엔비디아, 2025년 AI 핵심 인사이트 공유… "건설/엔지니어링/디자인 혁신에 AI 활용 확대 전망"
엔비디아가 2025년 AI가 가져올 각 산업 분야의 혁신에 대해 전망했다. 엔비디아의 전문가들은 멀티모달 모델이 업계의 혁신과 효율성을 가속화할 것이라고 예측했다.
생성형 AI는 올해 조직의 모든 분야에서 큰 주목을 받았다. 이에 따라 산업 전반에서 이를 활용해 혁신과 창의성을 증진하고, 고객 서비스를 개선하며, 제품 개발을 변화시키고, 의사소통을 강화하는 방법에 대한 논의가 활발히 이루어졌다.
IDC에 따르면, 전 세계 기업은 내년에 AI 설루션에 3070억 달러를 지출할 것으로 예상된다. 또한, 이는 2028년까지 연평균 29.0%의 성장률로 6320억 달러까지 증가할 것으로 보인다. IDC는 AI가 2030년까지 전 세계 누적 경제에 19조 9000억 달러의 영향을 미칠 것이며, 2030년 전 세계 GDP의 3.5%를 견인할 것이라고 예측했다. 그러나 AI의 빠른 발전에도 불구하고 일부 기업과 스타트업은 여전히 실험과 사일로화된 프로젝트에 집착하며 AI 도입에 느리게 대응하고 있다. 이는 AI의 혜택이 기업, 사용 사례, 투자 수준에 따라 다르기 때문이다.
하지만 신중한 접근 방식은 낙관적인 태도로 전환되고 있다. 포레스터 리서치(Forrester Research)의 2024 AI 현황 설문조사에 참여한 응답자의 3분의 2는 조직의 AI 이니셔티브가 성공하려면 투자 수익률이 50% 미만이어야 한다고 답했다. 다음으로 주목할 만한 것은 에이전틱 AI이다. 이는 자율적이거나 ‘추론’하는 형태의 AI로, 다양한 언어 모델, 정교한 검색 증강 생성(RAG) 스택, 고급 데이터 아키텍처를 사용해야 한다.
엔비디아는 2025년 주목할 만한 AI 트렌드로 ▲효율적인 추론 설루션에 대한 수요도 증가 ▲양자 컴퓨팅의 오류 수정 및 양자 하드웨어 성능 향상 ▲AI의 창의성과 다양성 강화 ▲산업 인프라와 도시 계획의 재검토 ▲AI 에이전트의 효율을 극대화하는 AI 오케스트레이터의 증가 ▲기업의 데이터를 탐색 방식을 바꾸는 AI 쿼리 엔진 ▲기업에게 고성능 추론을 필수로 만드는 에이전틱 AI ▲데이터를 인텔리전스로 처리하기 위한 AI 팩토리 확장 등을 꼽았다.
엔비디아는 에이전틱AI(agentic AI)의 시대가 열리면서, 여러 모델로 구성된 복잡한 시스템에서 거의 즉각적인 응답에 대한 수요가 증가할 것으로 전망했다. 이에 따라 고성능 추론은 고성능 훈련 인프라만큼이나 중요해질 전망이다. 그리고 IT 리더는 실시간 의사 결정을 위한 성능을 제공하기 위해, 에이전틱 AI의 수요에 맞추어 확장 가능하고 특수 목적에 맞게 구축되고 최적화된 가속 컴퓨팅 인프라를 필요로 할 것이다.
AI를 통한 건설, 엔지니어링, 디자인 혁신도 보다 활발히 진행될 전망이다. 엔비디아는 건설, 엔지니어링, 디자인 산업에 맞춤화된 생성형 AI 모델이 증가할 것이며, 이는 효율성을 높이고 혁신을 가속화할 것이라고 보았다. 건설 분야에서는 에이전틱 AI가 현장 센서와 카메라에서 수집한 방대한 양의 건설 데이터를 해석해 더 효율적인 프로젝트 일정과 예산 관리로 이어지는 인사이트를 제공한다. AI는 24시간 현실 캡처 데이터(라이다, 사진 측량, 레디언스 필드)를 평가하고 품질, 안전, 규정 준수에 대한 중요한 인사이트를 도출해 오류와 작업장 부상을 줄일 수 있다.
엔지니어의 경우, 물리 정보 신경망에 기반한 예측 물리학은 홍수 예측, 구조 엔지니어링, 건물 내 개별 방이나 층에 맞춘 공기 흐름 설루션을 위한 전산유체역학(CFD)을 가속화해 설계 반복을 단축한다. 디자인 분야에서는 RAG(검색증강생성)를 통해 건물 디자인과 시공을 위한 정보 모델링이 현지 건축법을 준수하는지 확인할 수 있다. 이는 디자인 초기 단계에서 규정을 준수할 수 있도록 한다. 확산 AI 모델은 건축가와 디자이너가 키워드 프롬프트와 대략적인 스케치를 결합해 고객 프레젠테이션을 위한 풍부하고 상세한 개념 이미지를 생성할 수 있게 해 개념 설계와 부지 계획을 가속화한다. 이로써 연구와 디자인에 집중할 수 있는 시간을 확보할 수 있다.
엔비디아는 거의 모든 산업에서 AI를 사용해 사람들의 생활과 여가를 즐기는 방식을 향상시키고 개선할 준비를 하고 있다고 보고 있다. 농업 분야에서는 AI를 사용해 식품 공급망을 최적화하고 식량 공급을 개선할 것이다. 예를 들어, AI는 개별 농장의 다양한 작물에서 발생하는 온실가스 배출량을 예측하는 데 사용될 수 있다. 이러한 분석은 공급망에서 온실가스를 줄이는데 도움이 되는 설계 전략을 수립하는 데 도움이 된다. 한편, 교육 분야의 AI 에이전트는 개인의 모국어로 말하고 특정 과목의 교육 수준에 따라 질문하거나 답변하는 등 학습 경험을 개인화할 수 있다.
엔비디아는 국가와 산업계에서 AI가 경제의 다양한 측면을 자동화해 세계 인구가 감소하는 가운데서도 현재의 생활 수준을 유지하는 방법을 모색하기 시작할 것으로 보았다. 이러한 노력은 지속 가능성과 기후 변화에도 도움이 될 수 있다. 예를 들어, 농업 산업은 밭을 관리하고 해충과 잡초를 기계적으로 제거할 수 있는 자율 로봇에 투자하기 시작할 것이다. 이는 살충제와 제초제의 필요성을 줄여 지구를 더 건강하게 유지하고, 다른 의미 있는 기여를 위한 인적 자본을 확보할 수 있다. 도시 계획 사무소에서 자율주행차를 고려하고 교통 관리를 개선하기 위한 새로운 사고 방식을 기대할 수도 있다. 장기적으로는 AI가 전 세계의 시급한 과제인 탄소 배출량 감축과 탄소 저장을 위한 설루션을 찾는 데에 도움을 줄 수 있을 것으로 보인다.
기업의 AI 팩토리(AI factory)는 원시 데이터를 비즈니스 인텔리전스로 변환한다. 2025년에는 기업이 이러한 AI 팩토리를 확장해 방대한 양의 과거, 합성 데이터를 활용할 것이다. 이를 통해 소비자 행동과 공급망 최적화부터 금융 시장의 움직임, 공장과 물류창고의 디지털 트윈에 이르기까지 모든 것에 대한 예측과 시뮬레이션을 생성할 것이다. AI 팩토리는 초기 채택자들이 미래 시나리오에 대응하는데 그치지 않고 이를 예측하고 구체화하는 데 도움이 되는 핵심 경쟁 우위로 자리 잡을 것이다.
작성일 : 2024-12-11