• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "컴퓨터 비전"에 대한 통합 검색 내용이 2,431개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[칼럼] 로봇 기반 제조 자동화와 디지털 트윈
디지털 트윈과 산업용 메타버스 트렌드   영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다 이 글에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   장영재 교수 / 카이스트  “헬기를 몰 줄 알아요?” 남자 요원이 동행한 여자 요원에게 물었다. “아니요. 아직은요. 잠시만 기다리세요.” 그리고 즉시 여자 요원은 무전로 본부에 연락해, 헬기 시뮬레이션 교육프로그램을 업로드 해달라 본부에 요청했다. 본부에서는 즉시 시뮬레이션 교육프로그램을 가속으로 돌려 헬기 조정 능력을 여자 요원의 머리에 업로드하였다. 여자요원은 불과 몇 초 사이에 수백시간 걸릴 헬기훈련을 마친 베터랑 헬기 조정사 능력을 가지게 되었다. 그리고 여자 요원은 외쳤다. “빨리 헬기를 몰고 도망칩시다!” 그리고 여자 요원은 능숙한 솜씨로 헬기를 몰고 남자요원과 함께 탈출한다. 1999년 개봉된 영화 매트릭스의 한 장면이다. 가상의 세상과 실제 세상을 오가며 과연 무엇이 진실이며 실제 (real)이란 무엇일까란 질문을 던지는 매우 철학적인 영화다 .  영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다. 본 특집에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   1. 시뮬레이션과 디지털 트윈의 차이 우리나라 과학기술정보 통신부에서는 디지털 트윈을 다음과 같이 정의하고 있다.  “가상세계에서 실제 사물의 물리적 특징을 동일하게 반영한 쌍둥이 (Twin)을 3D 모델로 구현하고 제 사물과 실시간으로 동기화 및 시뮬레이션을 통해 관제, 분석, 예측 등 현실의 의사결정에 활용하는 기술” 그러나 이러한 정의만으로는 구체적으로 디지털 트윈을 파악하기에 모호하다. 시뮬레이션과 디지털 트윈의 차이가 무엇인지, 실시간 동기화가 왜 필요한지, 관제, 분석, 예측은 이미 다양한 방식으로도 가능한데 디지털 트윈이 제공하는 또 다른 가치가 있는지 설명이 부족하다. 최근 디지털 트윈 관련 이슈가 많다 보니 기업들도 앞 다투어 디지털 트윈을 기술을 확보했다는 등의 보도자료를 통해 기술 홍보를 하기도 한다. 이런 대부분은 공장의 가공 로봇이 움직임을 실시간 3D 애니메이션으로 구현해서 실제 로봇의 움직임을 컴퓨터에 시연하는 정도다. 그러나 이러한 시연을 보면 대부분 사람들의 반응은 “이것으로 무엇을 하지요?” “굳이 거액을 들여 실물의 움직임을 컴퓨터 그래픽으로 그대로 보여줄 필요 있나요? 그저 CCTV 하나 설치하면 컴퓨터에서 영상으로 볼 수 있는 것을 굳이 컴퓨터 그래픽 3D영상으로 구현할 필요가 있나요?” 등의 반응이다. 그렇다면 우선 시뮬레이션과 디지털 트윈의 차이가 무엇일까? 2. 디지털 트윈이 과연 무엇인가?   시뮬레이션은 가상의 시나리오를 기반으로 그 결과를 재현해 보는 것을 의미한다. 내가 A란 결정을 했을 때 그 결과가 어떻게 나올지를 유추해 보는 것이 시뮬레이션이다. 우리가 일반적으로 잘 알고 있는 시뮬레이션이 컴퓨터 시뮬레이션이다. 즉 컴퓨터가 구현한 상황에서 특정 의사결정에 대해 그 결과를 컴퓨터를 통해 산출하는 것이다. 컴퓨터 시뮬레이션 활용의 대표적인 예가 워 게임 (War Game)이다. 군에서는 전략전술 교본이나 전술, 그리고 무기 체계 설계를 할 때 컴퓨터를 통한 시뮬레이션을 활용한다. 평가나 실험을 위해 실제 전투나 전쟁을 치를 수 없기에 컴퓨터를 통해 가상의 적군과 전투를 하며 훈련을 하거나 전술 평가에 활용한다. 실제 컴퓨터 시뮬레이션 활용에 대한 연구가 가장 활발히 이뤄지는 분야가 국방 시뮬레이션 분야인 이유다.  우리 일상 생활에서도 이러한 시뮬레이션이 실제 많이 활용된다. 대표적인 예가 바로 자동차 네비게이션이다. 10년전 네비게이션을 떠올리면 전형적인 시뮬레이션 장비라 할 수 있다. 목적지를 입력하면 내 위치에서 목적지까지 수많은 대안 경로 중 최적 경로를 제안해 준다 . 그러나 당시 네비게이션은 실시간 교통정보를 경로 탐색에 담지 않았다. 그러다 보니 출퇴근 교통혼잡이나 사고로 인한 교통 체증과 같은 상황에서도 일반 상황과 동일한 이동경로 시간 산출과 경로를 제시하는 한계가 있었다. 최근 자동차 네비게이션이나 스마트폰 차량 맵은 실시간 교통정보를 포함해 다양한 대안 경로를 제시한다. 즉 실시간 GPS 정보를 통해 내 차량의 위치는 클라우드의 컴퓨터로 전송이 되고 또한 다양한 교통정보를 기반으로 실시간으로 대안경로를 찾고 도착시간을 지속해서 업데이트 한다. 그리고 내차의 이동 경로와 교통 상황은 사용자가 직관적으로 파악할 수 있도록 컴퓨터 그래픽으로 전달된다. 즉 실시간 교통정보를 기반으로 지속적인 업데이트된 경로를 제공하는 스마트폰 네비 앱이 디지털 트윈의 가장 대표적인 사례다. 학문에서는 디지털 트윈의 조건을 아래로 정의한다. 1. 실물과 가상의 시스템이 거의 실시간 (near real-time)으로 연동되어야 한다. 2. 다양한 상황의 시나리오를 검토하고 대안을 제시할 수 있어야 한다. 3. 사용자의 의사결정을 지원하며 사용자가 쉽게 의사결정 상황을 직관적으로 파악할 수 있는 인터페이스를 제공해야 한다.   스마트폰 네비는 위 조건을 모두 만족한다. 실시간으로 차량의 위치가 GPS로 전송되고 교통정보도 활용한다는 점에서 1번 조건을 만족하며, 다양한 대안경로를 검토함으로 2번 조건을 만족하며, 사용자의 최적경로를 제안하며 이러한 경로를 그래픽으로 전달하는 방식으로 3번 조건을 만족한다. 즉 스마트폰 네비가 우리 생활의 디지털 트윈이라 할 수 있다. 이런 의미를 보면 굳이 디지털 트윈이 현실과 매우 흡사한 고퀄리티 네비를 제공해 줄 의무는 없고 3D그래픽을 제공하는 것도 조건은 아니다. 사람의 의사결정을 직관적으로 지원해 줄 수 있는 정도면 기능이 충분하다 할 수 있다. 3. 로봇 기반 제조 운영에서의 디지털 트윈   이러한 디지털 트윈 활용의 가장 대표적인 예가 제조 물류 자동화 시스템 설계 및 운영이다. 최근 제조 시스템의 가장 큰 변화 중의 하나는 컨베이어 벨트가 없는 자동화(Beltless Automation)로 표현되는 군집 로봇 기반 물류 자동화다. 1916년 포드 T모델이 컨베이어 방식으로 생산되며 제조 자동화 혁명을 가져왔다. 이후 컨베이어 벨트 기반 물류 자동화는 공장 자동화의 표준 생산이 되었다. 그러나 이러한 컨베이어 방식은 단일 품종 대량 생산에는 적합하지만 다품종 소량 생산과 같은 현대 소비 시장의 욕구를 충족하는 데는 한계가 있다. 차량 모델이 바뀔 때 마다 공장을 세우고 컨베이어 벨트와 설비 위치를 재 조정해야 하는 등 상당한 재투자가 필요하다. 카이스트 산업 및 시스템 공학과 졸업생들이 2020년에 창업하여 카이스트 및 네이버가 투자한 다임리서치는 디지털 트윈 기술을 기반으로 AGV나 ARM의 이동을 관제하고 제어하는 솔루션을 개발하여 LG전자뿐만 아닌 국내 반도체 및 2차전지 기업에 공급하고 있다.      상세 내용은 PDF로 제공됩니다.    
작성일 : 2025-05-09
[특별기고] 디지털 트윈 발전 전망
디지털 트윈과 산업용 메타버스 트렌드   데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다.  디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.   ▲ 철도 네트워크의 디지털 트윈 구축하는 독일 디지털 철도(이미지 출처 : 엔비디아)   1. 디지털 전환과 디지털 트윈 디지털 전환(Digital Transformation: DX)은 비즈니스 전 과정에 ICT 기술을 도입하여 전사적 업무, 생산 기술, 제품 등을 디지털화 한 후 이를 기반으로 가상 실험이 가능한 디지털 환경을 구축하는 것이다.  디지털 전환의 궁극적 목적은 기업 이윤 극대화에 필요한 업부/생산 효율성 및 제품 부가 가치 증대를 위한 다양한 창의적 대안들을 가상 실험을 통해 평가한 후 그 결과를 비즈니스 전 과정에 활용하는 것이다. 예를 들어, 스마트 팩토리의 디지털 전환은 조달 시스템, 생산 시스템, 물류 시스템 등 스마트 팩토리 구성요소들의 자원 할당 및 운용에 대한 다양한 대안들을 가상 실험을 통해 평가할 수 있는 환경을 구축하여야 한다. 그렇다면, 비즈니스 전 과정을 가상 실험하기 위해서는 무엇이 필요할까?  가상 실험을 하기 위해서는 먼저 가상 실험 대상(예: 제조 공장)을 선정하고, 다음으로, 가상 실험 시나리오(예:새로운 제조 장비 도입)가 필요하며 시나리오를 수행할 모델(예: 제조 공정 시뮬레이션 모델)이 필요하다. 이러한 가상 실험을 위한 모델이 디지털 트윈이며 이런 이유로 많은 사람들이 디지털 트윈을 DX의 Key(Richard Marchall, 2017), DX의 Enablers(Reterto Saracco, 2019), DX의 Central(Vijay Ragjumathan, 2019), DX의 Steppingstone(Harry Forbes, 2020), DX의 Pillar(Fransesco Belloni, 2020)라고 지적하였다.   2. 디지털 트윈의 정의 디지털 트윈은 물리적 자산, 프로세스 및 시스템에 대한 복제본으로 정의[Wiki 사전]되며, 복제본이란 대상 체계의 운용 데이터, 지형/공간/형상 정보 및 동작/운용 법(규)칙을 컴퓨터 속에 디지털화 해 놓은 것을 의미한다. 예를 들면, 제조 공장의 디지털 트윈은 제조 공장의 운용 데이터, 제조 공장의 공간/형상 정보, 그리고 제조 장비 동작 및 공정 모델이 컴퓨터 속에 복제된 것이 될 것이다. 디지털 트윈과 대상 체계가 쌍둥이기 때문에 쌍둥이 중 누가 먼저 태어났느냐에 따라 디지털 트윈의 이름을 다르게 붙이기도 한다. 대상 체계가 존재하기 전에 만들어진 디지털 트윈을 디지털 트윈 프로토타입(Prototype) 그리고 대상 체계가 만들어진 후 복제된 디지털 트윈을 디지털 트윈 인스턴스(Instance)라고 부른다. 디지털 트윈 프로토타입은 대상 체계 설계 단계에서 활용되며 디지털 트윈 인스턴스는 대상 체계의 운용 분석에 활용되는 것이 일반적이다. 디지털 트윈 인스턴스(실 체계의 복제본)와 디지털 트윈 프로토타입(실 체계의 설계 모델)이 모두 존재할 수도 있지만 디지털 트윈 프로토타입 없이 디지털 트윈 인스턴스만 존재할 수도 있다. 디지털 트윈 프로토타입과 인스턴스가 모두 존재한다면 인스턴스는 프로토타입에 실 체계 운용 정보가 반영되어 진화(성장)된 트윈으로 볼 수 있다. 3. 디지털 트윈 구축 목적 디지털 트윈의 구축 목적은 대상 실 체계와 디지털 트윈을 연동 운용함으로써 실 체계 관련 이해 당사자에게 지혜 수준의 혁신적 서비스를 제공할 수 있는 핵심 도구/수단으로 활용하기 위함이다. 데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다. 융합 빅 데이터는 AI-통계/공학 분석도구들을 이용하여 실 세계의 구성요소인 자산, 사람, 운용 프로세스들의 다양한 결합에 대한 분석/예측 및 체계 운용 최적 대안(최적화)을 찾는데 활용될 수 있다. 아울러, 융합 빅 데이터는 실 세계를 가상 환경에서 현실감 있게 표출할 수 있는 다양한 장비/장치와 VR/AR/XR/메타버스 관련 ICT 기술과의 융합 인터페이스를 통해 오락, 관광, 교육 훈련, 체험 등에 활용될 수 있다.     디지털 트윈의 복제 대상은 실 체계의 운용 데이터, 공간/형상 정보 및 실 체계에 포함된 객체들의 행위 모델 등 3가지이다. 운용 데이터는 실 체계에 설치된 IoT 장비로부터 획득이 가능하다. 공간/형상 정보는 서비스 목적에 따라 GIS, BIM 혹은 3D CAD 중 한 가지 이상을 결합하여 사용한다. 객체 행위 모델은 다양한 시나리오를 가상 실험하기 위한 시뮬레이션 모델을 사용하지만 서비스 목적에 따라서는 운용 데이터를 학습한 데이터 모델을 사용할 수도 있다. 구성요소 중 일부만을 사용한 디지털 트윈은 나머지 구성요소를 사용하지 않음으로 인한 한계점에 봉착하게 된다. 예를 들면, 실 체계 운용 데이터 복제만으로 구성된 IoT 기반 디지털 트윈은 수집된 데이터를 분석할 수는 있지만, 실 체계를 시각화한 지형/공간 상에 데이터를 표출할 수 없을 뿐만 아니라 실 체계와는 다른 가상 데이터를 입력한 시뮬레이션을 수행할 수 없다. 마찬가지로, 지형/공간 정보 만으로 구성된 디지털 트윈은 실 체계에서 일어나는 지형/공간 정보의 변화를 실 시간으로 반영할 수 없으며 시뮬레이션을 통한 실 체계의 현상 분석 및 미래 예측이 불가능 하다.      디지털 트윈의 효율적인 활용을 위해서는 위의 세 가지 구성요소 모두를 개발 및 운용할 수 있는 통합 플랫폼이 바람직하지만 국내외적으로 표준화된 디지털 트윈 플랫폼은 존재하지 않는다. 디지털 트윈의 특성 상 3가지의 디지털 트윈 구성요소 각각을 개발하는 독립적인 플랫폼을 사용하여 구성요소를 개발한 후 이들을 연동하여 운용하는 것이 효율적이다.  구체적으로는, 먼저, 디지털 트윈 개발 목적에 맞게 운용 데이터를 수집하는 IoT 플랫폼, 지형/공간 정보를 구축하는 지형/공간정보 플랫폼 및 모델링 시뮬레이션 플랫폼들을 이용하여 각 구성요소를 개발한다. 다음으로, 개발된 세 가지 구성요소를 실행하는 플랫폼들을 연동 운용하는 PoP(Platform of Platforms) 구조를 사용할 수 있다. PoP 구조는 디지털트윈의 목적에 부합되는 모든 디지털트윈을 개발/운용할 수 있는 플랫폼으로써 신뢰성 및 경제성(개발 기간 및 비용) 면에서 효율적인 구조이다. PoP 구조를 사용할 경우 플랫폼들 사이의 연동을 위한 데이터 모델과 API의 국제적인 표준화가 요구되며 데이터 모델의 표준은 대상 시스템에 따라 달라질 수 있다.  디지털 트윈을 실제 시스템에 대한 문제 해결 목적으로 사용하기 위해서는 대상 시스템에 대한 다양한 질문의 답을 디지털 트윈을 통해서 얻을 수 있는 서비스가 제공되어야 한다. OR 이론의 창시자 중 한 명으로 경영 과학 이론가인 R.L.Ackoff 교수는 사람이 생각하는 내용을 데이터, 정보. 지식, 지혜 등 4가지로 분류하였다. 데이터는 단순한 심벌(숫자나 문자)을 말하지만 정보는 ‘who’, ‘what’, ‘where’, ‘when’을 답할 수 있고, 지식은 ‘how’를 답할 수 있고, 지혜는 ‘why’를 답할 수 있어야 한다고 정의하였다. 디지털 트윈의 서비스 수준을 Ackhoff 교수의 분류법에 매핑 시킨다면 정보 수준 서비스는 시스템 분석(현상, 기능 등), 지식 수준 서비스는 시스템 예측(행위, 성능 등) 그리고 지혜 수준 서비스는 시스템 최적화(운용 최적화 등) 및 진단(수명 진단 등)에 해당한다. 예를 들어, 교통 시스템에 대한 다양한 질문을 답하기 위해 교통 디지털 트윈을 만들었다고 하자. 정보 서비스의 예는 현재 교통 시스템의 현상을 분석하는 것으로 어느 위치의 현재 시간대에 단위 시간당 교차로 통과 차량 대수가 얼마인지에 대한 답을 하는 서비스이다. 지식 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 얼마가 되는지를 예측하는 질문에 대한 답을 하는 서비스이다. 지혜 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 최소가 되는 최적화된 경로가 어떤 것인지의 질문에 대한 답을 하는 서비스이다.    4. 디지털 트윈의 구성요소 디지털 트윈의 3 가지 구성요소 중 행위 모델은 목적에 따라 데이터 모델과 시뮬레이션 모델로 대별된다. 데이터 모델은 실 체계에서 수집된 데이터들 사이의 상관관계를 기계학습하여 얻어진 모델(예: 인공신경망)로서 지식 서비스를 위한 시스템 행위 예측에 한계점을 가지고 있다. 구체적으로, 데이터 모델은 학습된 데이터 영역에서는 미래 예측이 가능하지만 학습된 영역 밖의 데이터에 대한 예측은 불가능 하다. 뿐만 아니라 학습 시와 예측 시의 시스템 운용 조건이 달라질 경우에도 예측이 불가능하다. 앞서 예시한 교통 디지털 트윈으로 데이터 모델을 사용할 경우 학습 시 도로 상황(운행 시간, 사고 발생 유무 등)이 예측 시 도로 상황과 동일하지 않으면 소요 시간 예측의 정확도가 보장되지 않는다. 더욱이, 시스템 변수 사이의 상관 관계로 표현된 데이터 모델은 변수 사이의 인과 관계가 필요한 시스템의 최적화 및 고장 진단 등에는 활용할 수 없다. 이러한 데이터 모델의 서비스 한계를 극복하기 위해서는 시뮬레이션 모델을 사용할 수 있다. 시뮬레이션 모델은 구축은 대상 시스템에 대한 도메인 지식과 이를 표현하는 지배 법칙에 대한 수학적/논리적 표현 방법을 이해해야 하므로 데이터 모델에 비해 고 비용이 요구된다. 따라서, 디지털 트윈의 행위 모델은 대상 시스템의 서비스 목적과 수준에 따라 다르게 선택될 수 있다.    5. 디지털 트윈의 발전 전망  디지털 트윈의 향후 발전 전망은 문제 해결과 가상 체험 및 빅 데이터 분야로 대별할 수 있다. 문제 해결 분야에서 디지털 트윈의 대상은 분석, 예측, 최적화/진단 대상이 되는 모든 시스템 분야로서 산업(제조, 생산, 물류, 식물공장 등), 공공(교통, 환경, 금융 등), 의료(진단, 인공장기, 가상수술 등), 재난안전(안전점검, 피해분석, 대피훈련 등), 국방(군사훈련, 국방분석, 무기체계 획득 등)등을 포함한다.  현재 디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.  가상 체험 분야는 디지털 트윈이 실 세계 혹은 가상 세계를 움직이는 다양한 시나리오를 정형화한 지배 법칙(모델)을 실행(시뮬레이션)하는 수단으로 활용될 전망이다. 이러한 지배법칙 실행은 실제 세계와 가상 세계의 구별 없는 가상 체험을 목표로 하는 메타버스의 서비스 콘텐츠를 제공한다. 따라서, 메타버스 발전을 위해서 메타버스의 서비스 컨텐츠를 제공하는 디지털 트윈 발전이 필수적으로 향후 메타버스와 디지털 트윈은 동시에 발전할 전망이다.  빅 데이터 분야에서는 디지털 트윈의 가상 실험을 통해 실 체계에서는 물리적/경제적 이유로 수집 불가능한 다양한 빅 데이터를 생성하는데 활용될 전망이다. 유의미한 빅 데이터 생성을 위해서는 실 체계에서 수집 가능한 데이터를 사용하여 디지털 트윈 모델의 검증이 선행된 후 실 체계에서 수집 불가능한 데이터 생성을 위한 가상 실험이 설계되어야 한다. 디지털 트윈을 사용한 빅 데이터 생성은 시스템 기능 검증, 예지 진단 및 기계학습 등과 같은 부가가치가 높은 데이터 생성에 집중되어 미래 데이터 구독 시장 활성화에 기여할 전망이다.   김탁곤 명예교수  KAIST 전기전자공학부  
작성일 : 2025-05-05
AI 기반 크리에이티브 워크플로 혁신
AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (2)   영상 제작은 수작업 중심의 접근 방식에서 디지털화와 함께 컴퓨터 기반의 자동화된 워크플로까지 변화했다. 최근에는 AI 기술과 멀티모달 제작 방식이 결합되어 콘텐츠 제작의 효율과 창의성을 극대화하고 있다.   ■ 연재순서 제1회 AI 영상 제작 생태계의 현재와 미래 제2회 AI 기반 크리에이티브 워크플로 혁신 제3회 소셜 미디어 최적화 AI 영상 제작 전략 제4회 AI 특수효과 및 후반작업 마스터하기 제5회 AI 기반 몰입형 사운드 디자인   ■ 최석영 AI프로덕션 감성놀이터의 대표이며, 국제고양이AI필름페스티벌 총감독이다. AI 칼럼니스트로도 활동하고 있다.    이미지와 영상 제작을 위한 기존의 제작 방식   그림 1. ‘달리는 열차(Arrival of a Train at La Ciotat)’, 뤼미에르 형제, 1896   아날로그 제작 방식 : 개념과 흐름 디지털 도구가 도입되기 전에, 이미지와 영상 제작은 사전 기획과 여러 단계에 걸친 수작업 과정을 기반으로 한 접근 방식을 따랐다. 이 과정에서 기획자는 제작자와 협력하여 구체적인 제작을 위한 기획 단계를 만들어 낸다. 모든 작업은 계획적으로 이루어지며, 각 단계에서 창작자의 직접적인 개입과 섬세한 조정이 이루어진다. 디지털 도구가 상용화되기 전에는 스토리보드 작성, 레이아웃 결정, 시나리오 등이 기획 단계에서 만들어졌다. 영화용 카메라로 장면을 촬영하고, 촬영 감독과 조명 팀이 각종 기기를 수동으로 조작하며 원하는 장면을 구현한다. 후반 작업에서는 필름을 절단하고 이어 붙여 편집하며, 음향은 따로 녹음하여 영상을 보완한다. 이러한 방식은 기술적인 장치뿐만 아니라 창작자의 기술과 창의성에 크게 의존하며, 디지털화가 이루어지기 전까지 오랜 시간 이어져 온 기본적인 영상 제작 방식이다.   그림 2. ‘달나라 여행(Le Voyage dans la Lune)’, 1902   ‘달나라 여행’ 작품은 아이디어가 스토리보드화되어 영상화되는 전형적인 제작 과정으로 만들어졌다. 영상 제작 과정을 3단계로 보통 나누어지는데, 좀 더 자세히 5단계로 구조화하여 설명한다.  기획 단계 디자인 및 촬영 준비 제작 단계 후반 작업 단계 배포 및 관리 기존의 제작 방식은 오랜 기간 창작자의 창의적 역량을 극대화하고, 하나의 결과물을 정교하게 다듬는 데 중점을 둔 체계적인 접근법이었다. 하지만 이 과정은 기술적 도구와 인력이 많이 요구되며, 비용과 시간이 많이 들었다. 이러한 점에서 기존 제작 방식은 디지털화를 통해 새로운 워크플로로 발전하게 되었다.   디지털 도구의 도입과 디지털화된 제작 방식   그림 3. The iconic ship · ‘스타워즈’의 특수 효과,1977   디지털 도구의 도입 이후, 이미지와 영상 제작은 큰 변화를 겪으며 효율성과 창의성을 동시에 향상시킬 수 있는 새로운 접근 방식을 채택하게 되었다. 디지털화된 제작 방식은 전통적인 수작업 기반 방식에서 벗어나, 컴퓨터와 소프트웨어를 활용한 자동화 및 고도화된 기술을 중심으로 이루어진다.  이 과정은 기획, 디자인 및 촬영 준비, 제작 단계, 후반 제작 단계, 배포 및 관리 등 여러 단계로 나뉘며, 각 단계마다 디지털 기술이 어떻게 적용되는지 구체적으로 살펴볼 수 있다.    그림 4. ‘아바타’의 제임스 카메론 감독   필자가 영화를 공부하던 1997년에는 전통적인 아날로그 제작 방식을 공부하면서 비디오 캠코더가 나왔으며, 촬영과 후반 제작 과정에서 디지털화가 가속화되었다. 컴퓨터의 발전과 응용 프로그램의 향상에 힘입어, ‘스타워즈’가 아날로그 촬영을 디지털화하고 CG를 추가하여 다시 상영하였다. 아날로그 제작 방식과 디지털 제작 방식 믹스되는 부분이 있었으며, 2000년대 이후 점차 디지털화되어 갔다. 현재의 방식은  촬영, 편집, 후반 제작 과정 모두 디지털화(데이터로 저장)하여 제작되고 있다. 디지털화된 제작 방식에 모션 캡처나 리얼타임 엔진을 활용한 가상 프로덕션 등 새로운 기술이 적용되고 있다. 대표적인 예로 영화 ‘아바타’의 혁신을 말할 수 있다. ‘아바타’는 디지털 기술과 혁신된 모션 캡처 방식을 활용하여 영화 제작 방식을 혁신적으로 변화시켰다. 특히, 3D 촬영 기술과 모션 캡처 기술을 통해 캐릭터와 환경을 사실감 있게 재현하며 영화의 몰입감을 극대화했다. 이러한 시각적 혁신은 3D 영화의 새로운 가능성을 열었고, 3D 영화의 인기를 끌어올리는 데 큰 역할을 했다. 또한, 디지털 환경 디자인과 가상 세트를 활용하여 판도라라는 상상의 세계를 창조했으며, 이는 다른 영화가 디지털 가상 세트를 활용하는 데 영향을 미쳤다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[케이스 스터디] 노트르담 대성당의 영광스러운 복원을 선보인 언리얼 엔진 5 라이팅
리얼타임 3D 기술을 도입하여 한층 발전된 프로젝션 매핑 구현   화재로 큰 피해를 입은 파리의 노트르담 대성당이 5년에 걸친 복원 끝에 재개관했다. 복원된 성당을 더욱 돋보이게 한 프로젝션 매핑 작업은 언리얼 엔진의 실시간 렌더링 기술을 활용해 역사적 건축물을 사실적이고 정교하게 되살린 혁신적인 사례로 주목받고 있다. ■ 자료 제공 : 에픽게임즈   ▲ 이미지 제공 : 코스모 AV    2019년 4월, 파리의 상징인 노트르담 대성당에서 끔찍한 화재가 발생했다. 건물 처마 밑에서 시작된 불길은 곧 첨탑과 목조 지붕 대부분을 집어삼키며 다음 날 아침까지 밤새 타올랐다. 이후 장대한 복원 프로젝트가 진행되었으며, 5년에 걸쳐 1200명 이상의 인원이 재건에 힘을 쏟았다. 채석장 작업자와 목수, 모르타르 제조자, 석공 등 숙련된 장인이 고용되어 12세기 건축 당시와 똑같은 재료와 기법으로 대성당을 재건했다.  2024년 12월, 잿더미에서 부활한 노트르담 대성당의 재개관식이 TV 시청 황금 시간대에 방송되었다. 프랑스 텔레비지옹(France Télévisions)은 복원된 대성당의 영광스러운 모습을 선보이기 위해 비디오 매핑 회사인 코스모 AV(Cosmo AV)에 의뢰했고, 코스모 AV는 프로젝션 매핑 전문가 앙투안 부르구앵(Antoine Bourgouin)에게 재개관식을 위한 멋진 건축 라이팅을 제작해 달라고 요청했다.   ▲ 이미지 제공 : 코스모 AV   언리얼 엔진을 사용한 프로젝션 매핑 지난 2010년, 앙투안 부르구앵은 거대한 트롱프뢰유를 보여줄 캔버스로 건물을 사용하는 데 처음 관심을 갖게 되었다. 트롱프뢰유는 ‘눈속임’이라는 뜻의 프랑스어로, 2차원 표면에 3차원 공간과 물체를 표현하는 극사실적인 착시 기법을 나타내는 미술 용어다. 이는 주로 회화에서 관람자가 그림 속의 사물이나 공간을 실제처럼 인식하도록 속이는 기법을 일컫는다. 초기에는 이러한 종류의 작업을 구현할 수 있는 툴이 시중에 없어, 건물의 윤곽과 규모에 맞는 비주얼을 제작하려면 직접 컴퓨터 프로그램을 개발해야 했다. 하지만 부르구앵은 비디오 프로젝터 컨트롤러와 같은 역할을 하는 소프트웨어인 모듈로 플레이어(Modulo Player)를 사용하여 벽이나 건물과 같은 표면에 영상을 투영하여 재생하고, 각 표면에 맞게 영상을 정밀하게 변형시키고 조정할 수 있도록 했다. 특히, 부르구앵은 이 과정에 리얼타임 기술을 도입하여 프로젝션 매핑 기술을 더욱 발전시키고 있다. 전통적인 비디오 매핑은 사전 녹화된 영상을 투영하는 방식이었지만, 부르구앵은 언리얼 엔진을 사용해 개발한 비주얼을 실시간으로 건물에 투영한다. 이러한 혁신적인 아이디어로 그는 플레이어의 스마트폰을 게임 패드처럼 사용하는 비디오 게임을 제작하겠다는 아이디어로 메가그랜트를 지원하게 되었다. 이러한 아이디어를 실현하고자 부르구앵은 코스모 AV의 CEO이자 인텐스시티(IntensCity)의 공동 설립자인 피에르 이브 툴로(Pierre-Yves Toulot)를 만났다.    ▲ 이미지 제공 : 코스모 AV   3D 모델에 라이팅 매핑 코스모 AV는 프랑스 국영 텔레비전 방송사인 프랑스 텔레비지옹으로부터 노트르담 대성당 재개관을 위한 프로젝션 매핑 비주얼 제작을 의뢰받았다. 그 요청 중 하나는 대성당의 외관을 돋보이게 할 아름다운 라이팅 연출을 제작하는 것이었다. 툴로와 부르구앵은 이전에도 비슷한 프로젝트에서 협업한 적이 있었는데, 특별하면서도  우아함이 필요한 작업에서는 뛰어난 전통 건축 라이팅 디자이너인 장 프랑수아 투샤(Jean-François Touchard)의 기술을 활용했다. 툴로가 노트르담 프로젝트에 부르구앵과 투샤를 합류시킨 것은 당연한 결정이었다. 먼저 부르구앵은 노트르담 대성당의 3D 스캔 모델을 언리얼 엔진으로 가져왔고, 이 과정은 FBX 파일을 임포트하는 것만큼이나 간단했다. 부르구앵은 “언리얼 엔진과 나나이트(Ninite) 기술 덕분에 이제는 임포트한 메시의 폴리곤 밀도에 더 이상 신경 쓰지 않아도 된다. 노트르담 모델은 400만 개의 트라이앵글로 구성된 메시 구조였지만, 현재 언리얼 엔진에서는 이 정도의 폴리곤 수를 아주 쉽게 처리할 수 있다”고 말했다. 나나이트는 언리얼 엔진 5의 가상화된 지오메트리 시스템으로, 성능에 미치는 영향을 최소화하면서 방대한 양의 폴리곤으로 구성된 디테일한 3D 모델을 제작할 수 있다. 이 시스템은 활용해 대성당의 매우 정밀한 메시를 렌더링하는 데 쓰였으며, 가장 작은 디테일까지 정확하게 구현할 수 있었다. 팀은 대성당의 모든 디테일을 강조하기 위해 3D 모델에 옴니 라이트, 스포트 라이트, 렉트 라이트 등 500개의 라이트를 배치했다. 이 라이트는 강도와 온도, 색상이 조화를 이루도록 하는 것이 중요했다. 부르구앵은 “조작해야 하는 라이트의 수량이 이 프로젝트에서 가장 큰 과제였다. 하지만 즉석에서 바로 만든 블루프린트를 사용하고 라이트 액터에 태그를 지정하여 다른 그룹을 나누는 방식으로 매우 원활하게 작업할 수 있었다”고 설명했다. 툴로는 아트 디렉터 역할을 했고, 장 프랑수아는 대성당의 디테일한 부분에 대한 라이팅을 실제로 구현하는 데 전문성을 발휘했다. 팀은 조각상마다 두세 개의 스포트 라이트를 배치하고 그림자를 세심하게 조작하여 조각상의 형태와 입체감을 강조했다. 또한, IES(Illuminating Engineering Society)의 라이트 프로파일을 사용해 3D 라이팅이 실제 라이트처럼 각 아치와 발코니, 기타 건축 요소의 디테일과 정확하게 일치하도록 했으며, 깊이를 강조하기 위해 라이트 온도를 조정했다. 라이팅 구성을 이미지로 렌더링한 다음 모듈로 플레이어 시스템과 연결된 30대의 고광도 파나소닉(Panasonic) 비디오 프로젝터를 사용하여 노트르담 대성당에 투영했다.   ▲ 이미지 제공 : 코스모 AV   메가라이트와 루멘 활용 노트르담 프로젝트에서 팀은 사전 녹화된 영상을 대성당에 투영할 예정이었지만, 리얼타임 기술을 사용하면서 라이팅 디자인에서 많은 이점을 얻을 수 있었다. 라이팅이 실제 건물에서 어떻게 보일지 테스트하기 위해 팀은 현장에서 언리얼 엔진으로 3D 모델을 바로 업데이트하여, 대성당에서 즉시 결과를 확인하고 필요에 따라 조정할 수 있었다. 부르구앵은 언리얼 엔진으로 작업을 완성할 수 있었던 주요 이유로 나나이트와 결합된 강력한 라이팅 시스템의 성능을 꼽았다. 부르구앵은 “라이트 수가 많은 하이 폴리곤 메시에서 직관적인 편집 방식(WYSIWYG)으로 원활하게 작업할 수 있었다. 이로써 기존의 3D 모델링 소프트웨어에서처럼 렌더링 결과를 상상할 필요가 없었다”고 말했다. 또한 최근 언리얼 엔진 5.5에 출시된 강력한 신규 기능인 메가라이트에 대해서도 높이 평가했다. 메가라이트는 아티스트가 신(scene)에 다이내믹 섀도를 드리우는 수백 개의 라이트를 추가할 수 있게 해주는 실험적인 도구다. 언리얼 엔진의 다이내믹 글로벌 일루미네이션 및 리플렉션 기능인 루멘과 함께 사용하면 매우 사실적인 라이팅을 구현할 수 있다. 부르구앵은 “메가라이트는 상당히 유용한 기능 중 하나였다. 실시간으로 그림자를 유지하면서 수백 개의 라이트로 작업할 수 있었다. 루멘을 보완하는 환상적인 기능”이라고 말했다.   되찾은 노트르담의 영광 툴로, 장 프랑수아와 함께 한 부르구앵의 라이팅 작업은 파리에서 가장 유명한 기념물 중 하나인 대성당의 재개관식에서 중요한 역할을 했다. 언리얼 엔진 덕분에 팀은 복원가들의 놀라운 작업을 빛내고 노트르담 대성당의 영광스러운 모습을 선보일 수 있었다. 부르구앵은 “파리의 노트르담 대성당은 프로젝션 매핑 작업을 하는 사람들이라면 누구나 꿈꾸는 건물 중 하나다. 이 작업에 기여할 수 있32 · 어서 정말 큰 영광이었다”라고 말했다.      ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
지브라 테크놀로지스, 서희정 신임 한국 지사장 선임
지브라 테크놀로지스는 한국 지사 총괄로 서희정 지사장을 임명했다고 발표했다. 서희정 지사장은 지브라 테크놀로지스 한국 지사에서 영업 전략과 팀을 이끌어 기업 목표에 부합하는 방향성을 확립하고 성장을 촉진할 예정이다.  2011년 지브라 테크놀로지스에 입사한 서희정 지사장은 재직 기간 대부분을 지브라 테크놀로지스 채널 어카운트 시니어 매니저로 근무하며 파트너와의 강력한 관계 구축을 통해 지브라 파트너 네트워크의 성장을 주도해왔다. 서 지사장은 부산대학교에서 문헌정보학과 학사를, 영국 뉴캐슬 대학교에서 컴퓨터 공학 석사 학위를 취득했다.     지브라 테크놀로지스는 “서희정 신임 지사장은 2024년 3월부터 한국 지사장 대행으로 재직하면서 탁월한 리더십과 시장 역학에 대한 깊은 이해를 보여주었고, 이를 통해 지브라의 지속적인 성공을 위한 기반을 마련했다”고 소개했다. 서 지사장은 한국 지사장 대행으로 재직하면서 데이터 캡처 설루션(DCS)과 자산 추적 설루션(ATS) 분야에서 지브라의 시장 리더 위치를 유지하는 중요한 성과를 달성했으며, 기업용 모바일 컴퓨팅(EMC) 분야에서 시장 점유율을 확대하는 데 중추적인 역할을 수행했다.  지브라 테크놀로지스의 동남아시아(SEA), 한국 및 APJeC 채널 영업 부사장인 크리스탄토 수리야다르마(Christanto Suryadarma)는 “서희정 지사장을 한국 지사장으로 임명하게 되어 매우 기쁘다”며, “전략적 비전과 신규 파트너십, 긴밀한 고객 관계를 통한 성장 추진에 있어 입증된 경험을 가지고 있어 한국 지사의 사업 확장에 있어 최적의 리더"라고 전했다. 서희정 신임 지사장은 “지브라 테크놀로지스의 한국 지사의 혁신과 성장을 이끌게 되어 매우 기쁘다”고 소감을 밝혔다. 서 지사장은 이어, “지브라 테크놀로지스는 자산 가시성, 지능형 자동화, 연결된 현장 직원을 통해 고객의 성과 향상에 주력하고 있다. 최근 스마트 팩토리 엑스포에서 선보인 바와 같이 머신 비전, 고정식 산업용 스캐너 및 기타 첨단 설루션을 포함한 지브라 테크놀로지스의 포괄적인 포트폴리오는 운영을 간소화하고 실시간 의사 결정을 개선하여 워크플로를 혁신하도록 설계되었다”고 말했다.
작성일 : 2025-04-10
IBM, “한·미·일 대학에서 지난 1년간 2400여 명에 양자 컴퓨팅 교육 제공”
IBM은 연세대학교, 서울대학교, 게이오대학교, 도쿄대학교, 시카고대학교와 함께 지난 2023년 말 발표한 글로벌 양자 교육 사업 계획에 대한 1년 간의 결과를 최근 발표했다.    2023년 12월, IBM은 한·미·일의 5개 대학과 함께 향후 10년간 4만 명의 학생을 양자 인력으로 육성하겠다는 계획을 발표했다. 이 국제 양자 교육 사업에 참여하고 있는 대학들은 2024년에만 2400명 이상의 학생들에게 양자 교육을 제공했으며, 2025년에도 진전을 이어가며 양자 컴퓨팅 교육의 규모와 발전을 확대하고 있다. IBM과 대학 파트너들은 양자 컴퓨팅을 배우는 학생들에게 고품질의 교육 자원을 제공함으로써 양자 기술의 확산을 촉진하고, 늘어나는 양자 관련 일자리와 여기에 필요한 역량을 갖춘 인재 사이의 수급 불일치를 해소하기 위해 함께 노력하고 있다. 국제 양자 교육 사업은 학생과 교육자 모두를 위해 마련된 다양한 전략에 의해 추진된다. 여기에는 교수들이 기존 과정에 쉽게 통합할 수 있도록 만들어진 강좌 모듈의 양자 컴퓨터용 오픈소스 소프트웨어 개발 키트(SDK) 키스킷(Qiskit)과 광범위한 과학 및 기술 분야에서 교수들이 사용할 수 있도록 마련된 새로운 유용성 단계의 양자 교육 커리큘럼이 있다. 또한 지역 생태계에서 젊은 연구자를 양성하는 커뮤니티 주도 교육 행사, 공동 여름 프로그램, 양자 리더십 프로그램 등도 포함된다. 교육자들은 100 큐비트 이상의 유용성 단계의 양자 프로세서로 구동되는 양자 컴퓨터를 이용할 수 있다. 이를 활용해 대학 강의에서도 학기 동안 대학원 수준의 교육을 진행하고, 차세대 양자 계산 과학자를 양성하는 데 새로운 방식을 시도할 수 있다. 예를 들어, 도쿄대 학생들은 킥드 아이징 모델(kicked Ising model)에 대한 유용성 단계의 연산을 수행함으로써 2023년 네이처지 표지에 게재된 IBM 퀀텀 유용성 실험을 재현할 수 있었다. 양자 컴퓨팅 교육이 진화하는 양상은 처음에는 엘리트 교육 기관으로만 접근이 제한되다가 기술과 접근성의 발전으로 진입 장벽이 크게 낮아진 기존 컴퓨팅의 경우와 비슷하다. 다만, 기존 컴퓨팅은 이 과정에 수십 년이 걸렸지만 양자 컴퓨팅은 몇 년이 걸렸다는 점이 다를 뿐이다. 오늘날 대학은 개방형 교육 원칙, 키스킷 SDK와 같은 오픈 소스 도구, 커뮤니티 주도 프로그램을 활용하여 전 세계 수백만 명의 학습자가 양자 컴퓨팅에 접근할 수 있도록 지원하고 있다. 대학생이 아니어도 양자 컴퓨터 사용법을 배우기 시작할 수 있다. 양자 정보 과학에 대한 초보자 친화적인 강좌와 특정 사용 사례에 대한 실습 튜토리얼 등 필요한 모든 것을 IBM 퀀텀 러닝(IBM Quantum Learning)에서 무료로 이용할 수 있다. 일례로, 일반인들도 IBM 퀀텀이 도쿄 대학과 협력하여 개발한 14개의 강의와 실습이 포함된 유용성 단계 양자 컴퓨팅 과정을 통해 양자 컴퓨팅을 공부할 수 있다. 최근까지 이 콘텐츠는 IBM 퀀텀 네트워크 회원에게만 제공되었지만, 이제 일반인에게도 공개되었다. 따라서 관심 있는 학생, 교육자, 개발자, 연구자라면 누구나 이 강좌를 통해 오늘날의 양자 하드웨어에서 그들의 계산을 효과적으로 확장하는 방법을 배울 수 있다.
작성일 : 2025-04-09
로크웰 오토메이션, AWS와 파트너십 맺고 제조산업 디지털 전환 가속화
로크웰 오토메이션은 제조 산업의 디지털 전환을 간소화 및 가속화하기 위해 아마존웹서비스(AWS)와 파트너십을 체결했다고 밝혔다. 양사는 로크웰 오토메이션의 운영 기술(OT)과 AWS의 클라우드 서비스 및 글로벌 인프라를 결합함으로써, 제조 기업이 자산 성능을 최적화하고 운영 현황에 대한 가시성을 확보하며, 원시 데이터를 실행 가능한 인사이트로 전환할 수 있도록 지원하는 확장 가능하고 안전하며 유연한 클라우드 설루션을 제공할 예정이다. 이번 파트너십을 통해, 양사는 로크웰 오토메이션의 업계 전문 지식 및 자동화 설루션과 AWS의 고도화된 클라우드 기술로 제조기업의 보다 효과적인 디지털 혁신을 지원할 수 있을 것으로 기대한다. 특히 AWS는 산업 전용 비즈니스 부문에 대한 대규모 투자를 통해 생명과학, 자동차 및 배터리, 소비재 등 자사의 핵심 시장 및 전략을 공유하고 있다. 양사는 이번 파트너십을 통해 공장 현장의 데이터를 클라우드로 원활하게 연결하고 고급 분석 및 AI 애플리케이션, 산업용 소프트웨어 설루션을 구현할 수 있는 기반이 마련될 것으로 보고 있다. 이번 협업의 일환으로, 로크웰 오토메이션은 팩토리토크 허브(FactoryTalk Hub) 기반 소프트웨어 서비스형 설루션(SaaS)을 AWS로 본격 확대한다. 산업용 데이터옵스(DataOps) 설루션 데이터모자익스(DataMosaix)와 컴퓨터 유지 관리 시스템(CMMS)인 픽스(Fiix)를 AWS 마켓플레이스에서 제공할 예정이며, 올해 말에 추가 팩토리토크 허브 설루션도 순차적으로 출시될 예정이다. 로크웰 오토메이션의 니콜 데닐(Nicole Denil) 글로벌 사업 부문 부사장은 “제조 기업은 빠르게 변화하는 산업 환경 속에서 유연하고 확장 가능하며, 보안이 강화된 설루션이 필요하다”면서, “AWS와 협업을 통해 AI 기반 인사이트, 에지와 클라우드 간 연결, 산업 자동화 고도화를 실현함으로써 고객이 원하는 클라우드 환경에서 산업 운영을 최적화할 수 있도록 지원할 것”이라고 말했다. AWS의 오즈구르 토훔쿠(Ozgur Tohumcu) 자동차 및 제조 부문 총괄은 “이번 파트너십 체결은 AWS의 클라우드 컴퓨팅 리더십과 로크웰 오토메이션의 산업 자동화 전문 지식을 결합하여 보다 강력하고 통합적인 설루션을 제공하는 데 중점을 두고 있다”면서, “AWS 클라우드 인텔리전스를 통해 운영 데이터를 실행 가능한 인사이트로 전환함으로써 제조 기업이 보다 빠르게 의사결정을 내리고 운영을 최적화할 수 있도록 지원하고 있다. 단순히 기술을 배포하는 것이 아니라, 빠르게 진화하는 오늘날의 산업 분야에서 제조기업이 보다 민첩하고 효율적이며 경쟁력을 확보할 수 있는 길을 열어가고 있다”고 전했다.
작성일 : 2025-04-04
BPMN은 무엇일까?
BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (2)   지난 호에서 비즈니스 프로세스 모델링(Business Process Modeling)이 필요한 이유에 대해 살펴보았다. 이는 최근의 제품 개발이 복잡한 절차와 다양한 참여자, 그리고 광범위한 자원의 투입으로 시장의 변화에 빠르고 능동적으로 대응해야 하는 상황이기 때문이다. 이는 결국 주요 참여자들이 정보를 빠르게 추적하고 효율적인 의사결정을 수행하는 환경을 요구하고 있는데, 그동안 익숙하고 편하게 사용해온 오피스(문서) 기반, 특히 엑셀을 활용한 WBS 관리 및 간트(Gantt) 차트 작성으로는 이러한 대응에 한계가 있다는 점을 정리해 보았다. 이번 호부터는 BPMN(Business Process Modeling Notation)에 대해 알아보고, 어떠한 특징과 장점이 있는지 파악해 보고자 한다. 이를 통해 우리에게 요구되는 최근의 제품 개발 환경에 어떻게 적용해 나갈 수 있는지 차근차근 파악해 보도록 하자.   ■ 연재순서 제1회 비즈니스 프로세스 모델링이 필요한 이유 제2회 BPMN은 무엇일까? 제3회 비즈니스 프로세스 모델링을 배워보자 제4회 간단한 제품 개발 프로세스를 디자인해보기 제5회 클라우드 서버 환경에서 BPMN을 연결하는 설루션 탐구   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 가브리엘 데그라시 이탈리아 Esteco사의 프로젝트 매니저   BPMN은 비영리 컴퓨터 산업 표준을 연구하고 제정하는 OMG(Obejct Management Group)에서 개발하여 오픈소스로 배포하는 개방형 정보 표준 체계이다. BPMN 1.0은 2006년에 릴리스되었으며 지속적인 업그레이드를 통해 2011년에는 BPMN 2.0이 발표되었다. 현재 활용되고 있는 중요한 기능들의 모습이 이때부터 갖추어지게 되었는데, ISO(International Standard Organization) 및 IEC(International Electotechnical Commisson)는 BPMN 2.0을 2013년 ISO/IEC 19510:2013로 명시하여 국제 표준으로 지정하게 되었다. 이제부터는 BPMN이 무엇인지 하나씩 살펴보도록 하자.    BPMN의 구성 요소   그림 1. BPMN의 기본 구성 요소 1   그림 2. BPMN의 기본 구성 요소 2   우선 BPMN의 구성 요소를 살펴보면 participants(참여자 또는 행위대상의 구별), sub-process(하부 프로세스), task(수행업무), gateways(논리적 선택), data(데이터 객체 및 스토리지), events(이벤트) 등 종류도 많고 다양한데 활용하는 방법 또한 무궁무진하다.  우리는 BPMN의 구성 요소를 하나하나 상세하게 분석하는 것이 목표가 아니므로, BPMN의 간단한 작성 예제를 통해 주요 기능과 특징을 개괄적으로 파악해 보고자 한다.   엔지니어링 프로세스의 BPMN 모델링 간단한 엔지니어링 프로세스(요구사항 – CAD 입수 – 해석 모델링 – 베이스 해석 – 민감도 해석 – 최적화 해석)에 대한 BPMN 모델링을 <그림 3~4>와 같이 구성하였다.    그림 3. 엔지니어링 프로세스의 모델링 1   그림 4. 엔지니어링 프로세스의 모델링 2   이 프로세스는 사용자가 요구사항 태스크(enter requirement)를 처리한 이후 도면 준비 태스크(prepare CAD design)를 수행하고, 해석 모델링 태스크(prepare FEA design)와 비용 계산 모델 태스크(prepare cost model)를 병행 게이트웨이(parallel gateway)로 처리한다. 다음에는 베이스 해석 태스크(run baseline design)를 수행하게 되는데, 이는 시스템 또는 자동화가 수행할 수 있는 서비스 태스크로 정의할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
가상 제품 개발에 적용하기 위한 MBD와 CAE의 차이 및 협업
제품 개발 프로세스의 변화를 이끄는 MBD   MBD(모델 기반 개발)는 자동차 업계에서 화제가 되고 있는 가상 시뮬레이션이다. 기존의 방식보다 비용 절감과 개발 공정의 단축을 실현할 수 있다. MBD는 자동차 업계를 중심으로 제조 현장에서 주목을 받고 있는 개발 방법이다. 이번 호에서는 MBD의 정의, MBD의 중요성 및 CAE와의 차이, MBD의 장점과 단점을 설명한다.    ■ 오재응 LG전자 기술고문, 한양대학교 명예교수   MBD는 ‘모델 기반 개발’ MBD(Model Based Development)는 컴퓨터에 현실과 동일한 모델을 만들고 개발 및 검증하는 방법이다. 가상 시뮬레이션에 의해 개발의 효율화를 실현할 수 있다. 종래의 개발이나 검증에서는 종이의 사양서를 확인하면서 설계하고 완성 후에 사양서를 보면서 검증하는 사이클이었지만, MBD는 매트랩(MATLAB), 시뮬링크(Simulink) 등의 소프트웨어를 사용해 컴퓨터 상에 ‘움직이는 사양서’라고 불리는 모델을 만들고 개발과 검증을 동시에 진행한다. 매트랩과 시뮬링크의 차이점은 다음과 같다. 매트랩 : 수치 계산이나 데이터 해석 등에 적합 시뮬링크 : 시뮬레이션이나 테스트 환경 구축 등에 적합 MBD에서 제어 장치 및 제어 대상을 모델화하여 그 모델에 기반한 개발을 수행하는 기법으로, 매트랩/시뮬링크를 이용한 모델을 작성하고 검증하는 프로세스를 <그림 1>에 나타낸다.   그림 1. 매트랩/시뮬링크를 이용해 모델을 작성하고 검증하는 프로세스   따라서 지금까지의 개발 방법과 달리 제품을 만들지 않고 검증할 수 있게 되므로, 테스트나 분석을 여러 번 반복하여 품질 향상으로 연결된다. 또한 검증에 소요되는 비용과 비용을 줄일 수 있다는 것도 큰 장점이다.(그림 2)   그림 2. 모델 기반 개발 프로세스   MBD는 주로 자동차 업계 등에서 중요시되고 있는 개발 방법 실제로 자동차를 만들어 검증을 반복하면 막대한 비용이 들기 때문에, MBD로 업무를 진행하고 있는 케이스는 적지 않다. 또한 자동차 업계뿐만 아니라 항공 업계와 우주 산업, 의료 기기, 산업용 로봇 등에서도 도입되고 있다. 요즘에는 자율 운전이나 환경에 대한 배려 등 니즈의 변화나 다양화가 진행되고, 자동차의 제조도 복잡해지고 있다. 경쟁사보다 뒤떨어지지 않도록 개발 사이클을 가속화하는 것도 드물지 않다. 배기가스 규제 등을 클리어할 필요도 있다. 이러한 배경으로 비용 절감과 개발 프로세스의 단축화를 실현할 수 있는 MBD는 주목을 받고 있다. 한편, MBD가 맞지 않는 분야도 있다. 예를 들어, 스마트폰의 앱이나 오피스 워크에서 이용하는 소프트웨어 등 제어를 수반하지 않는 소프트웨어 개발에는 적합하지 않다. MBD는 실제 기계의 품질 향상과 시스템 안전을 위해 효과적이지만, 이러한 소프트웨어는 실제 기계가 필요하지 않기 때문이다.   CAE와의 차이 MBD는 컴퓨터에서 검증을 수행하는 CAE(Computer Aided Engineering)와 유사한 기술이지만, 각각의 사용 목적이 다르다. CAE의 경우 온도나 진동 등에 변화를 더해 시뮬레이션하는 방법이지만, MBD는 모델을 활용해 제품의 타당성을 검증한다. 엄밀히 말하면 개발 시점에서 CAE를 적용하고 품질 향상과 개발 기간을 단축하는 것이 MBD이다. CAE는 시뮬레이션하고 설계에 피드백하기 때문에 설계의 업스트림에 위치하지 않는다.   MBD에는 다양한 이점이 있음 MBD의 주요한 이점은 개발 단계에서 시뮬레이션을 할 수 있고 개발 기간을 줄일 수 있다는 것이다. 여기에서는 MBD의 장점을 자세히 살펴본다.   즉시 시뮬레이션 가능 MBD의 장점은 기존 개발 프로세스보다 조기에 시뮬레이션을 할 수 있다는 것이다. MBD는 종이의 사양서가 아니고, 움직이는 사양서가 되는 모델을 만들어 개발도 검증도 곧바로 행할 수 있다. 모델을 작성함으로써 기존의 방식으로 필요했던 시뮬레이션에 걸리는 공수가 줄어들어 횟수를 늘려 품질 향상으로 이어질 것이다. 또한, 시뮬레이션에 관여하는 인건비를 줄일 수 있는 메리트도 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
DN솔루션즈, 인도 인텍과 파트너십 맺고 금속 적층제조 솔루션 강화
DN솔루션즈(DN Solutions)는 인도의 최대 금속 적층제조 장비·솔루션 공급업체인 인텍(INTECH Ad-ditive Solutions)사와 지분 투자 및 전략적 파트너십 계약을 체결했다고 밝혔다.   금속 적층 제조는 3차원 모델링 데이터를 기반으로 금속 소재를 층층이 쌓아 3차원 형상을 구현하는 기술로서 메탈 3D프린팅으로도 불린다. 이번 파트너십으로 DN솔루션즈의 금속 절삭 가공 분야의 전문성과 인텍의 금속 적층 제조를 위한 360° 종합 솔루션의 결합이 가능해졌다. 특히 DN솔루션즈는 금속 적층 분야에서 가장 활용도가 높고 발전된 기술인 레이저 파우더 베드 퓨전(Laser Powder Bed Fusion; LPBF) 기술을 추가하며 제품 포트폴리오를 확대할 수 있게 되었다. LPBF 기술은 금속 적층 제조 시장의 약 80%를 차지하며, 금속 분말을 얇게 도포한 후 레이저를 이용하여 금속 분말을 선택적으로 용융 및 융합하여 적층하는 방식으로 작동한다. 적층을 위한 플랫폼이 아래로 이동하면서, 추가 금속 분말이 도포되고 다시 용융(Melting) 및 융합(Fusion)하는 과정을 반복적으로 수행하여 점진적으로 최종 형상이 만들어지게 된다. 업계 전망에 따르면, 금속 적층제조 장비 시장은 2022년 약 1조 7,800억 원(11억 8,000만 유로)에서 연평균 26% 성장하여 2027년에는 약 5조 6,600억 원(37억 4,000만 유로) 규모로 성장할 것으로 예상된다. DN솔루션즈, 파트너십을 통한 성장과 전문성 강화 DN솔루션즈는 공작기계를 넘어, 제조 솔루션 제공자의 입지를 강화하기 위해 혁신 기술 기업에 대한 전략적 투자를 계속하고 있다. 제조 공정 전반의 오토메이션 플랫폼을 제공하고, 적층가공 등 다양한 가공 방식을 지원하기 위해서다.  앞서 DN솔루션즈는 2023년 독일의 공작기계용 CAD·CAM 소프트웨어 개발사 모듈웍스, 2024년 한국·미국 기반의 인공지능(AI) 플랫폼 기업 카본블랙, 지난 3월 17일 한국 로봇 자동화 기업 뉴로메카 등에 차례로 지분을 투자했고, 각각 긴밀하게 협력 중이다. 이번 인텍에 대한 투자도 그 연장선에 있는 전략적 결정이다. 김원종 DN솔루션즈 대표는 “DN솔루션즈는 인텍과의 이번 투자·협력을 통해, 금속 절삭 뿐만 아니라 금속 적층 제조까지 포함해 장비, 공정 기술, 소프트웨어 전반의 솔루션을 제공할 수 있게 되었다”면서, “자동차, 항공우주, 의료 기술, 전기·전자 등 시장에서 복잡한 형상과 내부 구조, 소재 효율성을 요구하는 분야나, 반도체 산업 공급 업체를 포함한 다양한 제조업 고객들의 성공을 지원할 수 있을 것으로 기대한다”고 말했다. 인텍 스리다르 발라람(Sridhar Balaram) 창립자·CEO는 “인텍의 디지털 지원을 기반으로 하는 360° 솔루션은 기존 시장의 표준을 넘어선다”며 “우리는 부품에서 시작해 개발 초기 단계부터 제조 안정화(Ramp-up) 및 생산 확대(Scaling)까지 고객과 함께한다”고 말했다. 한편, DN솔루션즈는 최근 인도의 풍부한 설계 역량 활용 계획을 잇따라 발표하며 첨단 제조 분야의 기술 리더십을 강화하고 있다. DN솔루션즈는 인도 벵갈루루 R&D센터를 올해 착공해, 조만간 한국·미국·유럽·중국 등으로 구성된 글로벌 엔지니어링 역량의 한 축을 맡길 예정이다. 인텍과의 파트너십은 이와 별도로 금속 적층이라는 새 분야에서 기술 역량을 강화할 전망이다.  경남 창원에 위치한 DN솔루션즈 R&D센터 KOTRA의 ‘2024 인도 진출전략’ 보고서에 따르면 인도는 매년 인도공과대학(IIT), 국립공과대학(NIT) 등 유수 공과대학에서 기계공학, 금속공학, 전기전자, 컴퓨터, 화학 분야 등의 엔지니어 150만명을 배출하는 기술 강국이다. 특히 DN솔루션즈 인도법인과 인텍이 자리잡고 있고, DN솔루션즈 신공장·R&D센터가 예정된 벵갈루루는 첨단제조·자동화·IT·소프트웨어·기초과학 분야의 최고급 인재가 풍부해 인도의 ‘실리콘밸리’로 불린다.  인도는 풍부한 엔지니어링 역량을 바탕으로 유니콘 기업 111개를 보유해, 세계 3위 규모의 스타트업 생태계를 이뤘다. 글로벌 기업들도 인도 내 대규모 연구개발 거점 확보에 열을 올리고 있다. 삼성전자, 현대차 등이 수천명 규모의 연구개발 인력이 근무중인 R&D 센터를 인도 현지에서 운영 중이다. GE, 지멘스, 보잉, 에어버스, ABB, 인텔, 퀄컴, 캐터필러 등 유수 글로벌 기업도 인도내 대규모 연구개발 거점을 운영 중이다.
작성일 : 2025-03-31