된 업무 효율성을 제공한다. 앞으로 애경산업은 구축될 PLM을 바탕으로 제품 정보와 개발 프로젝트 정보 간의 연계를 통한 양방향 추적성을 확보함으로써 제품 카테고리 기반으로 제품 및 프로젝트 정보를 구조화하고 정보 간의 연계성을 확보할 계획이다. 또한 개발 프로젝트에 표준 템플릿과 대시보드를 활용함으로써 표준화된 제품개발 프로세스 기반의 업무 수행을 가능케하고 개발 일정 관리와 협업에 효율성 향상을 기대하고 있다. 아울러 제품 개발 프로젝트의 실시간 모니터링을 통해서 이슈를 파악하고 빠른 의사결정을 지원한다. 원재료 관리와 제품배합 부분의 혁신성 증대도 주요한 목표 중 하나이다. 애경산업은 자재 유형별 통합 자재 마스터 구축을 통한 원재료 라이브러리를 활용하고 원재료에 대한 품질 이슈 발생 시 원재료 사용 정보에 대한 추적성을 확보할 계획이다. 뿐만 아니라 디지털화된 원재료 라이브러리 및 BOM 작성 활용에 의해 배합 BOM 구성 간소화가 가능해진다. 실험 배합비 및 양산 배합비 이력에 대한 관리와 활용도가 증대되어 제품 개발 단계별 배합비 및 배합 실험 데이터가 축적되고 시행착오를 줄이면서 응용제품에 대한 개발이 용이해진다. 소비재 산업에서 특히 중요한 표시기재사항에 대한 프로세스 개선도 이루어진다. 표시기재사항의 작성과 디자인, 검토 작업을 디지털화하여 빠르고 정확한 디자인 결과 검토 및 관리가 가능해진다. 기재 오류 사항을 발견하는 작업을 시스템화하여 오류와 비용 손실을 최소화한다.     애경산업 관계자는 “애경산업의 디지털 트랜스포메이션을 가속화하고, 부서 간 협업을 활성화하며, 제품개발 리드타임을 단축해 시장에서의 성과를 향상시킬 것으로 기대된다”면서, “애경산업을 사랑하는 고객들에게 최상의 경험을 전하기 위해 노력할 것”이라고 말했다. 다쏘시스템코리아의 정운성 대표이사는 “다년간 다수의 글로벌 소비재 기업들과 협업해온 다쏘시스템과 글로벌 생활뷰티 기업 애경산업의 만남을 통해 단일 플랫폼 기반 PLM으로 애경산업의 혁신적이고 시장 선도적인 제품 개발을 지원하게 되어 매우 의미있게 생각한다”라며, “다쏘시스템은 앞으로도 화장품, 생활용품, 식품 등의 소비재 산업에 대한 전문성과 노하우를 바탕으로 K-컬쳐 기업이 글로벌 경쟁력을 강화할 수 있도록 디지털 트렌스포메이션을 돕는 든든한 지원군으로 최선을 다할 것”이라고 말했다.
작성일 : 2024-07-08
지멘스, 제조 운영 관리 소프트웨어 옵센터(Opcenter) X로 제조 클라우드 지원
지멘스 디지털 인더스트리 소프트웨어(Siemens Digital Industries Software)는 보다 원활한 액세스가 가능한 제조기업의 제조 운영 관리를 위한 소프트웨어인 Opcenter(옵센터) X 소프트웨어를 발표했다. Siemens Xcelerator 포트폴리오의 일부인 이 Opcenter X는 제조 실행 시스템(MES), 스케줄링, 품질 및 분석 기능을 클라우드 기반으로 모듈형 서비스로 제공하여 신속하게 현장에 구축 가능한 것이 특징이다. 특히 부품 및 적층 제조(3D프린팅)의 제조 업체에서 비교적 쉽고 빠르게 제조 라인에서 디지털 제조로의 전환이 용이하다. 부품 제조 기업에서 디지털 제조로 전환되면, 엔지니어링 방식이 전환돼 경영의 민첩성을 높이고 경쟁 우위를 확보하며, 고객의 요구 사항에 적합한 제조 운영 환경 구축이 가능하다는 것이 지멘스의 설명이다.  지멘스 디지털 인더스트리 소프트웨어의 디지털 제조 소프트웨어 부문 수석 부사장 즈비 포이어(Zvi Feuer)는 "제조 기업에서 클라우드 기반 디지털 전환은 제품 및 프로세스 복잡성, 혁신적인 신기술, 공급망 변동성, 이익 축소를 관리하는 데 필수 요소이다. 급변하는 제조 환경에서 직면한 문제를 신속하게 해결해야 하는 기업들이 유연하지 않은 구축형 솔루션을 도입하는 것은 오히려 기업의 성장을 방해한다. Opcenter X는 적은 시간, 비용, 리소스로 제조 운영 관리(MOM) 소프트웨어를 활용할 수 있으며, 모듈형 서비스 제공으로 기업의 성장에 발맞춰 점진적인 디지털 전환이 가능하다"고 말했다. 멕시코 에스코베도에 본사를 둔 건축용 도어 제품 전문 설계 및 제조업체인 WKS 도어 시스템(WKS Door Systems)은 생산 주문 프로세스의 복잡도를 해소하고 실시간으로 공정 진행을 모니터링하기 위해 Opcenter X를 도입했다. Opcenter X를 도입한 WKS 도어시스템은 기존 8시간 이상이 소요되던 생산 일정 수립 프로세스를 30분으로 단축하는 93% 프로세스 개선 효과를 볼 수 있었다.  WKS 도어 시스템의 최고 운영 책임자(COO)인 에두아르도 자카리아스(Eduardo Zacarias)는 “Siemens Xcelerator 포트폴리오의 일부인 Opcenter X를 도입한 결과 놀라운 성과를 확인할 수 있었다. 기본적인 솔루션의 기능 외에도 제조 데이터로부터 가치 있는 통찰력을 제공해 구체적인 미래를 구성하는 데에 도움이 됐다"고 말했다. ABI 리서치(ABI Research)의 산업 분석가인 제임스 프레스트우드(James Prestwood)는 "제조 운영 관리(MOM) 소프트웨어는 모듈식 네이티브 클라우드 기반 아키텍처로 진화하고 있다. 이런 변화는 소규모로 사업을 추진하는 기업들도 구축이 가능하기 때문에 민첩하고 혁신적인 시장 리더가 될 수 있다"고 말했다.  
작성일 : 2024-07-06
지멘스, 설계, 검증 및 제조를 위한 통합 콕핏 솔루션 '이노베이터3D IC' 출시
  지멘스 디지털 인더스트리 소프트웨어, 지멘스 EDA 사업부는 진보된 최신 반도체 패키징 2.5D 및 3D 기술과 기판을 사용하여 ASIC 및 칩렛의 계획 및 이기종 통합을 위한 빠르고 예측 가능한 경로를 제공하는 소프트웨어인 이노베이터3D IC (Innovator3D IC)를 발표했다.  지멘스의 Innovator3D IC는 설계 계획, 프로토타이핑 및 예측 분석을 위한 통합 데이터 모델을 갖춘 전체 반도체 패키지 어셈블리의 디지털 트윈을 구축하기 위한 통합 콕핏(consolidated cockpit)을 제공한다. 이 콕핏은 물리적 설계, 다중 물리 분석, 기구 설계, 테스트, 사인오프, 제조 출시까지 모든 과정을 지원한다. 지멘스의 Innovator3D IC는 전력과 신호, 열, 기계적 응력 분석 도구를 통합함으로써 세부 설계 구현 전에 문제를 식별, 방지, 해결하는 동시에 신속한 '가정(what-if)' 탐색을 가능하게 한다. 이러한 전환적 접근 방식은 비용과 시간이 많이 소요되는 다운스트림 재작업이나 최적이 아닌 결과를 방지할 수 있다. 지멘스 디지털 인더스트리 소프트웨어의 AJ 인코르바이아(AJ Incorvaia)전자 보드 시스템(Electronic Board Systems) 부문 수석 부사장은 "지멘스는 이미 지멘스 엑셀러레이터의 일부로 가장 포괄적인 반도체 패키징 관련 기술 포트폴리오를 보유하고 있었다"라고 말하며, "이러한 기술을 Innovator3D IC와 결합함으로써 고객은 무어(Moore) 이상을 실현할 수 있다"라고 말했다. Innovator3D IC는 지멘스의 Aprisa 소프트웨어 디지털 IC 배치 및 경로 기술, XpeditionPackage Designer 소프트웨어, Calibre 3DThermal 소프트웨어, 기구 설계용 NX™ 소프트웨어, Tessent 테스트 소프트웨어, 인터칩렛 DRC, LVS 및 테이프아웃 사인오프용 Calibre 3DSTACK 소프트웨어를 사용하여 ASIC, 칩렛 및 인터포저(Interposer) 구현을 지원한다. Innovator3D IC는 계층적 디바이스 계획 방식을 사용하여 수백만 개의 핀이 포함된 고급 2.5D/3D 통합 설계의 엄청난 복잡성을 처리한다. 설계는 정교함과 구현 방법을 제어하는 속성을 가진 기하학적으로 분할된 영역으로 표현된다. 이를 통해 중요한 업데이트를 신속하게 구현하는 동시에 특정 영역에 분석 기법을 일치시켜 실행 시간이 지나치게 길어지는 것을 방지할 수 있다. 계층적 인터페이스 배선 경로 계획은 칩렛 인터페이스와 핀 할당을 더욱 최적화한다. Innovator3D IC는 산업용 소프트웨어인 지멘스 엑셀러레이터 포트폴리오와 통합되어 있지만 개방형 아키텍처를 통해 타사 포인트 솔루션과의 통합도 지원한다. Innovator3D IC의 핵심 요소는 3Dblox, LEF/DEF, Oasis 및 인터페이스 IP 프로토콜(예: UCIe 및 BoW)과 같은 산업 표준 형식을 지원한다. ‘Open Compute Projects Chiplet Design Exchange’ 워킹 그룹(OCP CDX)에 적극적으로 참여하여 새로운 상용 칩렛 에코시스템에서 제공할 표준화된 칩렛 모델을 직접 사용할 수 있다. Innovator3D IC는 2.5D 및 3D 통합에 국한되지 않고 인터포저(유기, 실리콘 또는 유리), ABF 빌드업, RDL 기반의 칩 퍼스트 또는 라스트 등 모든 선도적이고 새로운 반도체 통합 방법론과 플랫폼을 계획하고 프로토타입을 제작할 수 있으며, ‘Deca Technologies’ 회사의 적응형 패터닝 프로세스(adaptive patterning process)에 대한 지원도 포함한다. 또한 패널 레벨 패키징(PLP), 임베디드 또는 레이즈드 실리콘 브리지, 시스템 인 패키지(SiP) 및 모듈에 대한 인증도 받았다.   Innovator3D IC 솔루션은 IMEC가 개발한 시스템 기술 공동 최적화(STCO) 방법론 프로세스를 기반으로 설계되었으며 프로토타이핑 및 계획, 설계, 승인/제조 핸드오프 전반에 걸쳐 활용되며 종합적인 검증 및 신뢰성 평가로 마무리된다. 지멘스는 5백만 개 이상의 핀 설계에서 최적의 용량과 성능을 달성하기 위해 광범위한 멀티스레딩 및 멀티코어 기능을 사용하는 차세대 전자 시스템 설계(NGESD) AI 기반 사용자 경험(UX) 기술을 사용하여 Innovator3D IC를 개발했다. 인텔 파운드리의 석 리(Suk Lee) 에코시스템 기술실(Ecosystem Technology Office) 부사장 겸 GM은 "EMIB와 같은 고급 이기종 통합 플랫폼의 경우 예측 분석 기능을 갖춘 통합 플로어플래닝 및 프로토타이핑 콕핏이 필수적이다"라고 말하며, "지멘스 EDA와의 협력을 통해 우리는 Innovator3D IC를 고급 통합 플랫폼의 중요한 설계 기술 구성 요소로 보고 있다"라고 말했다. Innovator3D IC는 2024년 후반에 출시될 예정이다. 지멘스의 Innovator3D IC 소프트웨어에 대한 자세한 내용은 홈페이지에서 확인할 수 있다.
작성일 : 2024-07-06
미래 공장을 위한 스마트 기계 르네상스
디지털 기반의 새로운 생산 환경과 제조 혁신   제조산업을 둘러싼 환경의 변화와 과제에 대응할 필요성이 높아지는 가운데, 기술의 발전이 제조업계에 새로운 기회를 제공하고 있다. 제조산업의 혁신은 제조 생산기계와 설비를 포함한 생산 과정의 전체 수명주기를 디지털화하는 것을 필요로 한다.    ■ 오병준 지멘스 디지털 인더스트리 소프트웨어 코리아의 한국지사장이다. SAS 코리아 대표이사를 지냈으며 오라클 코리아, 테라데이터 코리아, IBM 코리아 임원으로 재직하면서 엔지니어링, 영업, 채널 관리, 마케팅 등 다양한 관련 분야 전문성을 보유하고 있다. 홈페이지 | www.sw.siemens.com/ko-KR   그림 1. 미래 공장을 위한 스마트 기계 르네상스(이미지 출처 : 지멘스)   오늘날 기계 제조업체들은 불안정한 시장 환경에 직면하고 있으며, 차세대 제품 개발을 위해 새로운 접근 방식을 채택해야 하는 압박을 받고 있다. 예상대로 품질, 비용, 성능에 대한 부담은 여전히 존재한다. 이 가운데 지속가능성에 대한 요구사항이 이제 화두로 떠오르고 있다. 핵심은 에너지 사용량 감소, 탄소 배출 절감, 폐기물 최소화에 초점이 맞춰져 있다.  이러한 글로벌 트렌드가 전 세계 제조업체에 영향을 미치고 있으며, 정치 사회적 변화가 비즈니스 모델의 변화를 이끌고 있다. 이는 리쇼어링, 서비스화, 신규 시장 진입 등 비즈니스 모델의 변화로 이어지고 있다. 제조업체들은 기존 영역에서 인접 시장이나 새로운 시장으로 이동하면서 신흥 영역에서 기회를 포착하고 있다. 일례로, 제지기계 제조업체들은 전기차 수요의 급증을 충족하기 위해 배터리 기계 제조로 사업을 확장하고 있으며, 유리 산업의 기계 제조업체들도 마찬가지다. 한편, 기계 제조와 제조 운영 측면에서 인력부족 현상은 자동화에 대한 필요성을 증가시키고 있다. 미래 공장은 이제 지속가능성, 유연성, 미래 인력의 패러다임 중심으로 개발되고 있다. 산업계가 해결해야 할 많은 과제 속에서 기술의 발전은 제조업체에 번영의 기회를 제공하고 있다. 이는 디지털화로부터 생성된 인텔리전스와 풍부한 데이터에 의해 가능해졌다. 또한 디지털 도구, 시스템, IoT(사물인터넷) 데이터를 통합해 디자인, 엔지니어링, 생산 및 서비스 전반에 걸쳐 이전에 격리되었던 정보의 연결을 가능하게 하고 있다.    그림 2. 디지털화를 통해 필요할 때, 필요한 곳에서 중요한 데이터에 액세스할 수 있게 됐다.(이미지 출처 : 게티이미지/Cravetiger)   제조업체는 디지털화를 통해 자동화를 넘어서 예측 가능하고 적응적인 생산 환경으로 나아갈 수 있다. 적응형 제조(adaptive manufacturing)는 시장과 고객 요구사항이 변화함에 따라 생산을 손쉽게 전환할 수 있는 유연성을 제공한다. 더욱이, 이는 공정 시스템을 간소화해 제조업체가 동일한 인력으로 더 많은 일을 할 수 있게 한다. 이러한 이점 때문에 국내에서도 기계 제조의 디지털화를 촉진하기 위한 다양한 노력이 진행되고 있다. 최근 산업통상자원부는 ‘AI 자율제조 전략 1.0’을 발표하면서, 5년 동안 1조 원 이상을 R&D에 투자해 기계 분야를 포함한 핵심 제조업의 디지털 전환을 지원함으로써 자율제조 보급률을 30% 이상 높이고 제조업 생산성을 20% 이상 향상시킬 것이라고 발표했다. 또한 경상남도는 ‘기계·방산 제조분야 디지털전환(DX) 지원센터 구축과 운영사업’을 추진해 기술 지원과 인력 양성 등을 포함한 디지털 전환 생태계를 확장하고 지속 가능한 미래를 선도할 것이라고 발표했다. 디지털화는 보다 유연한 프로세스를 만들고, 여러 엔지니어링과 생산 분야에 걸쳐 중요한 디지털 데이터를 활용함으로써 제조 리스크를 줄일 수 있다. 이전에 사일로(silo)화되어 있던 다양한 분야의 데이터를 통합하기 위해서는 기계 설계, 시뮬레이션, 공장 자동화, 제품 수명주기 관리(PLM)에 대한 깊은 이해를 바탕으로 한 솔루션이 필요하다.   디지털화의 핵심, 디지털 트윈 제조업의 혁신은 제조 생산기계와 설비를 포함한 생산 과정의 전체 수명주기를 디지털화하는 것을 필요로 한다. 이는 설계 단계에서 생산 장비의 디지털 트윈을 생성함으로써 시작된다. 디지털 트윈은 설계 프로세스 전반에 걸쳐 기계 역학, 소프트웨어, 전기, 자동화 시스템을 아우르는 다분야 엔지니어링을 기반으로 개발된다. 이러한 디지털 트윈은 가상 프로토타이핑에서 설계 탐색과 평가에 사용된다. 생산 장비의 배치가 준비되면 디지털 트윈은 생산 설비가 실제로 설치되기 전에 가상의 커미셔닝(commissioning)을 가능하게 하고, 장비에 대한 사전 운영자 교육을 제공해 배치에 필요한 시간과 위험을 크게 줄일 수 있다.   그림 3. 디지털 트윈은 초기에 설계 탐색과 가상 프로토타이핑에 사용되며, 설치 전 가상 커미셔닝에도 활용돼 운영 데이터로 실제와 디지털 사이의 루프를 연결할 수 있다.(이미지 출처 : 지멘스)     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-07-04
고급 복합재 후변형 시뮬레이션을 위한 시뮤워프
시뮤텐스 소프트웨어를 활용한 복합소재 해석 (4)   시뮤워프(SimuWarp)는 아바쿠스/CAE(Abaqus/CAE)의 플러그인 형태로 제공되어 후변형 시뮬레이션을 위한 자동화된 모델 설정을 제공한다. 이를 통해 시뮬레이션 작업 흐름을 촉진하고 속도를 높이며 모델의 모든 관련 측면이 올바르게 설정되도록 보장한다.   ■ 자료 제공 : 씨투이에스코리아, www.c2eskorea.com   정확한 재료 모델링은 정교한 복합재 후변형 시뮬레이션의 핵심이다. 시뮤워프에는 광범위한 재료 모델이 포함되어 있어, 열가소성 및 열경화성 재료의 안정적인 후변형 예측에 필수적인 모든 재료 특성을 고려할 수 있다.     시뮤워프의 주요 기능 후변형(구성 요소 및 어셈블리) 예측           후변형은 폴리머의 온도나 형태 변화로 인한 수축 변형으로 인해 발생된다. 적용된 열 경계 조건에 따라 두께 방향의 응력 구배로 인해 부품 모양이 변형된다. 복합재를 사용할 때 섬유의 분포와 방향은 응력 구배의 추가적인 원인이다. 결과적인 응력 상태를 계산하면 해당 부품 변형을 예측하고 규정된 공차가 충족되는지 확인할 수 있다. 후변형 구성요소가 더 큰 어셈블리의 일부인 경우, 장착 후 개별 구성요소와 연결된 부품의 변형이 발생한다. 이러한 변형은 비용이 많이 드는 실험을 수행할 필요 없이 어셈블리를 시뮬레이션 모델에 통합하여 예측할 수 있다.   후변형 최적화     후변형 시뮬레이션에는 부품 및 프로세스 설계 중에 정의된 여러 측면이 통합되어 있다. 따라서 이러한 설계 변수와 관련하여 결과 부품 형상의 민감도를 결정하는 데 활용될 수 있다. 무엇보다도 이를 통해 변형을 최소화하거나 부품 모양을 의도적으로 조정할 수 있다. 후자는 부품의 목표 적용에 유리한 특정 잔류 응력 상태를 유발하는 데 사용될 수 있다.   열운동 분석     가열 및 냉각 공정에 대한 정확한 분석은 공정으로 인한 잔류 변형을 예측하는 데 필수이다. 시뮤워프는 온도 분포를 정확하게 모델링하고 가교 결합(열 경화성) 또는 결정화(열 가소성)로 인한 수축 변형을 유도하는 정교한 모델을 포함하고 있다. 이 분석은 완전한 기능을 갖춘 변형 시뮬레이션의 일부로 수행되거나 독립형(예 : 냉각 시스템 설계에 대한 빠른 평가)으로 수행될 수 있다.   구조 성능 평가     공정으로 인한 잔류 응력을 예측하면 부품의 예상 성능을 더 잘 예측할 수 있다. 예를 들어 중요한 측면은 피로 또는 강도가 될 수 있다. 시뮤체인(SimuChain)을 사용하면 변형 시뮬레이션 결과를 다른 수치 모델로 전송할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-07-04
혼합 오더 메시 커브
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (10)   이번 호에서는 CFD에 유한요소법을 활용해 더 적은 요소 수로 해석 정확도를 높일 수 있는 곡선형 혼합 오더 메시(Mixed Order Mesh)를 생성하는 방법을 살펴본다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   High-Order 메시 커브는 전산유체역학(CFD) 솔버 커뮤니티에서 유한요소법(FEM)을 활용하는 사람들에게 큰 도움이 될 새로운 기술이다. 유한요소기법은 유한 체적 및 유한 미분 방법과 같은 기존 CFD 방법보다 적은 요소 수로 정확도를 높인다. 선형 요소의 가장자리, 면, 내부에 버텍스(새로운 자유도)를 추가로 도입하여 정확도를 높일 수 있다. 곡선 지오메트리에 인접한 요소의 경우 이러한 새로운 자유도가 지오메트리에 위치해야 하므로 원래 선형 요소의 모양이 변경된다. 메시가 점성이 있는 경계를 향해 요소들이 모여 있는 경우 이 과정은 더 어렵다. 또한 내부 요소의 가장자리와 면은 요소 반전을 방지하기 위해 경계 요소 곡률에 따라 곡선을 만들어야 한다. 케이던스 피델리티 포인트와이즈(Cadence Fidelity Pointwise)에서 사용하는 WCN 스무딩에 대한 연구를 통해 혼합 오더 메시(Mixed Order Mesh)를 사용하여 지오메트리 곡률을 해결할 수 있다. 요소는 곡률이 심한 지오메트리 근처에서는 최대 4차 다항식(quartic)까지 올라갈 수 있으며, 곡률이 심한 지오메트리에서 멀리 떨어진 곳에서는 선형을 유지한다. 메시 평활화 방법은 비용 함수를 사용하여 원하는 요소 모양과 양의 자코비안을 각 요소에 적용한다. 요소가 지오메트리 근처에서 곡선이 될 때 점성 메시 간격이 유지된다. 결과는 복잡한 3D 구성에 대해 표시된다.   지오메트리 선형 메시를 올리고 표면 곡률에 따라 곡선을 그리려면 지오메트리에 쉽게 액세스하고 강력한 초기화 및 평활화 프로세스가 필요하다. 초기화 중에 고차 노드가 지오메트리에 정확하게 배치되고 메시 평활화 중에 표면에 유지되도록 하려면, 지오메트리에 대한 표면 검색작업이 필요하다. 엘리베이트 및 스무딩을 위한 지오메트리 액세스는 메시링크 API¹) 를 통해 제공된다. 메시링크는 지오메트리 및 메시 데이터를 관리하기 위한 라이브러리로, 메시 생성 및 메시 적응 애플리케이션과 관련된 함수를 쿼리할 수 있는 간단한 인터페이스를 제공한다.   혼합 오더 커브 프로세스 혼합 오더 메시 커브는 유효한 선형 메시로 시작하는 프로세스를 사용한다. 프로세스의 주요 구성 요소는 <그림 1>의 순서도에 나와 있다. 이 백서 전체에서 요소의 차수 또는 다항식 차수는 선형, 이차, 입방체와 같은 Q1~4 명명법을 사용하여 표시되며, 이차 요소는 각각 Q1, Q2, Q3, Q4이다. 고차 요소는 라그랑지안 기저 함수를 사용하여 요소의 가장자리, 면, 내부에 고차 노드를 고르게 분포시킨다. 이러한 물리적 노드는 하위 요소와 요소 모양을 적용하기 위해 WCN 방식에 필수이다.   그림 1. 혼합 오더 메시 커브 프로세스의 순서도에는 가장 안쪽 고도 루프를 통과하는 여러 경로가 포함되어 있다. 진입 지점에 따라 색상으로 구분된 화살표를 따라가게 된다.   고도 프로세스는 입력된 선형 메시에서 시작하여 사용자가 요청한 최종 차수인 Qfinal에 도달할 때까지 최대 차수인 Qmax를 한번에 하나씩 증가시킨다. 각 차수 패스동안 먼저 표면 요소와 볼륨 요소의 편차를 테스트한다. 고차 점이 지오메트리에서 너무 많이 벗어나는 서피스 요소(허용 오차 기준)는 높이가 올라가고, 그 섭동이 볼륨에 퍼진다. 마지막으로, 요소 반전을 수정하고 엘리베이션 프로세스에서 생성된 요소의 품질을 개선하기 위해 WCN 메시 스무딩이 수행된다. 각 스무딩 반복 후 각 볼륨 요소의 편차를 다시 테스트하여 추가 높이 조정이 필요한지 여부를 결정한다. 이 프로세스는 모든 요소가 편차 기준을 충족하거나 최종 정도에 도달할 때까지 반복되며, 메시 평활화 프로세스가 수렴한다. 품질 제약 조건은 인접한 요소가 한 차수 이상 차이가 나지 않도록 보장한다. 최종 출력은 같은 차수의 요소 간에 공유되는 고차 노드가 포함된 메시이다. 그러나 차수가 다른 요소 간에 공유되는 면과 가장자리는 동일한 인터페이스 노드를 공유하지 않다. 따라서 내보내기 전에 이러한 인터페이스에서 형상 적합성을 적용한다.   요소 편차 메트릭 편차 메트릭(Deviation Metric)은 엘리먼트 엘리베이션 프로세스 및 메시 스무딩 프로세스의 일부로, 엘리먼트 엘리베이션 프로세스를 제어한다. 편차 메트릭은 곡선 경계 또는 다른 볼륨 요소에 인접한 요소의 가장자리와 면에 있는 테스트 노드의 변위를 측정한다. 이러한 테스트 노드의 변위가 임계값 거리를 초과하면 해당 요소에 상승 플래그가 지정된다. 높이를 트리거하는 임계값은 요소 내의 최소 선형 에지 길이에 입력 편차 임계값 파라미터(일반적으로 1~5%)를 곱한 값이다.   서피스 요소 편차 곡선 경계에 인접한 요소의 경우 편차 메트릭은 6차 가우스 구적법 점 위치에 배치된 테스트 노드를 사용한다. 그런 다음 테스트 노드를 지오메트리에 투영하고, 원래 위치와 투영된 위치 사이의 거리를 측정한다. 편차량은 <그림 2>에서 선형 삼각형의 중심(청록색)에 있는 테스트 노드를 곡선 지오메트리 표면(주황색)에 투영하여 보여준다.   그림 2. 지오메트리에 투영된 표면 요소의 중심에 있는 테스트 노드     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-07-04
유니티 6 프리뷰 : 게임 및 비주얼 콘텐츠 제작 전반의 기능과 편의성 강화
개발 및 공급 : 유니티 주요 특징 : 렌더링을 위한 URP와 HDRP의 성능 향상, 조명 기능 개선, 풍부한 환경 렌더링의 정확성 향상, 멀티 플랫폼 지원 개선, XR 입력 및 상호작용 간소화, AI를 활용한 동적 런타임 경험 제공 등     유니티 6(Unity 6) 프리뷰 버전(이전 명칭은 2023.3 테크 스트림)은 2024년 출시되는 유니티 6 정식 버전의 개발 사이클에서 마지막 릴리스에 해당하며, 유니티 2023.1과 2023.2 버전에서 릴리스된 기능을 포함한다. 유니티는 2023년 11월 진행된 ‘유나이트’ 이벤트에서 명명 규칙을 업데이트한다고 발표한 바 있다. 유니티 6 프리뷰는 테크 스트림 릴리스처럼 구성되어 있으며, 지원되는 릴리스이므로 탐색 중이거나 프로토타이핑 단계에 있는 프로젝트에서 최신 기능과 업데이트된 기능을 미리 사용해 볼 수 있다. 정식 제작 중인 프로젝트에는 향상된 안정성과 지원이 제공되는 유니티 2022 LTS릴리스를 사용하는 것이 좋다.   렌더링 성능 향상 유니티 6 프리뷰에서는 URP(유니버설 렌더 파이프라인)와 HDRP(고해상도 렌더 파이프라인)의 성능이 향상되어 여러 플랫폼 전반에서 제작 속도를 높일 수 있다. 콘텐츠에 따라 다르지만, CPU 워크로드를 30~50%까지 줄이는 동시에 다양한 플랫폼 전반에서 더 원활하고 빠르게 렌더링할 수 있다. 새로운 GPU 상주 드로어를 사용하면 복잡한 수동 최적화를 거치지 않고도 규모가 크고 풍부한 월드를 효율적으로 렌더링할 수 있다. 고사양 모바일 기기, PC, 콘솔 등의 플랫폼에서 복잡한 대형 신(scene)을 렌더링할 때 게임 오브젝트에 사용되는 CPU 프레임 시간을 50%까지 단축하여 게임을 최적화할 수 있다.   ▲ 복잡한 대형 신을 렌더링할 때 게임 오브젝트에 사용되는 CPU 프레임 시간을 50%까지 단축하여 게임을 최적화한다.   GPU 상주 드로어와 함께 GPU 오클루전 컬링 또한 프레임마다 오버드로되는 양을 줄여 게임 오브젝트의 성능을 향상시킨다. 즉, 렌더러가 보이지 않는 오브젝트를 드로하느라 리소스를 낭비하지 않게 한다. GPU 오클루전 컬링은 GPU 기반 접근 방식을 통해 신에서 보이지 않는 오브젝트를 렌더링하지 않게 한다.  STP(시공간 포스트 프로세싱)로 GPU 성능을 최적화하고 시각적 품질과 런타임 성능을 높일 수 있다. STP는 저해상도에서 렌더링된 프레임을 정확도 손실 없이 업스케일링하도록 설계되어, 플랫폼에 다양한 성능 수준과 화면 해상도로 일관적인 고품질 콘텐츠를 제공할 수 있다. STP는 데스크톱과 콘솔 전반에서, 무엇보다도 컴퓨팅 가능한 모바일 기기에서 URP 및 HDRP 모두와 호환된다.   ▲ STP는 GPU 성능을 최적화하고 시각적 품질과 런타임 성능을 높인다.   URP용 렌더 그래프(Render Graph)는 새로운 렌더링 프레임워크 및 API로, 렌더 파이프라인의 유지 관리와 확장을 간소화하고 렌더링 효율성과 성능을 높인다. 최신 시스템에는 특히 타일 기반(모바일) GPU에서 메모리 대역폭 사용량과 에너지 소비를 줄이기 위한 네이티브 렌더 패스의 자동 병합 및 생성 같은 핵심 최적화 기능이 다양하게 추가되었다. 또한 새로운 렌더 그래프 API를 통해 커스텀 패스 추가 워크플로를 간소화할 수 있기 때문에, 사용자는 커스텀 래스터와 커스텀 패스로 렌더 파이프라인을 확장하고 새로운 컨텍스트 컨테이너를 사용하여 필요한 파이프라인 리소스에 모두 안전하게 액세스할 수 있다. 마지막으로, 새로운 렌더 그래프 뷰(Render Graph Viewer) 툴을 사용해 엔진의 렌더 패스 생성과 프레임 리소스 사용량을 에디터 내에서 직접 분석하고, 렌더 파이프라인 디버깅과 최적화 과정을 간소화할 수 있다.   ▲ 렌더 그래프 뷰를 사용하여 렌더 파이프라인, 패스, 리소스를 분석한다.   URP의 포비티드 렌더링(Foveated Rendering) API를 사용하면 포비티드 렌더링 수준을 설정하여 사용자 주변의 중거리/원거리 정확도를 낮추는 대신 GPU 성능을 높일 수 있다. 유니티 6 프리뷰에서는 두 가지 새로운 포비티드 렌더링 모드를 사용할 수 있다. 고정 포비티드 렌더링(Fixed Foveated Rendering)의 경우 스크린 공간 중앙 영역의 품질이 높아지고, 시선 추적 포비티드 렌더링(Gazed Foveated Rendering)에서는 시선 추적을 통해 스크린 공간에서 품질을 높여야 할 영역을 결정한다. 포비티드 렌더링 API는 오큘러스 XR(Oculus XR) 플러그인을 사용하는 메타 퀘스트(Meta Quest), 그리고 소니 플레이스테이션 VR2(Sony PlayStation VR2) 플러그인과 호환되며, OpenXR 플러그인에 대한 지원이 곧 추가될 예정이다.   ▲ 시선이 집중되는 영역의 품질을 높이는 방법으로 GPU 성능을 향상하여, VR에서 시각적 품질을 높이고 프레임 속도를 개선한다.   HDRP 및 URP에서의 볼륨 프레임워크 향상으로 모든 플랫폼에서 CPU 성능이 최적화되어 저사양 하드웨어에서도 실행이 가능하다. 이제 URP에서도 HDRP처럼 전반적으로 향상된 사용자 인터페이스를 사용하여 전역 볼륨과 품질 수준별 볼륨을 설정할 수 있다. 또한 이제 손쉽게 URP용 커스텀 포스트 프로세싱 효과와 함께 볼륨 프레임워크를 사용하여 커스텀 안개와 같은 효과를 직접 제작할 수 있다.    ▲ URP 커스텀 포스트 프로세싱   조명 개선 사항 APV(적응적 프로브 볼륨)는 유니티에서 전역 조명을 구현하는 새로운 방법을 제공한다. 라이트 프로브를 통해 빛을 받는 오브젝트의 저작(authoring) 및 반복 작업(iteration)을 더 간소화했으며, 시간대 시나리오나 스트리밍 등의 새로운 작업을 수행할 수 있다. 유니티 2023.1 및 2023.2 테크 스트림 릴리스에서 제공된 APV의 개발을 기반으로, 유니티 6 프리뷰에서는 탁월한 조명 전환을 구현하기 위해 저작 워크플로 개선, 스트리밍 기능 확장, 제어 및 플랫폼 도달률(Reach) 확장 등의 개선이 이루어졌다.  APV 시나리오 블렌딩을 URP로 확장하여, 낮과 밤을 전환하거나 방에서 불을 켜고 끄는 상황에 대한 베이크된 프로브 볼륨 데이터를 손쉽게 블렌딩할 수 있도록 더 광범위한 플랫폼을 지원한다. 여러 조명 시나리오를 베이크한 다음 런타임에 블렌딩할 수 있다. 이 기능은 프로브 볼륨 데이터에만 적용된다. 반사 프로브, 라이트맵, 광원 위치 또는 강도와 같은 기타 요소는 직접 조정해야 한다.  URP와 HDRP에서 모두 지원하는 APV 스카이 오클루전을 사용하면 가상 환경에 시간대별 조명 시나리오를 적용하여 APV 시나리오 블렌딩에 비해 다양한 컬러 배리에이션으로 하늘의 정적 간접 조명을 구현할 수 있다. 스카이 오클루전을 사용하면 APV 시나리오 블렌딩에 비해 다양한 컬러 배리에이션으로 하늘의 정적 간접 조명을 구현할 수 있다.  이제 APV 디스크 스트리밍이 URP에서 비컴퓨트(non-compute) 경로를 지원하며, AssetBundles 및 Addressables 지원 또한 활성화되었다.  Probe Adjustment Volumes 툴을 활용하여 APV 콘텐츠를 미세 조정하고 빛 번짐 효과를 해결할 수 있다. 이러한 볼륨 내부의 프로브에 대해 샘플 카운트 오버라이드 및 프로브 무효화 등을 조정할 수 있다. 조정 볼륨의 영향을 받지 않는 라이트 프로브는 숨길 수 있고, 이제 영향을 받는 프로브의 프로브 조명 데이터만 미리 확인할 수 있으며, Probe Volume 및 Probe Adjustment Volume 컴포넌트에서 곧바로 베이크할 수 있다. 마지막으로, C# Light Probe Baking API가 추가되어 이제 한 번에 베이크할 프로브의 개수를 제어하여 실행 시간과 메모리 사용량 간의 균형을 맞출 수 있다.    더 정확하고 풍부한 환경 유니티 6 프리뷰는 HDRP에서 프로젝트의 시간대 시나리오를 더 사실적으로 구현할 수 있도록 일몰과 일출의 하늘 렌더링을 개선하였다. 또한 먼 거리의 안개를 보완하기 위해 오존층 지원과 대기 산란이 추가되었다. 커스틱을 샘플링하여 볼류메트릭 광원의 빛줄기를 생성하는수중 볼류메트릭 포그 지원이 추가되어 물의 표현도 개선되었다. 성능 최적화 측면에서는 CPU로 시뮬레이션을 모사하는 대신, 몇 프레임이 지연되며 GPU에서 시뮬레이션을 다시 읽어 오는 옵션이 추가되었다. 혼합 트레이싱 모드가 포함된 투명한 표면 지원도 추가되어, 물과 같은 표면을 터레인이나 초목과 함께 렌더링할 때 레이트레이싱과 스크린 공간 효과를 혼합할 수 있다. 대규모의 동적인 월드를 렌더링하려면 무엇보다 성능이 중요하므로 URP와 HDRP의 SpeedTree 초목 렌더링을 최적화했으며, 앞에서 언급한 새로운 GPU 상주 드로어를 활용한다.   VFX 그래프 아티스트 워크플로 유니티 프리뷰 6에서는 VFX 아티스트가 더 많은 플랫폼에 효율적으로 도달할 수 있도록 툴과 URP 지원을 개선했다. VFX 그래프 프로파일링 툴을 사용하면 VFX 아티스트는 메모리와 성능에 대한 피드백을 받고, 그래프 내에서 최적화할 부분을 찾아서 특정 효과를 미세 조정하고 성능을 극대화할 수 있다.   ▲ VFX 그래프 프로파일링 툴   셰이더 그래프 키워드의 지원을 받아 VFX 셰이더를 제작할 수 있으며, URP 뎁스 및 컬러 버퍼를 사용하여 빠른 충돌이나 월드 내 파티클 생성을 위해 URP로 더 복잡한 효과를 만들 수 있다. VFX 그래프의 개념과 기능을 학습할 수 있도록 제작된 VFX 애셋 모음인 신규 학습 템플릿으로 VFX 그래프를 빠르게 시작할 수 있다.   셰이더 그래프 아티스트 워크플로 유니티 6 프리뷰에는 셰이더 그래프 사용자들이 많이 겪는 고충을 해결하기 위해 편집이 가능한 키보드 단축키, 그래프에서 가장 GPU 사용량이 많은 노드를 빠르게 식별할 수 있는 히트맵 컬러 모드를 추가하였으며, 실행 취소/재실행 또한 더 빨라졌다.   ▲ 노드의 상대적 GPU 비용을 보여 주는 히트맵 컬러 모드   여러 셰이더 그래프 애셋이 담긴 신규 노드레퍼런스 플을 사용할 수 있다. 샘플에 포함된 각 그래프는 하나의 노드를 설명하고, 내부적으로 작동하는 수학을 요약하며, 가능한 노드 사용 방법에 대한 예시를 포함한다.    멀티 플랫폼 개선 사항 유니티 6 프리뷰는 멀티 플랫폼 개발 워크플로를 최적화하고 인기 있는 플랫폼 전반에서 도달률을 향상하는 것을 목표로 데스크톱과 모바일, 웹 및 XR에서 향상된 멀티 플랫폼 기능을 제공한다.   빌드 창 편의성 향상 및 새로운 빌드 프로필 새로운 빌드 프로필 기능을 통해 더욱 유연하고 효율적으로 빌드를 관리할 수 있다. 각 프로필에서 빌드 설정을 구성하는 것 외에 이제 서로 다른 신 목록을 넣어 빌드의 콘텐츠를 커스터마이즈할 수 있어, 게임에서 가장 선보이고 싶은 신이 사용된 고유의 플레이 가능한 데모를 여러 개 만들 수 있다. 또한 플레이어 설정에서 볼 수 있는 스크립팅에 더해 어떤 프로필이든 정의하는 커스텀 스크립팅을 설정할 수 있으며, 이를 통해 빌드와 에디터 플레이 모드의 기능과 동작을 미세 조정할 수 있다. 버티컬 슬라이스(시연 버전)를 만들거나 플랫폼별로 동작을 다르게 설정하려 할 때 이 기능을 활용할 수 있다. 프로필마다 플레이어 설정 오버라이드를 추가하여 플랫폼 모듈에 맞게 설정을 커스터마이즈할 수 있다. 이 기능을 이용하면 프로필마다 다른 퍼블리싱 설정을 손쉽게 구성할 수 있다. 전반적으로 이 최신 기능을 사용하면 에디터에서의 빌드 관리 방식을 커스터마이즈하기 위해 커스텀 빌드 스크립트를 사용해야 하는 빈도를 낮출 수 있다. 마지막으로, 에디터에서 플랫폼을 쉽게 확인할 수 있도록 플랫폼 브라우저를 추가했다. 플랫폼 브라우저에서 Unity가 지원하는 모든 플랫폼을 확인하고 원하는 플랫폼의 빌드 프로필을 생성할 수 있다.   ▲ 유니티 6의 새로운 빌드 프로필 창   웹 런타임으로 모바일 게임 도달률 향상 안드로이드 및 iOS 브라우저 지원이 유니티 6 프리뷰에 추가되었다. 이제 모든 웹에서 유니티 게임을 실행할 수 있으며, 브라우저 게임을 데스크톱 플랫폼으로 제한해 개발하지 않아도 된다. 또한 게임을 네이티브 앱의 웹 뷰에 임베드하거나, 유니티의 프로그레시브 웹 앱 템플릿을 사용해 고유한 바로 가기와 오프라인 기능을 가진 네이티브 앱처럼 게임이 작동하도록 구현할 수 있다. 모바일 기기 컴파스 지원과 GPS 위치 트래킹 같은 기능이 추가되어, 게이머가 플레이하는 플랫폼에 맞게 대응하도록 웹 게임을 구현할 수 있다. Emscripten 3.1.38 툴체인 업데이트와 부호 확장 명령 코드, 트랩 없는 부동 소수점-정수 변환, 벌크 메모리, BigInt, Wasm 테이블, 네이티브 Wasm 예외, Wasm SIMD와 같은 새로운 WebAssembly 언어 기능 모음을 통한 최신 WebAssembly 2023 지원을 통해 웹 게임을 미세 조정할 수 있다. 또한 WebAssembly 2023은 힙 메모리를 4GB까지 지원하므로 최신 하드웨어에서 더 많은 RAM을 사용할 수 있다.   ▲ 아이폰 15 프로의 사파리에서 실행되는 유니티의 2D 샘플 프로젝트 해피 하비스트(Happy Harvest)   유니티 6 프리뷰에는 최신 안드로이드 툴, 즉시 사용 가능한 자바(Java) 17 지원, 안드로이드 앱 번들에 디버그 심볼을 추가하는 기능 등을 비롯한 더 많은 모바일 개선 사항이 포함된다. 이를 통해 구글 플레이 스토어(Google Play Store)에 제출하는 시간을 절약하고 플레이 콘솔(Play Console)에서 항상 스택트레이스 정보를 확인할 수 있다.   WebGPU 백엔드 얼리 액세스 WebGPU 백엔드의 실험 단계 지원을 도입하는 것은 웹 기반 그래픽스 가속의 중대한 이정표로서, 앞으로 유니티 웹 게임의 그래픽스 렌더링 정확도를 도약시키는 디딤돌이 될 것이다. WebGPU는 컴퓨트 셰이더 지원과 같은 최신 GPU 기능을 웹에 노출하고 활용하려는 목적으로 설계되었다. WebGPU는 새로운 웹 API로서, 다이렉트X 12(DirectX 12), 벌칸(Vulkan), 메탈(Metal)과 같은 네이티브 GPU API를 통해 내부적으로 구현하는 최신 그래픽스 가속 인터페이스를 데스크톱 기기에 따라 제공한다. WebGPU 그래픽스 백엔드는 여전히 실험 단계이므로 정식 제작에 사용하는 것은 권장하지 않는다.   ▲ GPU(컴퓨트) 스키닝의 장점을 활용해 높은 프레임 속도를 유지하면서 로봇들의 골격 위에 스킨을 메시 처리한 데모   유니티 에디터의 ARM 기반 윈도우 기기 지원 유니티는 2023.1에서 ARM 기반 윈도우 기기에 대한 지원을 제공하여 새로운 하드웨어로 타이틀을 가져올 수 있게 했다. 유니티 6 프리뷰를 통해 유니티 6에서 ARM 기반 윈도우 기기에 대한 네이티브 유니티 에디터 지원을 제공한다. 따라서 이제 ARM 기반 기기의 성능과 유연성을 활용하여 유니티 게임을 제작할 수 있다.   다이렉트X 12 백엔드 개선 사항 유니티의 다이렉트X 12 그래픽스 백엔드가 정식으로 제작에 사용 가능하며, DX12를 지원하는 윈도우 플랫폼을 타깃으로 제작할 때 사용할 수 있다. 이번 변경에 앞서 렌더링 안정성과 성능에 대한 포괄적인 향상이 이루어진 바 있다. 유니티 에디터와 유니티 플레이어는 DX12에서 Split Graphics Jobs를 사용하여 향상된 CPU 성능의 혜택을 누릴 수 있다. 성능 향상 수준은 신의 복잡도와 제출되는 드로 콜 횟수에 따라 다를 수 있다.     무엇보다도 DX12 그래픽스 API는 광범위한 최신 그래픽스 성능을 지원할 수 있으므로, 유니티의 레이트레이싱 파이프라인 같은 차세대 렌더링 기법을 사용할 수 있다. 조만간 그래픽스에서 머신러닝에 이르는 DX12의 고급 기능을 활용하여, 높은 수준의 정확도와 성능을 실현할 수 있을 것이다.   마이크로소프트 GDK 패키지로 마이크로소프트 플랫폼 생태계 도입 마이크로소프트와 유니티의 지속적인 파트너십 덕분에 이제 유니티 6 프리뷰와 2022 LTS, 2021 LTS에서 2개의 새로운 마이크로소프트 GDK 패키지를 이용할 수 있다. Microsoft GDK Tools와 Microsoft GDK API 패키지를 동일한 구성 및 코드 베이스로 마이크로소프트 게이밍 플랫폼에서 사용할 수 있다. 이 패키지를 사용하면 사용자 ID, 플레이어 데이터, 소셜, 클라우드 스토리지 등의 엑스박스(Xbox) 서비스를 활용할 때와 같은 코드를 사용하여, 윈도우 및 엑스박스같은 마이크로소프트 게이밍 플랫폼에서 더욱 손쉽게 게임을 빌드할 수 있다. 통합 마이크로소프트 GDK 패키지를 사용하면 공유 코드 베이스와 API를 통한 빌드 프로세스 자동화 기능을 활용하여 마이크로소프트 플랫폼에서 게임을 제작할 수 있다. 패키지에 포함된 다양한 기능을 선보이는 새로운 샘플도 제공된다. 이전에는 엑스박스 콘솔과 윈도우의 마이크로소프트 스토어를 타깃으로 삼는 경우 마이크로소프트와 유니티에서 제공하는 별도의 GDK 패키지를 설치하는 것이 지침이었다. 그렇게 하려면 타깃으로 삼은 각 마이크로소프트 플랫폼별로 다른 코드 브랜치를 관리해야 했다. 새로운 마이크로소프트 GDK 패키지를 사용하면 그럴 필요가 없다. 또한 이제 빌드 서버에서 직접 API로 MicrosoftGame.config 파일을 수정할 수 있다. 유니티 6의 새로운 빌드 프로필 기능과 함께 사용하면 하나의 프로젝트만으로도 손쉽게 마이크로소프트 게이밍 생태계에 게임을 공개할 수 있다.   ▲ 유니티 패키지 관리자의 새로운 마이크로소프트 GDK API(1단계) 및 마이크로소프트 GDK 툴즈(2단계). 유니티 패키지 관리자에서 직접 마이크로소프트 GDK 패키지를 설치하고 마이크로소프트 GDK를 사용해 개발을 시작할 수 있다.   XR 경험 유니티는 AR킷(ARKit), AR코어(ARCore), 비전OS(visionOS), 메타 퀘스트, 플레이스테이션 VR, 윈도우 MR(Windows Mixed Reality) 등 많이 알려진 알려진 XR(확장현실) 플랫폼을 지원한다. 유니티 6 프리뷰는 혼합 현실, 손 및 시선 입력, 개선된 시각적 정확도 같은 최신 크로스 플랫폼 기능을 포함한다. 이제 향상된 템플릿에 이러한 많은 최신 기능이 통합되어 더 빠르게 시작할 수 있다.   현실 세계를 게임에서 구현하기 기존 게임을 혼합 현실로 확장하려 할 때나 아니면 완전히 새로운 게임을 제작하려는 경우에도 AR 파운데이션(AR Foundation)을 사용하면 크로스 플랫폼 방식으로 현실 세계를 플레이어 경험에 통합할 수 있다. 유니티 6 프리뷰에는 AR코어에서의 이미지 안정화 지원을 추가하였으며, 메타 퀘스트(Meta Quest)와 같은 혼합 현실 플랫폼을 대상으로 메시 및 바운딩 박스 기능 등에 대한 지원을 개선했다.   ▲ 최신 AR 파운데이션 메시 기능   XR 입력 및 상호작용 상호작용을 간소화할 수 있도록 XRI(XR Interaction Toolkit) 3.0에 여러 주요 개선 사항이 추가되었다. 그중에서도 Near-Far Interactor라는 새로운 인터랙터는 프로젝트에서 인터랙터의 동작을 커스터마이즈할 때 유연성과 모듈성을 향상시킬 수 있다.  새로운 Input Reader의 추가로 XRI 입력 처리 방식이 개선되었으며, 이를 통해 입력 프로세스가 간소화되고 다양한 입력 유형 전반에서 코드의 복잡도가 줄어든다. 마지막으로, 크로스 플랫폼 방식으로 게임 내 키보드를 구현하고 커스터마이즈할 수 있도록 새로운 가상 키보드 샘플을 출시할 계획이다.   고유의 손 제스처 손을 사용하여 콘텐츠와 상호작용하도록 하는 플랫폼이 점점 더 많아지는 추세이다. 유니티의 XR Hands 패키지를 사용하면 커스텀 손 제스처(예 : 엄지 척, 엄지 다운, 가리키기)나 일반적인 오픈XR 손 제스처를 구현할 수 있다. 샘플이 포함되어 있어 빠르게 작업을 시작할 수 있다. 손 모양과 제스처의 제작, 미세 조정 및 디버깅을 위한 툴이 함께 지원되므로 더 많은 사용자를 대상으로 폭넓은 콘텐츠를 제공할 수 있다.   시각적 정확도 향상 게임의 시각적 정확도를 향상하려는 방법의 하나로 현재 실험 단계 패키지로만 이용할 수 있는 Composition Layers 기능이 있다. 이 기능은 런타임의 합성 레이어에 대한 네이티브 지원을 사용하여 텍스트, 비디오, UI 및 이미지를 더욱 양호한 품질로 렌더링하고, 더 선명한 텍스트, 뚜렷한 윤곽선을 비롯해 전반적으로 더 나은 결과물을 제공하는 동시에 아티팩트도 상당히 줄일 수 있다.   멀티플레이어 제작 간소화 유니티 6 프리뷰는 간단한 엔드 투 엔드 통합 솔루션으로, 멀티플레이어 게임의 제작, 출시, 성장을 가속한다. 실험 단계 멀티플레이어 센터 유니티는 패키지 레지스트리에서 사용할 새로운 실험 단계 멀티플레이어 센터(Experimental Multiplayer Center) 패키지를 제작했다. 멀티플레이어 센터는 멀티플레이어 개발을 시작할 수 있도록 안내하는 간소화된 가이드 툴이다. 에디터의 중심에 있는 이 가이드를 활용하면 프로젝트별 요구 사항에 맞는 유니티 툴과 서비스에 액세스할 수 있다.  멀티플레이어 센터는 프로젝트의 멀티플레이어 사양에 따른 인터랙티브 가이드, 리소스와 교육 자료에 대한 액세스, 그리고 멀티플레이어 기능을 빠르게 배포하고 간단하게 실험할 간편한 방법을 제공한다.   멀티플레이어 플레이 모드 유니티 에디터 내에서 각 프로세스 전반의 멀티플레이어 기능을 테스트해 볼 수 있는 멀티플레이어 플레이 모드(Multiplayer Play Mode) 1.0 버전이 릴리스되었다. 디스크의 동일한 소스 애셋을 사용하면서 하나의 개발 기기에서 최대 4명의 플레이어(기본 에디터 플레이어 및 가상의 플레이어 3명)를 동시에 시뮬레이션할 수 있다. 멀티플레이어 플레이 모드를 사용하면 프로젝트를 빌드하고, 로컬에서 실행하고, 서버-클라이언트 관계를 테스트하는 데 걸리는 시간을 단축하는 멀티플레이어 개발 워크플로를 구축할 수 있다.   ▲ 멀티플레이어 플레이 모드는 개발 과정에서 멀티플레이어 게임을 테스트하기 위한 설정 시간을 단축하고 빠른 반복 루프를 유지한다.   멀티플레이어 툴즈 멀티플레이어 툴즈(Multiplayer Tools) 패키지를 2.1.0 버전으로 업데이트하며, 새로운 디버깅 시각화 툴인 네트워크 신 비주얼라이제이션(Network Scene Visualization)을 추가했다. 네트워크 신 비주얼라이제이션(NetSceneVis)은 멀티플레이어 툴즈 패키지에 포함된 강력한 툴로, 유니티 에디터 신 뷰에서 프로젝트를 보며 메시 셰이딩이나 텍스트 오버레이와 같은 시각화 기능을 통해 오브젝트별 네트워크 커뮤니케이션을 시각화하고 디버깅할 수 있다.   Netcode for GameObjects용 실험 단계 분산형 권한 새로운 Experimental Multiplayer Services SDK 0.4.0 버전(com.unity.services.multiplayer)과 함께 사용할 때의 분산형 권한 모드를 Netcode for GameObjects 2.0.0-exp.2 버전(com.unity.netcode.gameobjects)에 추가했다. 분산형 권한 모드에서는 클라이언트가 게임 세션에서 생성된 넷코드(Netcode) 오브젝트에 대해 분산된 소유권/권한을 가진다. 넷코드 시뮬레이션 워크로드는 클라이언트 전반에 분산되며, 네트워크 상태는 유니티가 제공하는 고성능 클라우드 백엔드를 통해 조율된다.   넷코드 포 엔티티즈 게임 오브젝트가 디버그 바운딩 박스를 렌더링할 수 있도록 지원하여 넷코드 포 엔티티즈(Netcode for Entities) 경험을 개선했다. 또한 코드를 수정할 필요 없이 커스터마이즈할 수 있는 넷코드 설정 변수 대부분이 포함된 NetCodeConfig ScriptableObject를 추가했다.   데디케이디드 서버 패키지 프로젝트를 별도로 만들지 않아도 프로젝트에서 서버와 클라이언트 역할을 전환하도록 허용하는 데디케이디드 서버(Dedicated Server) 패키지를 출시했다. 멀티플레이어 역할을 사용하면 클라이언트 및 서버 전반에 게임 오브젝트와 컴포넌트를 배분할 수 있다.  멀티플레이어 역할로 각 빌드 타깃에서 사용할 멀티플레이어 역할(클라이언트, 서버)을 결정할 수 있다. 이는 다음과 같이 구성된다. 콘텐츠 선택 : 여러 멀티플레이어 역할을 대상으로 포함하거나 제거할 콘텐츠(게임 오브젝트, 컴포넌트)를 선택하는 UI 및 API를 제공한다. 자동 선택 : 여러 멀티플레이어 역할에서 자동으로 제거되어야 할 컴포넌트 유형을 선택하는 UI 및 API를 제공한다. 안전성 확인 : 멀티플레이어 역할에서 오브젝트를 제거하여 발생할 수 있는 잠재적인 널(null) 참조 예외를 감지하기 위한 경고를 활성화한다. 이 패키지에는 데디케이디드 서버 플랫폼 개발에 추가로 필요한 최적화 및 워크플로 개선 사항도 포함된다.   Experimental Multiplayer Services SDK Experimental Multiplayer Services SDK는 유니티 6 프리뷰에서 개발하는 게임에 온라인 멀티플레이어 요소를 한 번에 추가할 수 있는 솔루션이다. UGS(Unity Gaming Services)를 기반으로 릴레이(Relay) 및 로비(Lobby) 서비스의 여러 기능을 새로운 단일 ‘세션’ 시스템으로 결합한 솔루션으로, 빠르게 플레이어 그룹의 연결 방식을 정의할 수 있도록 지원한다. Experimental Multiplayer Services SDK 0.4.0 버전(com.unity.services.multiplayer)을 사용하면 P2P(peer-to-peer) 세션을 생성하고 플레이어가 참여 코드, 활성 세션 목록 검색 또는 ‘빠른 참여’ 기능 등 다양한 방법으로 참여하도록 구현할 수 있다.   유니티 6 프리뷰의 멀티플레이어 유니티 6 프리뷰에 포함된 많은 기능은 아직 실험 단계에 있으며, 아직 정식 제작에 사용할 수는 없다. 유니티 6가 완전한 지원 경험을 갖출 수 있도록 사용자의 피드백을 바탕으로 해당 기능을 빠르게 사전 릴리스 및 릴리스 단계로 전환할 예정이다.   엔티티 워크플로 개선 사항 유니티 6 프리뷰는 ECS 워크플로를 간소화하고 사용자가 흔히 겪는 어려움을 해결한다. 이러한 노력의 하나로, 유니티는 향후 엔티티와 게임 오브젝트 워크플로가 통합되는 상황에 대비하여 엔티티의 저장 방식을 변경했다. 이제 엔티티 ID가 전역적으로 고유의 값을 가지며, 한 엔티티 시스템에서 다른 시스템으로 원활하게 옮길 수 있다. 이러한 변경이 ECS 워크플로에 영향을 주지는 않지만, 항상 정확한 엔티티를 표시하므로 디버깅 시 모호함을 줄일 수 있다. 또한 유니티 2022 LTS에 제공된 최신 ECS 개선 사항이 유니티 6 프리뷰에도 적용되었다. ECS 1.1 : 주요 물리 콜라이더 워크플로 및 성능 개선, ECS 프레임워크 전반에서 80개 이상의 수정 사항 ECS 1.2 : 에디터 워크플로 전반의 편의성 및 성능 개선, 직렬화, 베이킹, 50개 이상의 수정 사항 및 유니티 6 호환성   AI를 활용한 동적 런타임 경험 제공 유니티 6 프리뷰에는 런타임에 AI 모델을 통합하는 뉴럴 엔진인 유니티 센티스(Unity Sentis)가 포함된다. 센티스를 통해 오브젝트 인식, 스마트 NPC, 그래픽스 최적화 같은 새로운 AI 기반 기능을 활용할 수 있다. 센티스는 최근에 성능과 사용 초기 경험 간소화에 집중하여 개선이 이루어졌다.   성능 이제 유니티 에디터에서 AI 모델 가중치 양자화(FP16 또는 UINT8)를 지원하므로 필요한 경우 모델 크기를 최대 75%까지 줄일 수 있다. 모바일 게임을 출시하는 경우 상당한 절약 효과를 볼 수 있다. 모델 스케줄링 속도 또한 2배 향상되었고, 메모리 누수와 가비지 컬렉션은 줄어들었다. 마지막으로, 이제 더 많은 ONNX 연산자를 지원한다.   시작하기 프로젝트에 적합한 AI 모델을 더 쉽게 찾을 수 있도록, 유니티는 대규모 60만 개 이상의 AI 모델을 보유한 AI 모델 허브인 허깅 페이스(Hugging Face)와 협력 관계를 맺었다. 이제 센티스에서 ‘바로 사용할 수 있는’ AI 모델을 즉시 찾을 수 있으므로 손쉬운 연동이 가능하다.  적합한 모델을 찾았으면 이제 게임에 연결해야 한다. 더 쉽게 연결할 수 있도록 유니티는 AI 모델을 제작, 수정, 연결하는 데 활용할 새로운 Functional API를 도입했다. 직관적이고, 안정적이며, 인퍼런스에 최적화된 API이다. 메모리 관리 및 스케줄링 전반을 제어하기 위해 완전히 커스터마이즈할 수 있는 낮은 레벨의 API가 필요하다면 Backend API를 계속 사용할 수 있다.   생산성 및 기능성 향상 유니티 엔진은 비주얼 스크립팅에서부터 UI 툴킷까지 사용자의 생산성과 기능성을 향상하기 위한 다양한 툴을 제공한다. 기존 툴에 더해 유니티 6 프리뷰에서는 특히 프로파일링 툴 포트폴리오에 두 가지 업데이트가 추가되었다.   메모리 프로파일러 유니티 6 프리뷰에서는 메모리 프로파일러(Memory Profiler)와 관련해 두 가지 주요 업데이트가 적용되었다. 우선, 기존에는 분류되지 않았던 그래픽스 메모리가 이제 측정되며 리소스별 보고가 이루어진다.(예 : 렌더 텍스처 및 컴퓨트 셰이더) 그리고, 상주 메모리에 대한 정보가 더 자세히 보고된다. 예를 들어 디스크로 전환되는 메모리는 더 이상 여기에 포함되지 않는다. 이러한 업데이트는 특히 네이티브 메모리 사용량을 파악하기 어렵다는 사용자의 직접적인 피드백을 해결한다.   ▲ 업데이트된 메모리 프로파일러     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-07-03