• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "패턴"에 대한 통합 검색 내용이 1,030개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (3)   이번 호에서는 심센터 히즈(Simcenter HEEDS)를 사용하여 수집된 외부 데이터를 시각화하고 분석하는 데 초점을 맞추고, 데이터 시각화의 중요성과 분석 기법의 활용 방안을 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   데이터 분석의 중요성 오늘날 데이터는 우리의 일상과 비즈니스 운영에서 점점 더 중요한 역할을 하고 있다. 수집되고 측정된 데이터의 양이 증가하면서 이를 효과적으로 처리하고 분석하는 방법은 더욱 필요해지고 있다. 이러한 변화 속에서, 지멘스의 심센터 히즈는 강력한 데이터 분석 및 시각화 기능을 제공하여 다양한 산업 분야에서 최적의 해결책을 찾는 데 기여하고 있다. 이번 호에서는 히즈의 기능을 효과적으로 활용하여 어떻게 복잡한 데이터를 이해하고 의미 있는 인사이트를 얻을 수 있는지 살펴볼 것이다.   히즈의 데이터 분석 기능 히즈의 Discover(디스커버) 탭은 사용자가 데이터 사이의 관계 및 최적화 가능성을 탐구할 수 있도록 다양한 도구를 제공한다. Discover 기능은 주요한 데이터 분석 및 이해를 도와주는 여러 방법을 포함하고 있다.    그림 1   다음은 각각의 기능에 대한 설명이다.  Closest : 특정 데이터 포인트에 가장 가까운 변화를 식별한다. 이를 통해 최적화 과정에서의 데이터 민감성을 이해하고 결정에 도움을 줄 수 있다.  Similar : 사용자가 선택한 기준에 따라 유사한 데이터 집합을 찾는 기능이다. 이는 집합의 규칙 또는 모델을 파악하는 데 유용하다. Clusters : 데이터 세트를 서로 연관된 그룹으로 분류한다. 군집화 기법을 통해 데이터의 패턴을 식별하고 알고리즘에 의한 데이터 이해를 개선할 수 있다.  Trade-offs : 다수의 설계 목표 간의 상충 관계를 분석한다. 이를 통해 각각의 설계 대안이 어떻게 특정 목표를 달성하는지에 대해 명확하게 이해할 수 있다.  Patterns : 데이터 내의 반복되는 경향이나 구조를 발견하여 예측 및 모델링에 도움을 주는 기능이다. 패턴 인식은 정보의 신뢰도를 높이는 데 중요하다.  Preview History : 사용자가 수행한 변경이나 실행의 기록을 미리 보면서 데이터 분석의 이력을 관리할 수 있다.  Design Set : 여러 디자인 시나리오를 만들고 비교하여 최적의 설계를 도출하는 데 도움을 준다.  Performance & Plot : 데이터의 성능을 평가하고 시각적으로 플롯하여 분석 결과를 명확하게 표현한다.  Discover 탭의 이러한 기능은 히즈 사용자가 데이터를 깊이 이해하고 시뮬레이션 최적화 과정에서 효과적인 의사 결정을 내리도록 돕는다. 이를 바탕으로 보다 정확하고 신뢰성 있는 설계와 분석 결과를 도출할 수 있다.   데이터 분석을 위한 예제   그림 2    목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(σ) ≤ 200 MPa  최대 끝단 처짐(δ) ≤ 2 mm  설계 변수 Length : 5,000 mm  Load P : 6,500 N  E : 200 MPa  H : 50 mm ≤ H ≤ 100 mm  h1 : 5 mm ≤ h1 ≤ 30 mm  b1 : 50 mm ≤ b1 ≤ 100 mm  b2 : 5 mm ≤ b2 ≤ 50 mm 히즈의 Discovery Method를 사용하여 분석할 데이터는 우리가 지금까지 계속 예제로 사용한 외팔보의 처짐 문제를 기반으로 Adaptive Sampling Study(어댑티브 샘플링 스터디)에서 500개의 데이터를 생성하여 사용할 것이다. 아니면 독자들이 가지고 있는 데이터를 사용해도 괜찮다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
아레스 캐드 2026의 멀티뷰 블록
데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (2)   DWG 호환 CAD인 그래버트(Graebert)의 아레스 캐드(ARES CAD)는 PC 기반의 아레스 커맨더(ARES Commander), 모바일 기반의 아레스 터치(ARES Touch), 클라우드 기반의 아레스 쿠도(ARES Kudo) 모듈로 구성되어 있다. 이 모듈은 상호 간에 동기화되므로 이를 삼위일체형(Trinity) CAD라고 부른다.  이번 호에서는 오토캐드와 호환되는 데스크톱 PC 기반의 아레스 커맨더 2026 버전(4월1일 출시)의 높은 생산성과 오토캐드에서의 쉬운 전환, 아레스 커맨더에 탑재된 AI 기반 기능을 간단하게 알아보도록 하겠다.   ■ 천벼리 캐디안 3D 솔루션 사업본부 대리로 기술영업 업무를 담당하고 있다.  홈페이지 | www.arescad.kr 블로그 | https://blog.naver.com/graebert 유튜브 | www.youtube.com/GraebertTV   생산성 향상과 오토캐드에서의 손쉬운 전환 새로워진 시작 탭과 UI 구성     아레스 커맨더를 실행하면 가장 먼저 눈에 띄는 변화는 새롭게 구성된 Start(시작) 탭이다. 이제 사용자는 매일 작업을 시작할 때 더욱 직관적이고 편리한 방식으로 업무를 시작할 수 있다. 기존의 복잡한 다이얼로그 창 대신, 핵심 기능들이 한눈에 보이도록 정리된 간결하고 환영하는 분위기의 인터페이스가 사용자를 맞이한다. 새로운 Start 탭은 Home(홈), My Setup(내 설정), Learn More(학습) 의 세 가지 섹션으로 구성되어 있으며, 초보자부터 숙련된 사용자까지 누구나 필요한 기능을 빠르게 찾을 수 있도록 설계되었다. 각 섹션에서는 프로젝트 시작, 개인 설정, 학습 자료 접근 등 다양한 기능을 직관적으로 제공하여, 사용자 경험을 한층 더 향상시킨다. 아레스 캐드를 처음 접하는 국내 사용자도 이 새로운 인터페이스 덕분에 보다 빠르게 적응하고, 효율적으로 작업을 시작할 수 있다.   더욱 직관적으로 개선된 리본 메뉴와 작업 공간 구성     사용자 편의성과 전체적인 작업 경험 향상을 위해, 아레스 커맨더는 리본 메뉴 레이아웃과 작업 공간 옵션을 정교하게 다듬었다. 우선, 리본 메뉴 최적화(Ribbon Optimization)를 통해 각 탭의 구성 방식을 개선했다. 명령어가 보다 체계적으로 분산되어 배치됨으로써, 불필요한 혼잡함은 줄이고 명령 접근성을 높였다. 특히 Home 탭은 자주 사용하는 핵심 명령어들에 집중되어 있어, 일상적인 작업의 효율성을 더욱 높여준다. 새롭게 구성된 리본과 작업 공간 덕분에, 초보 사용자도 쉽게 필요한 기능을 찾고 숙련자 역시 더 빠른 작업 흐름을 경험할 수 있다. 아레스 커맨더는 사용자 중심의 CAD 환경을 지향하며, 한국 사용자에게도 익숙하고 쾌적한 설계 환경을 제공한다.   그래디언트와 패턴을 위한 상황별 리본 메뉴 제공     아레스 커맨더는 선택한 객체나 작업 상황에 따라 관련 도구만을 표시해주는 ‘상황별 리본(Contextual Ribbon)’ 기능을 통해 작업 효율을 한층 더 끌어올렸다. 이 기능은 사용자가 필요한 명령어를 일일이 찾아다니는 시간을 줄여주어, 보다 빠르고 직관적인 작업 흐름을 가능하게 한다. 이번 업데이트에서는 기존의 해치(Hatch) 리본에 이어, 그래디언트(Gradient) 와 패턴(Pattern)에 대한 새로운 상황별 리본 메뉴가 추가되었다. 이들 기능은 각각 그래디언트 채우기와 패턴 디자인을 보다 정밀하고 빠르게 조정할 수 있도록 도와주며, 시각적으로 완성도 높은 결과물을 손쉽게 만들어낼 수 있도록 해 준다. 이처럼 아레스 커맨더는 사용자의 작업 맥락을 이해하고 그에 맞는 도구만을 깔끔하게 보여줌으로써, 초보자부터 전문가까지 모두가 생산성 높은 CAD 환경을 경험할 수 있도록 설계되었다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
엔비디아, 기업 생산성 강화하는 ‘네모 마이크로서비스’ 정식 출시
엔비디아가 에이전트 기반 AI 플랫폼 개발을 가속화하고 기업의 생산성을 높이는 ‘엔비디아 네모 마이크로서비스(NVIDIA NeMo microservices)’를 정식 출시했다고 밝혔다. 이번에 정식 출시된 엔비디아 네모 마이크로서비스는 기업 IT 부서가 데이터 플라이휠(flywheel)을 활용해 직원 생산성을 높일 수 있는 AI 팀원을 빠르게 구축하도록 지원한다. 이 마이크로서비스는 엔드 투 엔드 개발자 플랫폼을 제공한다. 이 플랫폼은 최첨단 에이전틱 AI(Agentic AI) 시스템의 개발을 가능하게 하고, 추론 결과, 비즈니스 데이터, 사용자 선호도에 기반한 데이터 플라이휠을 통해 지속적인 최적화를 지원한다. 데이터 플라이휠을 통해 기업 IT 부서는 AI 에이전트를 디지털 팀원으로 온보딩할 수 있다. 이러한 에이전트는 사용자 상호작용과 AI 추론 과정에서 생성된 데이터를 활용해 모델 성능을 지속적으로 개선할 수 있다. 이를 통해 ‘사용’을 ‘인사이트’로, ‘인사이트’를 ‘실행’으로 전환할 수 있다.     데이터베이스, 사용자 상호작용, 현실 세계의 신호 등의 고품질 입력이 지속적으로 제공되지 않으면 에이전트의 이해력은 약화된다. 그 결과, 응답의 신뢰성은 떨어지고 에이전트의 생산성도 저하될 수 있다. 운영 환경에서 AI 에이전트를 구동하는 모델을 유지하고 개선하기 위해서는 세 가지 유형의 데이터가 필요하다. 인사이트를 수집하고 변화하는 데이터 패턴에 적응하기 위한 추론 데이터, 인텔리전스를 제공하기 위한 최신 비즈니스 데이터, 모델과 애플리케이션이 예상대로 작동하는지를 판단하기 위한 사용자 피드백 데이터가 그것이다. 네모 마이크로서비스는 개발자가 이 세 가지 유형의 데이터를 효율적으로 활용할 수 있도록 지원한다. 또한, 네모 마이크로서비스는 에이전트를 구동하는 모델을 선별하고, 맞춤화하며, 평가하고, 안전장치를 적용하는 데 필요한 엔드 투 엔드 툴을 제공함으로써 AI 에이전트 개발 속도를 높인다. 엔비디아 네모 마이크로서비스는 ▲대규모 언어 모델(LLM) 미세 조정을 가속화해 최대 1.8배 높은 훈련 처리량을 제공하는 네모 커스터마이저(Customizer) ▲개인과 산업 벤치마크에서 AI 모델과 워크플로의 평가를 단 5번의 API 호출로 간소화하는 네모 이밸류에이터(Evaluator) ▲ 0.5초의 추가 지연 시간만으로 규정 준수 보호 기능을 최대 1.4배까지 향상시키는 네모 가드레일(Guardrails)을 포함한다. 이는 네모 리트리버(Retreiver), 네모 큐레이터(Curator)와 함께 사용돼, 맞춤형 엔터프라이즈 데이터 플라이휠을 통해 AI 에이전트를 구축하고, 최적화하며, 확장하는 과정을 기업이 보다 수월하게 수행할 수 있도록 지원한다. 개발자는 네모 마이크로서비스를 통해 AI 에이전트의 정확성과 효율성을 높이는 데이터 플라이휠을 구축할 수 있다. 엔비디아 AI 엔터프라이즈(Enterprise) 소프트웨어 플랫폼을 통해 배포되는 네모 마이크로서비스는 온프레미스 또는 클라우드의 모든 가속 컴퓨팅 인프라에서 엔터프라이즈급 보안, 안정성, 지원과 함께 손쉽게 운영할 수 있다. 이 마이크로서비스는 기업들이 수백 개의 전문화된 에이전트를 협업시키는 대규모 멀티 에이전트 시스템을 구축하고 있는 현재 정식 출시됐다. 각 에이전트는 고유의 목표와 워크플로를 가지고 있으며, 디지털 팀원으로서 복잡한 업무를 함께 해결하며 직원들의 업무를 보조하고, 강화하며, 가속화한다. 엔비디아 네모 마이크로서비스로 구축된 데이터 플라이휠은 사람의 개입을 최소화하고 자율성을 극대화하면서 데이터를 지속적으로 선별하고, 모델을 재훈련하며, 성능을 평가한다. 네모 마이크로서비스는 라마(Llama), 마이크로소프트 파이(Microsoft Phi) 소형 언어 모델 제품군, 구글 젬마(Google Gemma), 미스트랄 등 폭넓은 인기 오픈 모델을 지원한다. 또한, 기업은 엔비디아 가속 인프라, 네트워킹, 그리고 시스코, 델, HPE, 레노버(Lenovo) 등 주요 시스템 제공업체의 소프트웨어를 기반으로 AI 에이전트를 실행할 수 있다. 액센츄어(Accenture), 딜로이트(Deloitte), EY를 비롯한 거대 컨설팅 기업들 역시 네모 마이크로서비스를 기반으로 기업용 AI 에이전트 플랫폼을 구축하고 있다.
작성일 : 2025-04-25
IBM 엑스포스 보고서, “정보 탈취형 악성코드 이메일 작년 대비 84% 증가”
IBM이 발표한 ‘2025 엑스포스 위협 인텔리전스 인덱스 보고서(2025 X-Force Threat Intelligence Index)’에 따르면, 사이버 공격자들이 더 교묘한 수법을 사용하며 기업에 대한 랜섬웨어 공격은 감소한 반면, 눈에 띄지 않는(lower-profile) 자격 증명 도용은 급증했다. IBM 엑스포스는 사이버 공격자들이 신원 탈취 공격을 확대하는 수단으로 인포스틸러 악성코드를 포함한 이메일을 주로 활용하고 있으며, 2024년 이러한 유형의 이메일이 전년 대비 84% 증가했다고 밝혔다. 2025 보고서는 IBM 엑스포스에서 관찰한 신규 및 기존 트렌드와 공격 패턴을 추적하고 침해 사고 대응, 다크 웹 및 기타 위협 인텔리전스 소스에서 얻은 정보를 바탕으로 작성했다. 2023년은 생성형 인공지능(Gen AI)의 본격적인 확산이 시작된 한 해였다. 예견되었던 대로, 사이버 공격자들은 AI를 활용해 웹사이트를 제작하거나, 딥페이크 기술을 피싱 공격에 접목시키기 시작했다. IBM 엑스포스는 공격자들이 생성형 AI를 활용해 피싱 이메일을 작성하거나 악성 코드를 제작하는 사례를 포착하기도 했다. IBM 엑스포스는 과거 보고서에서 하나의 AI 설루션 시장 점유율 50%에 가까워지거나 시장이 소수의 3개 이하 설루션으로 재편되면, 공격자 입장에서는 특정 AI 모델이나 설루션을 노리기가 더 쉬워지고 그만큼 공격할 유인도 커진다고 밝혔다. 아직 그 시점에 도달하지는 않았지만, 도입 속도는 빠르게 증가하고 있다. 실제로, 2024년 기준 최소 하나 이상의 비즈니스에 AI를 도입한 기업의 비율은 72%로, 전년 대비 55% 이상 증가한 것으로 나타났다. 2024년에는 AI를 겨냥한 대규모 공격이 발생하지는 않았다. 보안 전문가들은 사이버 공격자들이 악용하기 전에 취약점을 선제적으로 식별하고 보완하기 위한 대응에 속도를 내고 있다. IBM 엑스포스가 AI 에이전트 구축 프레임워크에서 원격 코드 실행 취약점을 발견한 사례처럼, 이와 같은 문제는 앞으로 더욱 빈번해질 것으로 보인다. 2025년 AI 도입이 확대될 것으로 예상됨에 따라, 공격자들이 AI를 겨냥한 특화된 공격 도구를 개발할 유인도 커지고 있다. 이에 따라 기업들은 데이터, 모델, 활용 방식, 인프라 등 AI 전반에 걸친 보안을 초기 단계부터 강화하는 것이 필수이다.     지난해 가장 많은 공격은 주요 기반시설 조직을 대상으로 감행됐다. IBM 엑스포스가 대응한 2024년 전체 공격 중 70%가 주요 인프라 조직에서 발생했으며, 이 중 4분의 1 이상이 취약점 악용으로 인한 공격이었다. 주요 인프라 조직들은 기존 기술에 대한 의존과 느린 보안 패치 적용으로 인해 여전히 보안 위협에 직면해 있는 것이다. 다크웹 포럼에서 자주 언급된 공통 취약점 및 노출(CVEs)을 분석한 결과, 상위 10개 중 4개가 국가 차원의 지원을 받는 공격자를 포함한 정교한 위협 그룹과 연관된 것으로 나타났다. 해당 취약점들의 악용 코드는 여러 포럼에서 공개적으로 유통되고 있었으며, 이는 전력망, 의료 시스템, 산업 설비 등을 노린 공격의 확산으로 이어지고 있다. 이처럼 금전적 목적의 공격자와 국가 차원의 위협 세력이 정보를 공유하는 흐름은, 패치 관리 전략 수립과 위협 사전 탐지를 위한 다크웹 감시의 중요성을 더욱 부각시키고 있다. 또 다른 주목할 만한 공격은 인포스틸러(infostealer, 정보 탈취형 악성코드)를 활용한 공격이다. 2024년에 인포스틸러를 활용한 이메일은 전년 대비 84% 증가했으며, 2025년 초기 데이터에 따르면 이는 더욱 급증하는데, 주간 발생 건수가 2023년 대비 180% 이상 증가한 것으로 예상된다. 자격 증명 피싱과 인포스틸러를 통해 신원 공격은 저렴하고, 확장 가능하며, 수익성이 좋아졌다. 인포스틸러는 데이터를 빠르게 유출할 수 있어 타깃 지점에 머무는 시간을 줄이고, 포렌식 흔적을 거의 남기지 않는다. 2024년에 다크웹에서 800만 개 이상의 광고가 상위 5개의 인포스틸러만을 위한 것이었으며, 각 광고에는 수백 개의 자격 증명이 포함될 수 있다. 또, 사이버 공격자들은 다크웹에서 다중인증(MFA)을 우회하기 위해 중간자 공격(AITM) 피싱 키트와 맞춤형 AITM 공격 서비스를 판매하고 있다. 손상된 자격 증명과 다중인증 우회 방법이 만연하다는 것은 수요 또한 높다는 것을 의미하며 이러한 추세는 멈출 기미가 보이지 않는다. 지역으로 살펴보면, 2024년 한 해 동안 IBM 엑스포스가 전 세계적으로 대응한 사이버 공격 중 약 34%가 아시아태평양에서 발생하며 아태 지역이 세계에서 가장 많은 사이버 공격을 경험한 것으로 나타났다. 데이터 도용(12%), 인증정보 탈취(10%), 갈취(extortion, 10%) 등이 순위가 높은 공격 대상이었다. 일본은 전체 조사 대상 인시던트의 66%를 차지했으며, 한국, 필리핀, 인도네시아, 태국이 각각 5%의 비율을 차지했다. 분야별로는 제조업이 공격 대상의 26%를 차지하며 4년 연속 사이버 공격이 가장 많이 발생한 산업으로 집계됐다. 특히 랜섬웨어 피해 사례가 가장 많았으며, 시스템 중단에 대한 허용 범위가 극히 낮은 산업 특성상 암호화 공격에 대한 범죄자의 수익성이 여전히 높은 것으로 분석된다. 한국IBM 컨설팅 사이버보안서비스 사업총괄 이재웅 상무는 “사이버 공격은 이제 더욱 조용하고 치밀해지고 있다. 공격자들은 파괴적인 행위 없이 자격 증명을 탈취해 기업 시스템에 접근하며, 인포스틸러와 같은 악성코드를 통해 빠르게 데이터를 유출하고 흔적을 남기지 않는다”고 말하며, “이러한 저위험·고수익 공격이 확산되는 지금, 기업은 단순 방어를 넘어, 인증 시스템 강화와 위협 사전 탐지 체계를 통해 공격 표적이 되지 않도록 대비해야 한다”고 강조했다.
작성일 : 2025-04-24
ABB, 로봇 사업부를 독립 상장 회사로 분사하는 계획 발표
ABB는 2026년 정기 주주총회에서 로봇 사업부의 100% 분사를 위한 제안 절차를 시작한다고 밝혔다. ABB 로봇 사업부는 2026년 2분기에 독립된 상장 회사로 거래를 시작할 예정이다. ABB 로봇 사업부는 전 세계 고객이 노동력 부족, 지속 가능성 요구 등 운영상의 과제를 해결하고 생산성, 유연성, 단순성을 높일 수 있도록 지능형 자동화 설루션을 제공하고 있다. 이 사업부는 광범위한 산업군에 걸쳐 자율 이동 로봇(AMR), 소프트웨어, AI를 포함한 다양한 로봇 플랫폼과 전문성을 결합해 차별화된 가치를 제공하는 데에 초점을 맞추며, 제품군의 80% 이상이 소프트웨어 및 AI를 기반으로 한다. ABB 로봇 사업부는 ABB Way라는 분권화 운영 모델 하에서 2019년 이후 분기 대부분 동안 두 자릿수 영업이익률을 유지해왔다. 과거 공급망 문제가 있었던 선주문 시기를 지나 주문 패턴이 정상화되면서 시장이 안정화되고 있으며, 이로 인해 수주 증가세도 이어지고 있다. 새롭게 상장될 회사는 탄탄한 자본 구조를 갖추고 스웨덴(유럽), 중국(아시아), 미국(미주) 등 지역별 제조 허브를 기반으로 한 현지 중심(local-for-local) 운영 모델로 견고한 현금 흐름을 유지하고 있다. 현재 ABB 로봇 사업부는 약 7000명의 직원이 근무 중이다. 2024년 실적 기준 매출은 23억달러(약 3조 2000억원)로 ABB 그룹 전체 매출의 약 7%이며, 영업 EBITA 마진은 12.1%를 기록했다. 주주들이 분할 제안을 승인할 경우 분할은 주식 배당 방식으로 진행된다. ABB Ltd. 기존 주주는 현재 보유 지분 비율에 따라 상장될 신규 회사(임시 회사명 ‘ABB Robotics’)의 주식을 현물배당 형태로 받게 된다. 또한, 2026년 1분기부터 로봇 사업부와 같은 ABB 로봇 & 자동화(Robotics & Discrete Automation) 사업 영역을 구성하고 있는 기계 자동화(Machine Automation, 이전 B&R) 사업부는 공정 자동화(Process Automation) 사업 영역으로 편입된다. 공정 자동화 사업 영역에 편입되면서 하이브리드 산업을 포함한 다양한 산업에서 소프트웨어 및 제어 기술 시너지 창출이 기대된다. 기계 자동화 사업부는 고급 PLC, IPC, 서보 모션, 산업용 이송 시스템, 비전 및 소프트웨어 기반 설루션을 공급하고 있다. ABB 이사회의 피터 보저(Peter Voser) 회장은 “이사회는 ABB 로봇 사업부를 별도 회사로 상장함으로써 양쪽 모두 고객 가치를 창출하고 성장하며 인재를 유치하는 데 있어 최적의 조건을 갖추게 될 것으로 기대한다. 양사는 보다 집중된 지배구조와 자본 배분의 이점을 누릴 수 있다. ABB는 앞으로도 전기화 및 자동화 분야에서 선도적 위치를 기반으로 장기 전략에 집중할 것”이라고 말했다. ABB의 모르텐 비어로드(Morten Wierod) CEO는 “ABB 로봇 사업은 업계를 선도하고 있으나 다른 ABB 사업부와 사업적 측면 및 기술적 시너지가 제한적이고 수요와 시장 특성도 다르다. 이번 변화는 ABB 그룹과 로봇 비즈니스 양쪽 모두에 있어서 가치 창출을 촉진할 것”이라고 전했다.
작성일 : 2025-04-22
가민, 웰니스 GPS 스마트워치 ‘비보액티브 6’ 출시
가민이 건강 및 피트니스 기능을 강화한 웰니스 스마트워치 ‘비보액티브 6(vívoactive 6)’를 국내 출시했다. 비보액티브 6는 1.2인치 AMOLED(능동형유기발광다이오드) 디스플레이를 탑재해 어떤 환경에서도 밝고 선명한 화면을 제공한다. 가볍고 내구성이 강한 친환경 재생 알루미늄 베젤에 탈부착이 쉬운 퀵 릴리스 실리콘 밴드로 구성되어 장시간 착용에도 편안한 착용감을 선사한다. 배터리는 스마트워치 모드 기준 최대 11일 동안 지속돼, 활동량이 많은 사용자도 충전 부담 없이 사용 가능하다. 비보액티브 6는 ▲블랙/슬레이트 ▲본/루나 골드 ▲재스퍼 그린 ▲핑크 던 총 4가지 색상으로 유저는 취향에 맞춰 선택할 수 있다. 비보액티브 6는 유저를 위한 다양한 웰니스 및 헬스케어 기능을 자랑한다. 새롭게 추가된 ‘스마트 기상 알람(Smart Wake Alarm)’ 기능은 유저가 미리 설정한 기상 시간 범위에서 최적의 시점을 감지해 수면 단계 중 ‘얕은 수면 상태’에 접어들면 부드러운 진동으로 깨워준다. 따라서 사용자는 보다 상쾌한 아침을 맞이할 수 있다. 또한, 건강 데이터를 기반으로 일상의 컨디션을 정밀하게 파악하는 건강 모니터링 기능을 지원한다. ‘보디 배터리(Body Battery) 에너지 모니터링’은 신체활동, 수면, 스트레스 수준 등을 종합해 실시간 에너지 상태를 보여주며 맞춤형 체력 관리 인사이트를 제시한다. 선잠, 깊은 잠, 렘(REM) 수면 패턴을 분석하고 수면 점수 및 수면 가이드를 제공하는 ‘고급 수면 모니터링’도 탑재됐다. 이외에도 HRV(심박수 변동성) 상태, 혈중산소포화도(Pulse Ox), 생리 주기 및 임신 추적 관리 등 다양한 생체 데이터를 활용해 유저는 건강 상태를 종합 관리할 수 있다.     비보액티브 6는 걷기, 러닝, 자전거, 수영, 요가 등 80가지 이상의 내장 스포츠 앱으로 유저의 다양한 운동 루틴 수행을 돕는다. ‘데일리 워크아웃 추천’ 기능을 통해 유저 맞춤형 걷기 운동을 제안하며, ‘가민 코치 훈련 계획’은 유저의 컨디션과 회복 상태에 따른 맞춤형 러닝 및 근력 훈련을 지원한다. 특히 새롭게 추가된 ‘러닝 다이나믹스(Running Dynamics)’ 기능은 보폭, 케이던스를 포함한 러닝 역학 데이터를 기반으로 사용자의 러닝 수준 향상에 도움을 준다. 일상에서의 활용도를 높이는 스마트한 기능 역시 강점이다. 비보액티브 6는 스마트폰과 연동돼 이메일, 문자, 알림을 실시간 확인할 수 있으며, 안드로이드 사용자의 경우 워치를 통한 문자 응답도 가능하다. 유튜브 뮤직, 스포티파이와 같은 음원 스트리밍 플랫폼에서 음악과 플레이리스트를 추가해 스마트폰 없이도 음악 감상이 가능하다. 사고 감지 및 실시간 위치 공유 등의 안전 기능도 내장돼 긴급 상황에 신속하게 대응할 수 있다. 한편, 가민은 비보액티브 6 출시를 기념해 브랜드의 웰니스 철학을 경험할 수 있는 다채로운 소비자 참여형 이벤트를 진행한다. 일상 속 운동을 응원하는 SNS 캠페인, MZ세대 여성 크리에이터들과 함께하는 콘텐츠 프로젝트까지, 보다 많은 이들이 비보액티브 6를 통해 건강한 라이프스타일을 발견할 수 있도록 다양한 프로그램을 마련할 계획이다. 가민의 수잔 라이먼(Susan Lyman) 글로벌 컨슈머 제품 부문 부사장은 “비보액티브 6는 하루의 시작부터 운동, 회복까지 사용자의 모든 활동을 데이터 기반으로 관리하고 누구나 세심하게 웰니스를 실천할 수 있도록 설계된 스마트워치”라며, “스마트 기상 알람, 건강 모니터링, 맞춤형 운동 제안 등 가민만의 독보적 기능을 통해 사용자가 자신의 건강 상태를 이해하고 더 나은 라이프스타일을 설계할 수 있도록 도울 것”이라고 말했다. 비보액티브 6는 가민코리아 공식 온라인몰 및 전국 가민 브랜드샵에서 구매 가능하며 권장 소비자 가격은 47만 9000원이다.
작성일 : 2025-04-22
캔바, 비주얼 스위트 2.0 출시 및 다양한 크리에이티브 제품군 선보여
캔바(Canva)가 AI 시대에 팀이 창작/소통/협업하는 방식을 새롭게 정의하는 ‘비주얼 스위트 2.0(Visual Suite 2.0)’을 선보였다. 창의성과 생산성의 간극을 메우기 위해 설계된 이번 신제품군은 AI 기반 디자인, 원활한 콘텐츠 제작, 강력한 개인화(personalization) 등에 중점을 두었다. 캔바는 미국 에서 열린 제4회 ‘캔바 크리에이트(Canva Create)’ 이벤트에서 비주얼 스위트 2.0을 공개했다. 캔바는 “이번 신제품군은 2억 3000만 명 이상의 월간 활성 사용자 수를 달성하며 빠르게 성장하고 있는 캔바 커뮤니티가 이전보다 더욱 창의적인 방식으로 디자인할 수 있도록 지원한다”면서, “비주얼 스프레드시트부터 데이터 시각화, 대화형 디자인, 대규모 맞춤형 콘텐츠 제작 및 인터랙티브한 경험을 제공하는 혁신적인 방식에 이르기까지, 전 세계 팀들의 일상적인 콘텐츠 생성부터 복잡한 업무를 지원하며 비주얼 커뮤니케이션 분야의 선두 주자로서 입지를 굳힐 것”이라고 전했다.     캔바의 비주얼 스위트 2.0은 대담한 디자인 방식부터 가장 사랑받는 도구의 혁신적 업그레이드까지 콘텐츠, 데이터, 디자인의 세계를 하나의 매끄러운 경험으로 통합하며 창의성과 생산성의 새로운 차원을 선보이고자 했다. 이번에 출시된 제품들은 전반적인 캠페인 기획, 복잡한 데이터의 시각화, 대규모 브랜드 콘텐츠의 신속한 제작 등에 있어 업무의 방식과 창의성, 협업의 미래를 재정의한다. 비주얼 스위트 인 원 디자인(Visual Suite in One Design)은 문서와 프레젠테이션, 웹사이트까지 모든 것을 하나의 디자인과 통합된 형식으로 제작할 수 있는 기술이다. 이를 통해 개별 도구, 분산된 작업 흐름, 연결되지 않은 파일의 필요성이 사라지며, 기획과 브리핑부터 디자인, 납품까지 전체 캠페인을 하나의 협업 공간에서 매끄럽게 처리할 수 있다. 캔바 시트(Canva Sheets)는 시각적이고 강력하며, 모든 작업과 연결되도록 재구상된 스프레드시트이다.
 캔바 시트는 데이터를 텍스트 및 시각 자료와 매끄럽게 통합해 시각적이고 지능적이며 강력한 경험을 제공한다. 매직 스튜디오를 기반으로 한 캔바 시트는 매직 인사이트(Magic Insights)와 같은 기능을 통해 데이터셋을 스캔하여 주요 패턴과 핵심 요점을 파악하며, 데이터 커넥터(Data Connectors)를 사용해 허브스팟(HubSpot), 스태티스타(Statista), 구글 애널리틱스(Google Analytics) 등에서 데이터를 불러와 사용자가 손쉽게 데이터 시각화 작업을 할 수 있게 한다.  매직 스튜디오 확장형(Magic Studio at scale)은 향상된 속도와 규모로 개인화되고 브랜드에 맞춘 콘텐츠를 제작하도록 돕는다. 캔바 시트에 통합된 이 기능은 스프레드시트를 강력한 콘텐츠 엔진으로 변환하고, 팀이 몇 초 만에 대량의 콘텐츠를 생성할 수 있도록 지원한다. 다중 시장(multi-market) 마케팅 캠페인, 영업 활동 및 내부 커뮤니케이션에 사용되는 템플릿에 다이내믹한 데이터가 즉시 채워져, 수작업을 줄이고 생산 속도를 높이며 모든 접점에서 일관성을 유지할 수 있다. 매직 차트(Magic Charts)는 복잡한 데이터를 강력하고 인터랙티브한 비주얼 스토리로 즉시 변환
한다. 이를 통해 누구나 가공되지 않은 수치(raw numbers)를 몇 초 만에 동적이고 브랜드에 맞춘 시각 자료로 변환할 수 있게 한다. 스크롤 가능한 보고서, 애니메이션, 인포그래픽 등을 만들 수 있는 AI 도구는 데이터와 디자인 간 간극을 메워 모든 팀이 인사이트를 명확하고 창의적으로 전달할 수 있도록 지원한다.     캔바 AI(Canva AI)는 음성 인식이 가능한 대화형 창작 파트너이다. 캔바의 모든 생성형 AI 도구를 하나의 원활한 워크플로로 통합해 누구나 아이디어에서 실행까지 몇 초 만에 도달할 수 있게 한다. 텍스트, 슬라이드, 이미지 생성부터 사진 편집 및 디자인 크기 조정에 이르는 모든 작업이 프롬프트나 음성만으로 가능하다. 현재 대화형 디자인 생성은 영어로 지원된다. 캔바 코드(Canva Code)는 인터랙티브 콘텐츠를 디자인하는 과정의 기술적 장벽을 허물고, 간단한 프롬프트만으로 누구나 디자인에 상호 작용 가능한 요소를 더할 수 있게 지원한다. 캔바에서는 계산기부터 플래시 카드, 설문(form)까지 만들 수 있어 정적인 콘텐츠를 별도의 코딩이나 외부 도구 없이도 역동적이고 몰입감 있는 경험으로 전환할 수 있다. 랜딩 페이지, 수업 자료, 프레젠테이션 등 다양한 용도에 상호 작용 가능한 디자인을 몇 마디 단어로 쉽게 제작할 수 있다. 캔바 사진 편집기(Canva Photo Editor)는 스튜디오 품질의 이미지 제작 과정을 간편하게 만든다. 비주얼 스위트의 일부로 통합된 캔바 사진 편집기는 효율성과 편의성을 위해 더욱 강력한 도구로 진화했다. 여기에는 선택된 요소를 정밀하게 수정할 수 있는 AI 기반 포인트 앤 클릭 편집 기능(Point and Click Editing), 조명과 레이아웃을 고려한 AI 배경 생성, 손쉬운 객체 제거 및 교체 기능이 포함된다. 한편, 캔바는 2022년 비주얼 스위트 출시 이후 글로벌 성장세가 더욱 가속화되고 있으며 1억 4500만 명 이상의 신규 사용자를 확보했다고 밝혔다. 현재 1초마다 376개 이상의 디자인이 제작되며, 2013년 캔바가 출시된 이래 총 350억 개의 디자인이 만들어졌다. 캔바의 연간 매출은 30% 이상 증가하며 30억 달러 이상의 연간 수익을 달성했다. 캔바의 멜라니 퍼킨스(Melanie Perkins) 공동 창업자 및 CEO는 “10여년 전 캔바 창립 이래 최대 규모의 제품 출시이자, 창의성과 생산성이 만나는 비주얼 스위트 2.0을 발표하게 되어 기쁘다”면서, “매년 2억 3000만 명에 이르는 캔바 커뮤니티는 수백만 가지의 아이디어를 공유하고 있는데, 그 중 지속적으로 공유되는 것 중 하나는 창의성과 생산성을 하나의 원활한 흐름으로 통합하고 싶다는 것이었다. 재구성된 업무 필수 요소부터 자신만의 디자인 파트너와 함께 창작할 수 있는 완전히 새로운 방식에 이르기까지, 누구나 자신의 아이디어를 쉽게 구현할 수 있도록 지속적으로 지원할 수 있길 기대한다”고 설명했다.
작성일 : 2025-04-11
[칼럼] AI의 거대한 파도, 엔비디아가 만드는 미래
트렌드에서 얻은 것 No. 22    AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” – 젠슨 황   AI의 거대한 파도, 엔비디아가 만드는 미래 엔비디아는 2024년과 2025년 GTC(GPU Technology Conference)에서 AI 기술을 통해 산업 전반에 걸친 변화를 이끌어가고 있다. 젠슨 황은 기조연설에서 기술 혁신이 사회적, 경제적 구조를 재편하는 ‘변화의 파도’라고 강조하며, 엔비디아가 그 중심에서 미래를 설계하고 있음을 확신시켰다.  엔비디아는 두 해 동안 AI 혁신을 가속화하며 다양한 제품과 플랫폼을 선보였다. 2024년에는 GB200 AI 플랫폼과 블랙웰(Blackwell) DGX B200 GPU를 통해 성능 향상에 초점을 맞췄다면, 2025년에는 블랙웰 울트라(Blackwell Ultra) 기반의 NVL72 등 차세대 하드웨어와 지속 가능성을 강조하며 더 큰 비전을 제시했다.   표 1. 2024년과 2025년 엔비디아의 주요 발표 비교   인공지능 혁명의 변곡점에서 인류는 늘 기술의 발전과 함께 새로운 시대를 맞이해 왔다. 산업혁명이 증기기관과 전기를 통해 생산 방식을 혁신했던 것처럼, 디지털 혁명은 인터넷과 스마트폰을 통해 세상을 연결했다. 그리고 지금, 우리는 또 하나의 거대한 변곡점에 서 있다. 바로 AI 혁명이다. 2025년 3월, 엔비디아의 GTC에서 젠슨 황 CEO는 기조연설을 통해 AI가 변화의 중요한 시점에 도달했음을 선언했다. 그는 AI가 단순한 도구를 넘어 ‘스스로 사고하고 결정하는 존재’로 발전하고 있으며, 이 거대한 변화가 기업, 산업, 그리고 인간의 삶 전반에 걸쳐 영향을 미칠 것이라고 강조했다. 이번 GTC 2025에서 가장 주목받은 키워드는 에이전틱 AI(agentic AI)와 추론 AI(reasoning AI)였다. 기존의 AI가 데이터를 분석하고 패턴을 찾는 데 주력했다면, 이제 AI는 자율적으로 목표를 설정하고 스스로 문제를 해결하는 방향으로 나아가고 있다. 이러한 변화는 단순한 업그레이드가 아니라, AI 산업 전반의 패러다임을 뒤흔드는 파도와 같다. 이러한 흐름 속에서 엔비디아는 블랙웰 GPU라는 차세대 칩을 공개하며, 인공지능 모델의 효율성을 비약적으로 향상시키는 새로운 하드웨어 시대를 열었다. 또한 옴니버스 클라우드 API(Omniverse Cloud API), AI 팩토리(AI Factories) 등의 개념을 통해 AI가 단순한 연구 도구가 아니라, 실제 산업을 자동화하고 혁신하는 핵심 인프라로 자리 잡아가고 있음을 보여주었다. 그렇다면 우리는 이러한 변화의 바람 속에서 어떤 선택을 해야 할까? AI 혁명의 파도를 넘는 기업과 뒤처지는 기업의 차이는 무엇일까? 엔비디아의 발표를 중심으로 AI 산업이 어디로 흘러가고 있는지, 그리고 그 변화 속에서 우리는 무엇을 준비해야 하는지를 하나씩 짚어보자. “AI가 단순한 연구 프로젝트에서 벗어나, 본격적인 산업 혁신의 중심으로 자리 잡는 것” – 젠슨 황   블랙웰, AI의 새로운 엔진 기술 혁신의 역사는 더 빠르고 더 강력하며 더 효율적인 도구를 만들려는 인간의 끝 없는 도전과 함께 발전해 왔다. AI 산업도 예외가 아니다. 과거에는 단순한 이미지 분석과 음성 인식이 AI의 주요 활용 분야였다면, 이제는 스스로 학습하고 결정을 내리며 복잡한 문제를 해결하는 AI가 요구되고 있다. 하지만 이런 고도화된 AI 모델을 운용하려면 엄청난 연산 능력이 필요하며, 이를 뒷받침할 강력한 하드웨어가 필수이다. GTC 2025에서 젠슨 황이 가장 먼저 소개한 것은 블랙웰 GPU였다. 그는 “AI의 미래를 가속하는 가장 강력한 엔진”이라며, 블랙웰이 기존 호퍼(Hopper) 아키텍처를 넘어선 새로운 시대의 핵심 기술이라고 강조했다. 그렇다면 블랙웰 GPU는 무엇이 다를까? 블랙웰 GPU는 기존 호퍼 아키텍처 대비 연산 성능이 2배 이상 향상되었으며, 특히 대규모 AI 모델을 실행할 때의 전력 효율이 4배 증가했다. 이는 곧 더 적은 에너지로 더 강력한 AI 모델을 훈련하고 실행할 수 있다는 의미다. 젠슨 황은 연설에서 “블랙웰은 단순한 속도 개선이 아니라, AI 연구자들이 더 크고 복잡한 모델을 현실적으로 활용할 수 있도록 지원하는 플랫폼”이라고 설명했다. 이제 AI 연구자는 엄청난 비용을 감수하지 않고도 보다 정교한 생성형 AI, 실시간 데이터 처리, 고도화된 시뮬레이션 등을 구현할 수 있게 되었다. 엔비디아는 블랙웰 GPU와 함께 옴니버스 클라우드 API를 발표했다. 이는 단순한 클라우드 컴퓨팅 설루션이 아니라, AI 모델 개발 및 실행을 위한 강력한 협업 플랫폼이다. 옴니버스 클라우드 API는 데이터센터, AI 연구소, 기업의 IT 인프라를 하나의 거대한 AI 네트워크로 연결하여, 개발자들이 실시간으로 협업하고 AI 모델을 학습할 수 있도록 지원한다. 이는 특히 자율주행, 산업 자동화, 로보틱스 같은 분야에서 AI의 혁신 속도를 극적으로 끌어올릴 것으로 기대된다. 젠슨 황은 “AI 개발은 더 이상 한 기업이나 연구소만의 일이 아니다. 옴니버스 클라우드 API를 통해 전 세계의 AI 개발자가 하나로 연결될 것”이라며, AI 연구의 새로운 생태계를 제시했다. 또 한 가지 주목할 점은 AI 팩토리(인공지능 공장) 개념이다. 젠슨 황은 AI를 ‘새로운 산업 혁명의 동력’으로 표현하며, AI 팩토리가 데이터를 가공하고 AI 모델을 대량으로 생산하는 핵심 인프라가 될 것이라고 설명했다. 이 개념을 이해하려면 기존 제조업과 비교해보면 쉽다. 과거에는 자동차나 전자제품을 생산하는 공장이 경제의 중심이었지만, 미래에는 AI를 학습하고, 최적화하고, 배포하는 ‘AI 공장’이 가장 중요한 인프라가 될 것이다. 젠슨 황은 AI 팩토리가 AI 기반 자율주행, 로봇, 데이터 분석, 금융 모델링 등 다양한 산업에서 필수 역할을 하게 될 것이라고 강조했다. 블랙웰 GPU, 옴니버스 클라우드 API, AI 팩토리는 단순한 기술 발전이 아니다. 이들은 AI가 단순한 연구 프로젝트에서 벗어나 본격적인 산업 혁신의 중심으로 자리 잡는 것을 의미한다. 과거에도 GPU의 성능 향상이 AI 산업에 변화를 가져온 적이 있다. 2012년 알렉스넷(AlexNet)이 GPU 가속을 이용해 딥러닝의 가능성을 처음 보여줬고, 2017년 트랜스포머(transformer) 모델이 등장하며 자연어 처리 AI가 급격히 발전했다. 그리고 2025년에는 블랙웰이 AI의 자율성과 창의성을 한 단계 끌어올리는 전환점이 될 것이다. 젠슨 황이 기조연설에서 블랙웰을 소개하며 한 말이 특히 인상적이었다. “AI는 이제 단순한 도구가 아니라 스스로 사고하고 결정하는 존재로 나아가고 있다.” 이 말은 곧, 우리가 맞이할 AI의 미래가 이전과는 전혀 다른 차원이라는 것을 시사한다. 그리고 그 변화를 가속하는 엔진이 바로 블랙웰이다. “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다.” – 젠슨 황   엔비디아가 던진 화두, 에이전틱 AI와 추론 AI AI 기술의 발전은 단순히 연산 능력을 향상시키는 것에 그치지 않는다. 더 중요한 것은 AI의 ‘사고 방식’이 바뀌고 있다는 점이다. 지금까지의 AI는 데이터를 학습하고 패턴을 인식하는 역할을 해왔다. 하지만 이제 AI는 스스로 목표를 설정하고, 상황에 맞게 판단하며, 능동적으로 문제를 해결하는 방향으로 진화하고 있다. GTC 2025에서 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 바로 이러한 변화의 핵심 개념이다. 그는 이 두 가지 개념이 AI를 단순한 도구에서 ‘자율적 지능’으로 변화시키는 결정적 요소라고 설명했다. 그렇다면 에이전틱 AI와 추론 AI는 무엇이며, 어떤 변화를 가져올까? 에이전틱 AI의 핵심은 AI가 인간의 지시 없이도 능동적으로 목표를 설정하고, 실행할 수 있도록 만드는 것이다. 기존의 AI는 주어진 데이터와 명령에 따라 최적의 결과를 도출하는 ‘수동적’ 존재였다. 하지만 에이전틱 AI는 스스로 목표를 설정하고, 문제를 해결하는 ‘능동적’ 존재로 변하고 있다. 젠슨 황은 에이전틱 AI를 활용하면 인간이 직접 개입하지 않아도 AI가 알아서 문제를 해결하는 시대가 열린다고 강조했다. 추론 AI는 한 단계 더 나아가, AI가 단순한 패턴 인식을 넘어 논리적 사고를 수행할 수 있도록 만드는 기술이다. 기존 AI 모델은 데이터를 학습하고 특정 패턴을 기반으로 예측을 수행했지만, 그 과정에서 왜 이런 결론이 나왔는지 설명하지 못하는 경우가 많았다. 그러나 추론 AI는 AI가 논리적인 판단을 수행하고, 의사결정의 과정을 설명할 수 있도록 하는 것을 목표로 한다. 젠슨 황은 “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다”며, 추론 AI가 향후 AI 발전의 핵심이 될 것이라고 강조했다. 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 개별적인 개념이 아니라, 서로 결합될 때 가장 강력한 시너지를 발휘한다. 에이전틱 AI는 AI가 스스로 목표를 설정하고, 문제를 해결할 수 있도록 한다. 추론 AI는 AI가 단순한 계산이 아니라, 논리적 사고를 통해 최적의 결정을 내릴 수 있도록 한다. 이 두 가지가 결합되면, AI는 단순한 보조 도구를 넘어서 ‘진정한 지능(Artificial General Intelligence : AGI)’에 가까워질 것이다. 이러한 AI의 발전은 산업 전반에 걸쳐 거대한 변화의 파도를 일으킬 것이며, 기업들은 단순한 AI 도입을 넘어서 AI를 기업 전략의 중심으로 삼아야 하는 시점에 이르렀다. “AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다.” – 젠슨 황   AI 팩토리, AI 혁명을 생산하는 공장 이제 AI는 단순한 소프트웨어가 아니라 하나의 ‘산업’으로 성장하고 있다. GTC 2025에서 젠슨 황이 강조한 개념 중 하나가 바로 AI 팩토리(인공지능 공장)이다. 그는 AI 팩토리를 가리켜 ‘미래 산업의 심장’이라고 표현했다. 그렇다면 AI 팩토리란 무엇이며, 왜 중요할까? 이 개념이 가져올 변화는 무엇일까? 기존의 데이터센터는 단순한 컴퓨팅 인프라였다. 하지만 AI 팩토리는 데이터를 학습하고, AI 모델을 훈련하며, 새로운 AI 설루션을 ‘생산’하는 역할을 한다. 즉, AI가 AI를 만들어내는 공장이다. 젠슨 황은 AI 팩토리를 자동차 산업에 비유하며 설명했다. “과거에는 사람이 손으로 자동차를 조립했지만, 지금은 로봇이 자동차를 생산한다. AI도 마찬가지다. 미래에는 사람이 AI를 개발하는 것이 아니라, AI 팩토리에서 AI가 스스로 AI를 만들어내게 될 것이다.” 즉, AI 팩토리는 단순한 데이터 센터가 아니라 AI 혁명을 대량 생산하는 공장이 된다. 젠슨 황은 GTC 2025에서 "AI 팩토리를 구동하는 핵심 연산 장치는 블랙웰 GPU가 될 것"이라고 강조했다. AI 팩토리에서 생산되는 것은 반도체나 기계가 아니라 AI 자체다. 이 공장에서 에이전틱 AI, 추론 AI, 자율주행 AI, 생성형 AI 등이 대량으로 생산된다. 즉, AI 팩토리는 단순한 데이터 센터를 넘어 새로운 AI 산업의 허브가 된다. AI 팩토리가 등장하면 기업과 산업이 근본적으로 변화한다. 특히, 데이터를 기반으로 하는 모든 산업이 AI 팩토리를 도입할 가능56 · 성이 높다. 결국 AI 팩토리는 단순한 연구소가 아니라, 실제 AI 모델을 ‘대량 생산’하여 산업에 공급하는 핵심 인프라가 된다. 젠슨 황은 AI 팩토리의 등장이 단순한 기술 발전이 아니라 경제 패러다임의 변화라고 강조했다. 이제 기업은 단순히 AI를 도입하는 것을 넘어, AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다. “AI를 도입하지 않는 기업은 도태될 것이다.” – 젠슨 황   AI의 도입, AI가 기업을 재설계한다 AI 혁명은 더 이상 선택이 아니다. GTC 2025에서 젠슨 황이 강조한 메시지는 명확했다. "AI를 도입하지 않는 기업은 도태될 것이다." 이제 AI는 기업 운영의 한 요소가 아니라 기업의 핵심 전략, 구조, 성장 엔진 자체로 변화하고 있다. 기업은 어떻게 AI를 도입하고 있으며, AI 도입이 비즈니스에 미치는 영향은 무엇일까? 과거 AI 도입은 단순한 자동화 도구 활용이었다. 그러나 이제 AI 도입(AI adoption)은 기업의 핵심 역량을 AI 중심으로 전환하는 과정이다. AI 도입은 이제 단순한 기술의 도입이 아니라, 기업의 전략과 문화 자체를 AI 중심으로 변화시키는 과정이다. AI 도입이 빠르게 진행될 수록, 기업들은 직접 AI를 개발하는 것이 아니라 필요한 AI 서비스를 구독하는 방식으로 활용하는 시대가 열리고 있다. AI 도입이 가속화되면서 기업들은 완전히 새로운 방식으로 운영되고 있다. 특히, 의사결정 구조, 업무 방식, 조직 문화가 AI 중심으로 변화하고 있다. 이제 AI는 단순한 도구가 아니다. AI 도입이 진행될 수록, 기업의 핵심 전략과 비즈니스 모델 자체가 AI 중심으로 변화하고 있다. 결국, AI 도입을 성공적으로 수행하는 기업만이 미래 시장에서 생존하고 성장할 수 있을 것이다.    표 2. 기존 기업 vs. AI 중심 기업의 차이점   AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” – 젠슨 황   네트워킹, AI 시대의 연결과 협업 AI가 기업의 핵심 전략이 되고 산업 전체가 AI 기반으로 재편되는 과정에서, 네트워킹(networking)의 중요성이 더욱 강조되고 있다. 과거 기업은 독립적으로 성장하는 전략을 취했지만, 이제 AI 시대에서는 기업 간 협력, 데이터 공유, AI 연구 협업이 필수이다. GTC 2025에서 젠슨 황은 이렇게 말했다. “AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” 그렇다면 AI 시대의 네트워킹은 어떻게 이루어지고 있으며, 어떤 기업이 AI 협업을 통해 새로운 가치를 창출하고 있을까? AI 네트워킹의 의미는 ‘AI는 연결을 필요로 한다’로 해석된다. AI 혁명이 가속화될 수록 기업들은 서로 연결될 필요가 있다.  즉, AI 네트워킹이란 기업들이 AI를 더 빠르고, 더 효율적으로, 더 윤리적으로 활용하기 위해 서로 협력하는 과정을 의미한다. AI 네트워킹을 실현하는 방식은 다양하지만, 현재 가장 중요한 세 가지 협력 모델을 살펴보자. AI 팜(AI farms)을 통해 개별 기업이 AI 인프라를 구축하는 부담을 줄이고, 더 빠르게 AI를 도입할 수 있다. AI 얼라이언스(AI alliance)를 통해 기업들은 경쟁이 아닌 협력을 기반으로 AI 혁신을 가속화하고 있다. 즉, AI 데이터 공유는 이제 개인정보 보호를 유지하면서도 기업들이 협력할 수 있는 새로운 방식으로 발전하고 있다. AI 네트워킹이 활성화됨에 따라, 기업들은 완전히 새로운 방식으로 연결되고 협력하고 있다. AI 시대에는 한 산업 내에서 경쟁하는 것이 아니라, 다양한 산업과 연결되는 것이 핵심 전략이 된다. 결과적으로, AI 네트워킹을 활용하는 기업들은 새로운 기회를 창출하고, 더 빠르게 AI 중심으로 전환하고 있다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다.” – 젠슨 황   AI 시대의 미래, 우리는 어디로 가는가 AI 혁명은 이제 단순한 기술 발전을 넘어 산업, 사회, 인간의 삶 자체를 근본적으로 변화시키고 있다. GTC 2025에서 젠슨 황은 말했다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다. ”그렇다면 AI의 미래는 어디로 향하고 있으며, 우리는 AI와 함께 어떤 세상을 만들어가야 할까? 에이전틱 AI와 추론 AI의 발전이다. 즉, AI가 단순한 ‘도구’가 아니라, 인간과 협력하는 ‘실제적인 파트너’가 되는 시대가 다가오고 있다. 기존의 AI는 패턴을 학습하는 방식이었다. 그러나 추론 AI는 스스로 논리적으로 사고하고 추론하는 능력을 갖춘다. 즉, AI가 더 이상 단순한 자동화 도구가 아니라, 지능적인 사고를 할 수 있는 존재로 변화하고 있다. AI가 점점 더 지능적으로 발전하면서, 우리는 ‘AI와의 관계를 어떻게 설정할 것인가’라는 근본적인 질문을 마주하게 되었다. 이제 AI는 단순한 도구를 넘어, 인간과 협력하여 새로운 가치를 창출하는 존재로 변화하고 있다. AI가 고도화될 수록 우리는 AI의 윤리적 문제와 사회적 책임에 대한 고민을 깊게 해야 한다. 결과적으로, 각국이 AI 규제와 발전 전략을 다르게 설정하면서 AI 패권 경쟁이 더욱 치열해지고 있다. AI는 단순한 기술이 아니라, 인류가 새로운 방식으로 사고하고 일하고 살아가는 방식을 바꾸는 거대한 전환점이 되고 있다. “AI는 이제 단순한 도구가 아니라, 스스로 사고하고 결정하는 존재로 나아가고 있다.” – 젠슨 황   변화의 바람을 넘어, AI와 함께 새로운 항해를 시작하다 AI 혁명은 거대한 바람이 아니라, 이제는 우리가 타고 항해해야 할 파도다. 과거에는 변화가 두려운 것이었다. 그러나, AI와 함께라면 우리는 변화 속에서도 새로운 기회를 창출할 수 있다. 엔비디아 GTC 2025에서 젠슨 황이 던진 질문을 기억하자. “AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” 이제 우리는 AI와 함께 새로운 항해를 시작할 준비를 해야 한다.   그림 1. 엔비디아 기업 성장 맵(GTC 2024, 2025, Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-04-02
마이크로소프트, “한국 기업과 AI 협력 확대하며 산업 분야 AI 전환 가속화 본격 지원”
마이크로소프트가 미래 핵심 산업의 성장을 이끌 주요 AI 혁신 사례를 발표하면서, 한국의 AI 트랜스포메이션 가속화를 위한 본격 지원에 나서겠다고 밝혔다. 마이크로소프트는 3월 26일 열린 ‘마이크로소프트 AI 투어 인 서울(Microsoft AI Tour in Seoul)’에서 ‘마이크로소프트 365 코파일럿(Microsoft 365 Copilot)’에 추론 모델을 적용한 두 가지 AI 에이전트를 처음으로 공개됐다. 추론은 AI가 업무 데이터와 웹 정보 등 복잡한 데이터를 기반으로 추론하고, 다양한 맥락을 통합해 고도화된 문제 해결을 지원하는 기능이다. 리서처(Researcher)는 오픈AI의 o3 추론 연구 모델과 코파일럿의 조합 및 심층 검색 기능을 통합해 새로운 시장 전략, 분기 미팅을 위한 고객 조사 등의 복잡한 분석 작업을 수행할 수 있다. 애널리스트(Analyst)는 최신 추론 모델의 연쇄 추론 능력을 기반으로 분산된 다양한 데이터를 분석해 새로운 제품의 수요 예측, 소비자 구매 패턴 분석, 매출 데이터 트렌드 파악 등 비즈니스 핵심 인사이트를 도출한다. 이번에 공개된 AI 에이전트는 오는 4월부터 마이크로소프트 365 코파일럿 라이선스 고객 대상으로 ‘프런티어(Frontier)’ 프로그램을 통해 순차적으로 제공될 예정이다. ‘AI 투어 인 서울’ 행사 참석을 위해 한국을 찾은 마이크로소프트의 사티아 나델라 CEO 겸 이사회 의장은 비즈니스 리더들과 만나 AI 발전 방향과 산업별 적용 가능성을 논의하며, 국내 산업의 혁신과 성장을 가속화하기 위한 기술 협력과 지원 확대를 약속했다. 그는 “AI는 한국의 일상과 업무 방식을 빠르게 변화시키고 있다”면서, “소비재, 에너지, 유통, 통신 등 다양한 산업 분야의 한국 기업이 AI를 적극 도입해 새로운 성장과 기회를 창출해 나가는 모습을 직접 볼 수 있다는 건 정말 멋진 일”이라고 말했다.     또한, 이번 행사에서는 마이크로소프트의 주요 고객 및 파트너사의 리더들이 전하는 AI 전략 및 비즈니스 인사이트와 함께, 해당 산업에서 AI 설루션을 통해 창출된 혁신적인 변화가 소개됐다.  KT는 2024년 체결한 마이크로소프트와의 전략적 파트너십을 바탕으로 AI·클라우드 혁신을 위한 협력 방향과 구체적인 실행 계획을 공개했다. 또한, 마이크로소프트 365 코파일럿 전사 도입과 CoE(Center of Excellence) 설립 사례를 발표하며, 사내 AI 기반 업무 시스템 구축을 위한 노력을 강조했다. 또한, KT는 올해 한국어 및 한국 문화에 최적화된 대규모 언어 모델(LLM) AI 설루션을 출시할 예정이며, 이를 KT의 고객 서비스에 적용해 차세대 AI 경험을 제공한다는 계획이다. 스마트 홈 로봇 ‘Q9’을 소개한 LG전자는 애저 오픈AI 서비스(Azure OpenAI Service) 기반 GPT 연동 및 음성 합성 기술을 통해 스마트한 공감지능 대화 서비스를 제공하며, 보다 안전하고 편리한 생활 환경을 조성할 수 있는 새로운 스마트 공간 플랫폼을 제시했다. 씨젠은 AI 기반 개발 자동화 시스템(SGDDS) 프로젝트를 통해 연구 속도를 획기적으로 개선한 사례를 발표했으며, 이를 통해 분자진단 업계의 연구 혁신을 가속화하고, 새로운 연구 방식의 기준을 정립했다. GS리테일은 마이크로소프트 365 코파일럿을 활용한 다양한 업무 효율성 향상 사례를 발표하며, 물류·유통 산업의 AI 혁신 가능성을 조명했다. 아모레퍼시픽은 개인 맞춤형 피부 진단을 제안하는 애저 오픈AI 서비스 기반 대화형 AI 뷰티 카운슬러(AI Beauty Counselor)를 소개하며, AI를 통한 뷰티 산업의 새로운 혁신을 예고했다. 한화큐셀은 애저 오픈AI 서비스와 IoT를 활용해 태양광 에너지 관리 시스템을 혁신한 사례를 공개하면서, 에너지 대전환 시대의 과제를 해결할 수 있는 AI 전략을 제시했다. 갤럭시 코퍼레이션은 애저 오픈AI 서비스를 기반으로 한 AI 설루션 '소라(Sora)'를 선보이며, 엔터테인먼트 산업에서 기술과 콘텐츠의 융합으로 새로운 경험이 창출되는 미래를 현실로 구현했다. 한국마이크로소프트의 조원우 대표는 “한국의 국제적 산업 경쟁력과 창의성은 AI 중심의 글로벌 비즈니스 생태계에서도 선도적인 위치를 확보하는 데 중요한 기반이 되고 있다”면서, “이번에 발표된 사례는 산업별 AI 트랜스포메이션이 가져오는 혁신과 성과를 보여준다”고 강조했다.
작성일 : 2025-03-26