• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "질문"에 대한 통합 검색 내용이 921개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
스노우플레이크, “AI 조기 도입한 기업의 92%가 투자 대비 수익 실현”
스노우플레이크가 ‘생성형 AI의 혁신적 ROI(Radical ROI of Generative AI)’ 보고서를 발표했다. 이번 보고서는 글로벌 시장 조사 기관 ESG(Enterprise Strategy Group)와 공동으로 AI를 실제 사용 중인 9개국 1900명의 비즈니스 및 IT 리더를 대상으로 진행한 설문조사 결과를 담았다. 보고서에 따르면 AI를 도입한 기업의 92%가 이미 AI 투자를 통해 실질적 ROI(투자수익률)를 달성했고, 응답자의 98%는 올해 AI에 대한 투자를 더욱 늘릴 계획인 것으로 나타났다. 전 세계 기업의 AI 도입이 빨라지면서 데이터 기반이 성공적인 AI 구현의 핵심 요소로 떠오르고 있다. 그러나 많은 기업이 여전히 자사 데이터를 AI에 적합한 형태로 준비하는 데 어려움을 겪는 것으로 파악됐다.  전반적으로 기업들은 AI 초기 투자에서 성과를 거두고 있는 것으로 나타났다. 93%의 응답자는 자사의 AI 활용 전략이 ‘매우’ 또는 ‘대부분’ 성공적이라고 답했다. 특히 전체 응답자의 3분의 2는 생성형 AI 투자에 따른 ROI를 측정하고 있고, 1달러 투자당 평균 1.41달러의 수익을 올리며 ROI를 높이고 있는 것으로 집계됐다.  또한 국가별 AI 성숙도에 따라 기업이 AI 역량을 주력하는 분야가 달랐으며, 이는 지역별 ROI 성과와 밀접한 연관이 있는 것으로 드러났다. 미국은 AI 투자 ROI가 43%로 AI 운영 최적화 측면에서 가장 앞서 있었다. 뿐만 아니라 자사의 AI를 실제 비즈니스 목표 달성에 ‘매우 성공적’으로 활용하고 있다고 답한 비율이 52%로 전체 응답국 중 가장 높았다. 한국의 경우 AI 투자 ROI는 41%로 나타났다. 보고서에 따르면 한국 기업은 AI 성숙도가 높은 편으로 오픈소스 모델 활용, RAG(검색증강생성) 방식을 활용해 모델을 훈련 및 보강하는 비율이 각각 79%, 82%로 글로벌 평균인 65%, 71%를 웃돌았다.  특히 한국 기업들은 기술 및 데이터 활용에 있어 높은 실행 의지를 보이고 있는 것으로 나타났다. 오픈소스 모델 활용(79%), RAG 방식의 모델 훈련 및 보강(82%), 파인튜닝 모델 내재화(81%), 텍스트 투 SQL(Text to SQL, 자연어로 작성한 질문을 SQL 쿼리로 자동 변환하는 기술) 서비스 활용(74%) 등 고급 AI 기술을 활용한다고 답변한 비율이 글로벌 평균을 크게 웃돌았다. 이러한 데이터 활용 역량은 비정형 데이터 관리 전문성(35%)과 AI 최적화 데이터 보유 비율(20%)에서도 확인된다. 이런 성과에 비해 아직도 전략적 의사결정에 AI 활용하는 데에는 어려움을 겪고 있는 모습도 나타났다. 조사 결과에 따르면 응답자의 71%는 ‘제한된 자원에 대비해 추진할 수 있는 AI 활용 분야가 매우 다양하고, 잘못된 의사결정이 시장 경쟁력에 부정적 영향을 미칠 수 있다’고 답했다. 또한 응답자의 54%는 ‘비용, 사업 효과, 실행 가능성 등 객관적 기준에 따라 최적의 도입 분야를 결정하는 데 어려움을 겪고 있다’고 밝혔다. 59%는 ‘잘못된 선택이 개인의 직무 안정성까지 위협할 수 있다’고 우려했다. 한국 기업의 경우, 기술적 복잡성(39%), 활용 사례 부족(26%), 조직 내 협업 문제(31%) 등의 어려움을 겪고 있다고 답하며 아직 다양한 비즈니스 영역으로의 AI 확대는 더딘 것으로 나타났다. 그럼에도 향후 12개월 내 ‘다수의 대규모 언어 모델(LLM)을 적극적으로 도입’하고 ‘대규모 데이터를 활용할 계획’이라고 답한 기업은 각각 32%와 30%로, AI 도입 확대에 관한 강한 의지를 드러냈다. 설문에 응답한 전체 기업의 80%는 ‘자체 데이터를 활용한 모델 파인튜닝을 진행 중’이고 71%는 ‘효과적인 모델 학습을 위해 수 테라바이트의 대규모 데이터가 필요하다’고 답하며, AI의 효과를 극대화하기 위해 자사 데이터를 적극 활용하고 있는 것으로 나타났다. 그러나 여전히 많은 기업들이 데이터를 AI에 적합한 형태로 준비하는 과정에서 어려움을 겪기도 했다. 데이터 준비 과정에서 겪는 주요 과제로 ▲데이터 사일로 해소(64%) ▲데이터 거버넌스 적용(59%) ▲데이터 품질 관리(59%) ▲데이터 준비 작업 통합(58%) ▲스토리지 및 컴퓨팅 자원의 효율적 확장(54%) 등을 꼽았다. 스노우플레이크의 바리스 굴테킨(Baris Gultekin) AI 총괄은 “AI가 기업들에게 실질적인 가치를 보여주기 시작했다”면서, “평균 일주일에 4000개 이상의 고객이 스노우플레이크 플랫폼에서 AI 및 머신러닝을 활용하고 있고 이를 통해 조직 전반의 효율성과 생산성을 높이고 있다”고 강조했다.  스노우플레이크의 아르틴 아바네스(Artin Avanes) 코어 데이터 플랫폼 총괄은 “AI의 발전과 함께 조직 내 데이터 통합 관리의 필요성이 더욱 커지고 있다”면서, “스노우플레이크처럼 사용이 쉽고 상호 운용 가능하며 신뢰할 수 있는 단일 데이터 플랫폼은 단순히 빠른 ROI 달성을 돕는 것을 넘어, 사용자가 전문적인 기술 없이도 안전하고 규정을 준수하며 AI 애플리케이션을 쉽게 확장할 수 있도록 견고한 기반을 마련해 준다”고 말했다. 
작성일 : 2025-04-16
AWS, 아마존 Q 디벨로퍼 한국어 지원 확장
아마존웹서비스(AWS)는 아마존 Q 디벨로퍼(Amazon Q Developer)의 언어 지원 확장을 발표했다. 이를 통해 국내 개발자들은 한국어를 활용하여 아마존 Q 디벨로퍼 내에서 아키텍처 논의, 문서 작성, 인터페이스 설계, 애플리케이션 구축 등 다양한 개발 업무를 수행할 수 있게 됐다. 아마존 Q 디벨로퍼는 개발자가 사용하는 언어로 코드를 이해하고 문서를 작성하며, 인터페이스를 설계할 수 있도록 돕는 생성형 AI 기반 어시스턴트이다. 또한 코드에 대한 실시간 피드백을 제공하여 단순한 위험 요소 식별을 넘어 문제의 원인을 명확히 설명하고 해결 방안을 제시함으로써 반복적인 개발 작업을 신속하게 수행할 수 있도록 돕는다. 이를 통해 개발자는 보다 안전하고 신뢰할 수 있는 코드를 효율적으로 구현할 수 있으며, 다양한 개발 업무에서 생산성과 품질을 동시에 향상시킬 수 있다. 이번 한국어 지원 확장을 통해 아마존 Q 디벨로퍼는 개발자들이 한국어를 포함한 다양한 언어로 복잡한 기술 개념에 대해 보다 원활하게 자신이 선호하는 언어로 대화할 수 있도록 지원한다. 특히 이번 언어 지원 확장은 개발자들이 반복적이고 수동적인 작업에 소비하는 시간을 줄이고, 보다 창의적인 문제 해결에 집중할 수 있는 환경을 제공한다. AI 에이전트와 자연어 인터페이스가 결합되며 보다 직관적인 개발 경험이 가능해짐에 따라, 개발자들은 대규모 기술 현대화와 같이 기존에는 실행이 어려웠던 작업에도 적극적으로 대응할 수 있게 된다. 이는 개발자가 문제를 인식하고 해결하는 방식에 근본적인 변화를 가져오고 있으며, 복잡한 업무를 보다 효율적이고 전략적으로 수행할 수 있도록 돕는다. 예를 들어, 영어 등 다른 언어로 작성된 소스코드나 주석을 이해해야 하는 상황에서 아마존 Q 디벨로퍼가 유용하게 쓰일 수 있다. 개발자들은 모국어가 아닌 영어로 작성된 코드나 주석에 대해 한국어로 아마존 Q 디벨로퍼에게 질문하고 설명을 요청할 수 있으며, 아마존 Q 디벨로퍼는 이를 한국어로 명확하게 설명 가능하다. 이러한 기능은 영어나 다른 언어로 된 코드를 이해하는 데 있어 언어 장벽을 낮추고, 글로벌 개발 환경에서의 코드 이해도를 효과적으로 높이는 데 기여한다. 국내 기업은 이번 언어 지원 확장을 통해 해외 기업과의 협업에서 커뮤니케이션 효율을 높이고, 업무 생산성을 실질적으로 향상시킬 수 있다. 또한 다양한 언어를 사용하는 글로벌 팀 간 협업을 보다 포용적이고 효과적으로 만들고 글로벌 개발 환경을 강화할 수 있다. 확장된 언어 기능은 통합 개발 환경(IDE)과 커맨드라인 인터페이스(CLI)에서 즉시 이용 가능하며, 향후 AWS 매니지먼트 콘솔(AWS Management Console)에서도 지원될 예정이다. 또한 프리(Free) 및 프로(Pro) 요금제 사용자 모두에게 확장된 언어가 제공된다.
작성일 : 2025-04-14
[칼럼] AI의 거대한 파도, 엔비디아가 만드는 미래
트렌드에서 얻은 것 No. 22    AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” – 젠슨 황   AI의 거대한 파도, 엔비디아가 만드는 미래 엔비디아는 2024년과 2025년 GTC(GPU Technology Conference)에서 AI 기술을 통해 산업 전반에 걸친 변화를 이끌어가고 있다. 젠슨 황은 기조연설에서 기술 혁신이 사회적, 경제적 구조를 재편하는 ‘변화의 파도’라고 강조하며, 엔비디아가 그 중심에서 미래를 설계하고 있음을 확신시켰다.  엔비디아는 두 해 동안 AI 혁신을 가속화하며 다양한 제품과 플랫폼을 선보였다. 2024년에는 GB200 AI 플랫폼과 블랙웰(Blackwell) DGX B200 GPU를 통해 성능 향상에 초점을 맞췄다면, 2025년에는 블랙웰 울트라(Blackwell Ultra) 기반의 NVL72 등 차세대 하드웨어와 지속 가능성을 강조하며 더 큰 비전을 제시했다.   표 1. 2024년과 2025년 엔비디아의 주요 발표 비교   인공지능 혁명의 변곡점에서 인류는 늘 기술의 발전과 함께 새로운 시대를 맞이해 왔다. 산업혁명이 증기기관과 전기를 통해 생산 방식을 혁신했던 것처럼, 디지털 혁명은 인터넷과 스마트폰을 통해 세상을 연결했다. 그리고 지금, 우리는 또 하나의 거대한 변곡점에 서 있다. 바로 AI 혁명이다. 2025년 3월, 엔비디아의 GTC에서 젠슨 황 CEO는 기조연설을 통해 AI가 변화의 중요한 시점에 도달했음을 선언했다. 그는 AI가 단순한 도구를 넘어 ‘스스로 사고하고 결정하는 존재’로 발전하고 있으며, 이 거대한 변화가 기업, 산업, 그리고 인간의 삶 전반에 걸쳐 영향을 미칠 것이라고 강조했다. 이번 GTC 2025에서 가장 주목받은 키워드는 에이전틱 AI(agentic AI)와 추론 AI(reasoning AI)였다. 기존의 AI가 데이터를 분석하고 패턴을 찾는 데 주력했다면, 이제 AI는 자율적으로 목표를 설정하고 스스로 문제를 해결하는 방향으로 나아가고 있다. 이러한 변화는 단순한 업그레이드가 아니라, AI 산업 전반의 패러다임을 뒤흔드는 파도와 같다. 이러한 흐름 속에서 엔비디아는 블랙웰 GPU라는 차세대 칩을 공개하며, 인공지능 모델의 효율성을 비약적으로 향상시키는 새로운 하드웨어 시대를 열었다. 또한 옴니버스 클라우드 API(Omniverse Cloud API), AI 팩토리(AI Factories) 등의 개념을 통해 AI가 단순한 연구 도구가 아니라, 실제 산업을 자동화하고 혁신하는 핵심 인프라로 자리 잡아가고 있음을 보여주었다. 그렇다면 우리는 이러한 변화의 바람 속에서 어떤 선택을 해야 할까? AI 혁명의 파도를 넘는 기업과 뒤처지는 기업의 차이는 무엇일까? 엔비디아의 발표를 중심으로 AI 산업이 어디로 흘러가고 있는지, 그리고 그 변화 속에서 우리는 무엇을 준비해야 하는지를 하나씩 짚어보자. “AI가 단순한 연구 프로젝트에서 벗어나, 본격적인 산업 혁신의 중심으로 자리 잡는 것” – 젠슨 황   블랙웰, AI의 새로운 엔진 기술 혁신의 역사는 더 빠르고 더 강력하며 더 효율적인 도구를 만들려는 인간의 끝 없는 도전과 함께 발전해 왔다. AI 산업도 예외가 아니다. 과거에는 단순한 이미지 분석과 음성 인식이 AI의 주요 활용 분야였다면, 이제는 스스로 학습하고 결정을 내리며 복잡한 문제를 해결하는 AI가 요구되고 있다. 하지만 이런 고도화된 AI 모델을 운용하려면 엄청난 연산 능력이 필요하며, 이를 뒷받침할 강력한 하드웨어가 필수이다. GTC 2025에서 젠슨 황이 가장 먼저 소개한 것은 블랙웰 GPU였다. 그는 “AI의 미래를 가속하는 가장 강력한 엔진”이라며, 블랙웰이 기존 호퍼(Hopper) 아키텍처를 넘어선 새로운 시대의 핵심 기술이라고 강조했다. 그렇다면 블랙웰 GPU는 무엇이 다를까? 블랙웰 GPU는 기존 호퍼 아키텍처 대비 연산 성능이 2배 이상 향상되었으며, 특히 대규모 AI 모델을 실행할 때의 전력 효율이 4배 증가했다. 이는 곧 더 적은 에너지로 더 강력한 AI 모델을 훈련하고 실행할 수 있다는 의미다. 젠슨 황은 연설에서 “블랙웰은 단순한 속도 개선이 아니라, AI 연구자들이 더 크고 복잡한 모델을 현실적으로 활용할 수 있도록 지원하는 플랫폼”이라고 설명했다. 이제 AI 연구자는 엄청난 비용을 감수하지 않고도 보다 정교한 생성형 AI, 실시간 데이터 처리, 고도화된 시뮬레이션 등을 구현할 수 있게 되었다. 엔비디아는 블랙웰 GPU와 함께 옴니버스 클라우드 API를 발표했다. 이는 단순한 클라우드 컴퓨팅 설루션이 아니라, AI 모델 개발 및 실행을 위한 강력한 협업 플랫폼이다. 옴니버스 클라우드 API는 데이터센터, AI 연구소, 기업의 IT 인프라를 하나의 거대한 AI 네트워크로 연결하여, 개발자들이 실시간으로 협업하고 AI 모델을 학습할 수 있도록 지원한다. 이는 특히 자율주행, 산업 자동화, 로보틱스 같은 분야에서 AI의 혁신 속도를 극적으로 끌어올릴 것으로 기대된다. 젠슨 황은 “AI 개발은 더 이상 한 기업이나 연구소만의 일이 아니다. 옴니버스 클라우드 API를 통해 전 세계의 AI 개발자가 하나로 연결될 것”이라며, AI 연구의 새로운 생태계를 제시했다. 또 한 가지 주목할 점은 AI 팩토리(인공지능 공장) 개념이다. 젠슨 황은 AI를 ‘새로운 산업 혁명의 동력’으로 표현하며, AI 팩토리가 데이터를 가공하고 AI 모델을 대량으로 생산하는 핵심 인프라가 될 것이라고 설명했다. 이 개념을 이해하려면 기존 제조업과 비교해보면 쉽다. 과거에는 자동차나 전자제품을 생산하는 공장이 경제의 중심이었지만, 미래에는 AI를 학습하고, 최적화하고, 배포하는 ‘AI 공장’이 가장 중요한 인프라가 될 것이다. 젠슨 황은 AI 팩토리가 AI 기반 자율주행, 로봇, 데이터 분석, 금융 모델링 등 다양한 산업에서 필수 역할을 하게 될 것이라고 강조했다. 블랙웰 GPU, 옴니버스 클라우드 API, AI 팩토리는 단순한 기술 발전이 아니다. 이들은 AI가 단순한 연구 프로젝트에서 벗어나 본격적인 산업 혁신의 중심으로 자리 잡는 것을 의미한다. 과거에도 GPU의 성능 향상이 AI 산업에 변화를 가져온 적이 있다. 2012년 알렉스넷(AlexNet)이 GPU 가속을 이용해 딥러닝의 가능성을 처음 보여줬고, 2017년 트랜스포머(transformer) 모델이 등장하며 자연어 처리 AI가 급격히 발전했다. 그리고 2025년에는 블랙웰이 AI의 자율성과 창의성을 한 단계 끌어올리는 전환점이 될 것이다. 젠슨 황이 기조연설에서 블랙웰을 소개하며 한 말이 특히 인상적이었다. “AI는 이제 단순한 도구가 아니라 스스로 사고하고 결정하는 존재로 나아가고 있다.” 이 말은 곧, 우리가 맞이할 AI의 미래가 이전과는 전혀 다른 차원이라는 것을 시사한다. 그리고 그 변화를 가속하는 엔진이 바로 블랙웰이다. “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다.” – 젠슨 황   엔비디아가 던진 화두, 에이전틱 AI와 추론 AI AI 기술의 발전은 단순히 연산 능력을 향상시키는 것에 그치지 않는다. 더 중요한 것은 AI의 ‘사고 방식’이 바뀌고 있다는 점이다. 지금까지의 AI는 데이터를 학습하고 패턴을 인식하는 역할을 해왔다. 하지만 이제 AI는 스스로 목표를 설정하고, 상황에 맞게 판단하며, 능동적으로 문제를 해결하는 방향으로 진화하고 있다. GTC 2025에서 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 바로 이러한 변화의 핵심 개념이다. 그는 이 두 가지 개념이 AI를 단순한 도구에서 ‘자율적 지능’으로 변화시키는 결정적 요소라고 설명했다. 그렇다면 에이전틱 AI와 추론 AI는 무엇이며, 어떤 변화를 가져올까? 에이전틱 AI의 핵심은 AI가 인간의 지시 없이도 능동적으로 목표를 설정하고, 실행할 수 있도록 만드는 것이다. 기존의 AI는 주어진 데이터와 명령에 따라 최적의 결과를 도출하는 ‘수동적’ 존재였다. 하지만 에이전틱 AI는 스스로 목표를 설정하고, 문제를 해결하는 ‘능동적’ 존재로 변하고 있다. 젠슨 황은 에이전틱 AI를 활용하면 인간이 직접 개입하지 않아도 AI가 알아서 문제를 해결하는 시대가 열린다고 강조했다. 추론 AI는 한 단계 더 나아가, AI가 단순한 패턴 인식을 넘어 논리적 사고를 수행할 수 있도록 만드는 기술이다. 기존 AI 모델은 데이터를 학습하고 특정 패턴을 기반으로 예측을 수행했지만, 그 과정에서 왜 이런 결론이 나왔는지 설명하지 못하는 경우가 많았다. 그러나 추론 AI는 AI가 논리적인 판단을 수행하고, 의사결정의 과정을 설명할 수 있도록 하는 것을 목표로 한다. 젠슨 황은 “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다”며, 추론 AI가 향후 AI 발전의 핵심이 될 것이라고 강조했다. 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 개별적인 개념이 아니라, 서로 결합될 때 가장 강력한 시너지를 발휘한다. 에이전틱 AI는 AI가 스스로 목표를 설정하고, 문제를 해결할 수 있도록 한다. 추론 AI는 AI가 단순한 계산이 아니라, 논리적 사고를 통해 최적의 결정을 내릴 수 있도록 한다. 이 두 가지가 결합되면, AI는 단순한 보조 도구를 넘어서 ‘진정한 지능(Artificial General Intelligence : AGI)’에 가까워질 것이다. 이러한 AI의 발전은 산업 전반에 걸쳐 거대한 변화의 파도를 일으킬 것이며, 기업들은 단순한 AI 도입을 넘어서 AI를 기업 전략의 중심으로 삼아야 하는 시점에 이르렀다. “AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다.” – 젠슨 황   AI 팩토리, AI 혁명을 생산하는 공장 이제 AI는 단순한 소프트웨어가 아니라 하나의 ‘산업’으로 성장하고 있다. GTC 2025에서 젠슨 황이 강조한 개념 중 하나가 바로 AI 팩토리(인공지능 공장)이다. 그는 AI 팩토리를 가리켜 ‘미래 산업의 심장’이라고 표현했다. 그렇다면 AI 팩토리란 무엇이며, 왜 중요할까? 이 개념이 가져올 변화는 무엇일까? 기존의 데이터센터는 단순한 컴퓨팅 인프라였다. 하지만 AI 팩토리는 데이터를 학습하고, AI 모델을 훈련하며, 새로운 AI 설루션을 ‘생산’하는 역할을 한다. 즉, AI가 AI를 만들어내는 공장이다. 젠슨 황은 AI 팩토리를 자동차 산업에 비유하며 설명했다. “과거에는 사람이 손으로 자동차를 조립했지만, 지금은 로봇이 자동차를 생산한다. AI도 마찬가지다. 미래에는 사람이 AI를 개발하는 것이 아니라, AI 팩토리에서 AI가 스스로 AI를 만들어내게 될 것이다.” 즉, AI 팩토리는 단순한 데이터 센터가 아니라 AI 혁명을 대량 생산하는 공장이 된다. 젠슨 황은 GTC 2025에서 "AI 팩토리를 구동하는 핵심 연산 장치는 블랙웰 GPU가 될 것"이라고 강조했다. AI 팩토리에서 생산되는 것은 반도체나 기계가 아니라 AI 자체다. 이 공장에서 에이전틱 AI, 추론 AI, 자율주행 AI, 생성형 AI 등이 대량으로 생산된다. 즉, AI 팩토리는 단순한 데이터 센터를 넘어 새로운 AI 산업의 허브가 된다. AI 팩토리가 등장하면 기업과 산업이 근본적으로 변화한다. 특히, 데이터를 기반으로 하는 모든 산업이 AI 팩토리를 도입할 가능56 · 성이 높다. 결국 AI 팩토리는 단순한 연구소가 아니라, 실제 AI 모델을 ‘대량 생산’하여 산업에 공급하는 핵심 인프라가 된다. 젠슨 황은 AI 팩토리의 등장이 단순한 기술 발전이 아니라 경제 패러다임의 변화라고 강조했다. 이제 기업은 단순히 AI를 도입하는 것을 넘어, AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다. “AI를 도입하지 않는 기업은 도태될 것이다.” – 젠슨 황   AI의 도입, AI가 기업을 재설계한다 AI 혁명은 더 이상 선택이 아니다. GTC 2025에서 젠슨 황이 강조한 메시지는 명확했다. "AI를 도입하지 않는 기업은 도태될 것이다." 이제 AI는 기업 운영의 한 요소가 아니라 기업의 핵심 전략, 구조, 성장 엔진 자체로 변화하고 있다. 기업은 어떻게 AI를 도입하고 있으며, AI 도입이 비즈니스에 미치는 영향은 무엇일까? 과거 AI 도입은 단순한 자동화 도구 활용이었다. 그러나 이제 AI 도입(AI adoption)은 기업의 핵심 역량을 AI 중심으로 전환하는 과정이다. AI 도입은 이제 단순한 기술의 도입이 아니라, 기업의 전략과 문화 자체를 AI 중심으로 변화시키는 과정이다. AI 도입이 빠르게 진행될 수록, 기업들은 직접 AI를 개발하는 것이 아니라 필요한 AI 서비스를 구독하는 방식으로 활용하는 시대가 열리고 있다. AI 도입이 가속화되면서 기업들은 완전히 새로운 방식으로 운영되고 있다. 특히, 의사결정 구조, 업무 방식, 조직 문화가 AI 중심으로 변화하고 있다. 이제 AI는 단순한 도구가 아니다. AI 도입이 진행될 수록, 기업의 핵심 전략과 비즈니스 모델 자체가 AI 중심으로 변화하고 있다. 결국, AI 도입을 성공적으로 수행하는 기업만이 미래 시장에서 생존하고 성장할 수 있을 것이다.    표 2. 기존 기업 vs. AI 중심 기업의 차이점   AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” – 젠슨 황   네트워킹, AI 시대의 연결과 협업 AI가 기업의 핵심 전략이 되고 산업 전체가 AI 기반으로 재편되는 과정에서, 네트워킹(networking)의 중요성이 더욱 강조되고 있다. 과거 기업은 독립적으로 성장하는 전략을 취했지만, 이제 AI 시대에서는 기업 간 협력, 데이터 공유, AI 연구 협업이 필수이다. GTC 2025에서 젠슨 황은 이렇게 말했다. “AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” 그렇다면 AI 시대의 네트워킹은 어떻게 이루어지고 있으며, 어떤 기업이 AI 협업을 통해 새로운 가치를 창출하고 있을까? AI 네트워킹의 의미는 ‘AI는 연결을 필요로 한다’로 해석된다. AI 혁명이 가속화될 수록 기업들은 서로 연결될 필요가 있다.  즉, AI 네트워킹이란 기업들이 AI를 더 빠르고, 더 효율적으로, 더 윤리적으로 활용하기 위해 서로 협력하는 과정을 의미한다. AI 네트워킹을 실현하는 방식은 다양하지만, 현재 가장 중요한 세 가지 협력 모델을 살펴보자. AI 팜(AI farms)을 통해 개별 기업이 AI 인프라를 구축하는 부담을 줄이고, 더 빠르게 AI를 도입할 수 있다. AI 얼라이언스(AI alliance)를 통해 기업들은 경쟁이 아닌 협력을 기반으로 AI 혁신을 가속화하고 있다. 즉, AI 데이터 공유는 이제 개인정보 보호를 유지하면서도 기업들이 협력할 수 있는 새로운 방식으로 발전하고 있다. AI 네트워킹이 활성화됨에 따라, 기업들은 완전히 새로운 방식으로 연결되고 협력하고 있다. AI 시대에는 한 산업 내에서 경쟁하는 것이 아니라, 다양한 산업과 연결되는 것이 핵심 전략이 된다. 결과적으로, AI 네트워킹을 활용하는 기업들은 새로운 기회를 창출하고, 더 빠르게 AI 중심으로 전환하고 있다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다.” – 젠슨 황   AI 시대의 미래, 우리는 어디로 가는가 AI 혁명은 이제 단순한 기술 발전을 넘어 산업, 사회, 인간의 삶 자체를 근본적으로 변화시키고 있다. GTC 2025에서 젠슨 황은 말했다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다. ”그렇다면 AI의 미래는 어디로 향하고 있으며, 우리는 AI와 함께 어떤 세상을 만들어가야 할까? 에이전틱 AI와 추론 AI의 발전이다. 즉, AI가 단순한 ‘도구’가 아니라, 인간과 협력하는 ‘실제적인 파트너’가 되는 시대가 다가오고 있다. 기존의 AI는 패턴을 학습하는 방식이었다. 그러나 추론 AI는 스스로 논리적으로 사고하고 추론하는 능력을 갖춘다. 즉, AI가 더 이상 단순한 자동화 도구가 아니라, 지능적인 사고를 할 수 있는 존재로 변화하고 있다. AI가 점점 더 지능적으로 발전하면서, 우리는 ‘AI와의 관계를 어떻게 설정할 것인가’라는 근본적인 질문을 마주하게 되었다. 이제 AI는 단순한 도구를 넘어, 인간과 협력하여 새로운 가치를 창출하는 존재로 변화하고 있다. AI가 고도화될 수록 우리는 AI의 윤리적 문제와 사회적 책임에 대한 고민을 깊게 해야 한다. 결과적으로, 각국이 AI 규제와 발전 전략을 다르게 설정하면서 AI 패권 경쟁이 더욱 치열해지고 있다. AI는 단순한 기술이 아니라, 인류가 새로운 방식으로 사고하고 일하고 살아가는 방식을 바꾸는 거대한 전환점이 되고 있다. “AI는 이제 단순한 도구가 아니라, 스스로 사고하고 결정하는 존재로 나아가고 있다.” – 젠슨 황   변화의 바람을 넘어, AI와 함께 새로운 항해를 시작하다 AI 혁명은 거대한 바람이 아니라, 이제는 우리가 타고 항해해야 할 파도다. 과거에는 변화가 두려운 것이었다. 그러나, AI와 함께라면 우리는 변화 속에서도 새로운 기회를 창출할 수 있다. 엔비디아 GTC 2025에서 젠슨 황이 던진 질문을 기억하자. “AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” 이제 우리는 AI와 함께 새로운 항해를 시작할 준비를 해야 한다.   그림 1. 엔비디아 기업 성장 맵(GTC 2024, 2025, Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-04-02
트림블, 테클라 스트럭처스 2025 출시
트림블이 자사의 주력 구조 BIM(건설 정보 모델링) 소프트웨어인 테클라 스트럭처스(Tekla Structures)의 2025년 버전을 출시했다. 최신 버전은 생산성 향상과 보다 효율적인 제작 도면 생성을 지원하는 AI 기반 도구를 도입했다. 신규 및 향상된 기능은 건설 프로젝트 단계 전반의 실시간 모델 기반 협업을 위해 정보량이 풍부한 3D 모델의 생성, 결합, 관리, 공유를 돕는다. 테클라 스트럭처스 2025는 새로운 도구를 통해 향상된 도면 자동화 기능을 제공함으로써 고품질 제작 도면을 더 빠르게 만들 수 있도록 한다. 이를 통해 사용자 경험을 개선하고, 재작업을 최소화하며, 사용자가 도면에 대한 기업과 규제 표준을 더 쉽게 지킬 수 있도록 지원한다.     테클라 스트럭처스 2025에서 프리뷰 기능으로 도입된 AI 클라우드 패브리케이션 드로잉(AI Cloud Fabrication Drawing) 서비스는 사용자가 AI를 활용해 제작 도면을 자동으로 생성해, 더 쉽고 빠르게 만들 수 있도록 지원한다. 프리뷰 기능은 고객의 일반적인 워크플로를 방해하지 않으면서도 수동 조정의 필요성을 줄일 수 있는 선택적이고 대안적인 접근 방식을 제공한다. 새로운 AI 기반 트림블 어시스턴트(Trimble Assistant)가 테클라 제품의 확장 기능으로 제공된다. 이는 제품 내 확장 기능으로 사용하거나, 고객을 위한 중앙 집중형 제품 지원 시스템인 테클라 유저 어시스턴스(User Assistance) 웹 애플리케이션에서 사용할 수 있다. 트림블 어시스턴트는 다양한 테클라 제품에 대한 사용자의 질문에 테클라 유저 어시스턴스 지식에 기반한 정확하고 간결한 답변을 제공한다. 여기에는 테클라 스트럭처스, 테클라 스트럭처럴 디자이너(Structural Designer), 테클라 테드(Tedd), 테클라 파워팹(PowerFab) 등이 포함된다. 테클라 스트럭처스의 테클라 파워팹 커넥터(PowerFab Connector) 기능을 활용하면 견적, 구매, 제작을 위한 패키지를 테클라 스트럭처스에서 테클라 파워팹 철골 제작 관리 소프트웨어로 클릭 한 번에 전송할 수 있다. 이를 통해 자재 상세 정보, 프로젝트 상태, 제출물이 실시간으로 동기화되며, 상세 설계자는 최신 정보를 확인하고 제작자로부터 제출물에 대한 직접적인 피드백을 받을 수 있다. 이는 정보 요청과 수동 업데이트의 필요성을 줄이고, 도면 제작사의 프로젝트 수익성 개선에 도움이 될 수 있다. 또한 제작사는 생산 폐기물을 줄이고, 고가 자재의 임시(ad-hoc) 구매를 줄일 수 있다. 테클라 스트럭처스 2025에 프리뷰 기능으로 도입된 라이브 콜라보레이션(Live Collaboration) 서비스는 트림블 커넥트(Trimble Connect)와 테클라 스트럭처스 중 어떤 것을 사용해도 동일한 모델에서 작업할 수 있도록 지원한다. 이를 통해 프로젝트 이해관계자는 도면 기반 워크플로에서 나아가 모델 기반 진행 상황 검토가 가능하다. 테클라 스트럭처스 2025는 이제 IFC 형식과 더불어 더욱 효율적인 데이터 교환을 지원하는 TrimBIM 형식 사용 시에도 향상된 워크플로를 제공한다. 또한 트림블 커넥트 공통 데이터 환경과 협업 플랫폼 간 데이터 교환이 강화돼, 작업에 필요한 정보만 공유하고 공유된 정보를 모델 데이터로 보강할 수 있다. 이는 프로젝트 수명 주기 전반에서 효율적인 데이터 흐름과 협업을 구현하며 모든 이해관계자에게 혜택을 제공한다. 테클라 스트럭처스의 최신 버전은 사무실과 현장에 있는 이해관계자들이 더 효율적으로 협업할 수 있도록 개선된 통합 기능을 제공한다. 트림블 리얼리티 캡처(Reality Capture) 플랫폼 서비스와의 통합을 통해 로컬 하드웨어 리소스를 사용하지 않고도 포인트 클라우드와 3D 모델에서 협업할 수 있다. 테클라 스트럭처스 2025의 레이아웃 매니저(Layout Manager) 기능 개편은 현장에서 완공 검사를 보다 명확하게 하며, 사무실에서 명확한 지침을 제공해 프로젝트 실행의 정확성과 효율성을 보장한다. 이러한 개선 사항은 모델 데이터를 현장 작업과 통합해 프로젝트 측량사와의 협업을 강화한다. 테클라 스트럭처스 2025에서 속성 창과 도면 속성 대화 상자의 큰 유용성과 성능 개선은 전반적인 경험을 향상시켰다. 22025 버전은 콘크리트 작업 단계별 철근 번호 매기기와 같은 철근 도면 작업 기능이 향상됐다. 이는 제작 공정뿐만 아니라 현장 작업도 지원하며, 표준 완전 준수를 보장한다. 또한 확장된 철근 상세 설계 기능은 리바 세트(Rebar Sets)를 보다 유용하게 사용할 수 있도록 개선돼 경사로나 배수 표층의 개구부와 같은 다양한 구조물을 지원한다. 트림블의 옥사나 퀼뢰넨(Oxana Kyllönen) 제품 매니저는 “트림블은 보다 좋고, 빠르고, 안전하고, 저렴한, 보다 친환경적인 건설을 위한 핵심으로 커넥티드 워크플로를 완전히 수용하고 있다. 트림블의 테클라 포트폴리오는 풍부한 BIM 정보를 중심으로 여러 분야의 건설 팀을 연결하는 개념을 핵심으로 한다. 테클라 스트럭처스 2025 버전은 모든 자재와 건축 연속체의 모든 역할을 아우르는 팀을 위해 데이터 품질과 정보 흐름의 새로운 층을 추가했다. 이로써 사용자는 확신을 가지고 납품을 진행할 수 있다”고 말했다.
작성일 : 2025-03-17
유니티, ‘유나이트 서울 2025’ 키노트 및 세션 라인업 공개
유니티가 4월 15일 개최되는 ‘유나이트 서울 2025’의 키노트 및 세션 라인업을 공개했다. ‘유나이트 서울 2025’는 개발 라이프사이클 전체를 지원하는 유니티의  가능성과 잠재력을 최대한 활용할 수 있는 노하우 및 인사이트를 나누는 이벤트이다.   이번 행사는 유니티 글로벌 임원진의 키노트 연설로 시작된다. 유니티 코리아 송민석 대표이사의 개회사를 시작으로, 유니티의 맷 브롬버그(Matt Bromberg) CEO 겸 사장이 한국 개발자 커뮤니티에 대한 유니티의 의지를 다시 한 번 강조할 예정이다. 이어 유니티의 애덤 스미스(Adam Smith) 엔진 부문 프로덕트 부사장이 유니티6의 최신 업데이트 기능과 차세대 엔진 로드맵을 발표한다. 샘 로치(Sam Roach) 파트너 엔지니어링 디렉터는 삼성전자의 가장 최신 모델인 갤럭시 S25에서 모바일 특화 테크 데모인 ‘판타지 킹덤’을 시연한다.   유니티의 민경준 인더스트리 사업 본부장은 글로벌 자동차 기업과의 협업을 통한 휴먼 머신 인터페이스(HMI) 사례를 비롯하여 다양한 인더스트리 성공 사례를 소개한다. 이와 함께 국내 주요 파트너사인 LG전자에서는 CTO 소속 최재복 리드가 차량용 설루션으로 유니티를 활용하고 있는 사례를 소개할 예정이다. 유니티의 트레버 캠벨(Trevor Campbell) APAC 디맨드 광고 사업부 총괄은 모바일 앱 및 게임 비즈니스의 성장을 지원하는 그로우 설루션에 대해 발표한다. 유저 확보부터 수익화, 데이터 분석, 최적화까지 성공적인 앱 비즈니스 운영을 위한 다양한 전략과 노하우를 소개할 예정이다.     오후에는 게임 분야 및 다양한 산업 분야에서의 유니티 활용 사례와 함께 국내외 전문가들이 준비한 40여 개의 기술 세션이 진행된다. 네오플의 서남혁 테크니컬 디렉터는 ‘PC에서 모바일로 : 던전앤파이터의 기술적 전환 과정’이라는 주제로 세션을 진행한다. 그는 유니티 엔진을 활용해 PC 온라인 게임 던전앤파이터의 모바일 버전을 개발하면서 직면한 주요 기술적 난제와 해결 과정을 소개할 예정이다. 유니티의 구로카와 유스케(Kurokawa Yusuke) 파트너 엔지니어는 유니티 소스코드 다운로드부터 내부 디버깅까지 퀵 가이드를 제공한다. 2023년 진행 당시 호응을 얻었던 유니티 소스코드 웨비나에 이어 보다 업그레이드된 세션이다.  일본의 IT 및 디지털 미디어 기업인 사이버에이전트의 김민혁 유니티 솔루션 아키텍트는 ‘효율적인 사내 유니티 프로젝트 품질관리 전략과 최적화 사례’를 주제로 발표하고, HD현대인프라코어의 김현준 책임은 ‘서비스 역량과 생산성 향상 및 안전 확보를 위한 고객 경험 VR 플랫폼’이라는 주제로 세션을 진행한다. 다임리서치의 장영재 대표이사는 '피지컬 AI를 활용한 공장·물류 자동화 시스템'을 주제로 세션을 진행해 피지컬 AI의 개념을 설명하고, 다임리서치의 물류 로봇이 삼성 SDI 산업 현장에서 적용된 사례를 소개할 예정이다.   인디 크리에이터들을 위해서는 현장 프로그램 ‘핸즈온 트레이닝’과 ‘메이드 위드 유니티 존’이 진행된다. ‘핸즈온 트레이닝’은 유니티 전문가에게 실습 기반 피드백을 받을 수 있는 세션으로, 일부 세션은 신청 당일에 조기 마감될 정도로 개발자들의 관심이 높은 프로그램이다. 이번 행사에서는 ▲유니티 프로젝트 최적화 빠르게 점검하기 ▲유니티6로 2D 플랫포머 게임 만들기 ▲유니티6의 NGO(Netcode for GameObject)를 활용해 네트워크 게임 구축하기 등 총 세 가지 주제로 진행된다. ‘메이드 위드 유니티 존’은 유니티로 제작한 인디 게임을 참관객에게 직접 선보일 수 있는 공간이다. 현장 인기 투표를 통해 1위로 선정된 프로젝트는 ‘2025 유니티 어워드’ 입선 및 유니티 전문가가 직접 프로젝트 개발을 도와주는 특별 프로그램에 선발될 수 있는 기회를 제공한다.   이밖에 유니티의 게임 및 인더스트리 부문 전문가가 직접 소개하는 기술 데모 시연 및 활용 팁, 사례 등을 만나볼 수 있는 ‘데모 존’, 인디 게임 개발 베테랑과 유니티 유튜버가 후배 개발자들의 질문에 답하는 캐주얼 토크 형식의 ‘파이어 사이드 챗’, 유니티 개발자와 회사 또는 채용 전문가가 자유롭게 소통할 수 있는 ‘Unite & Connect 잡 매칭 프로그램’도 운영한다.   유니티 코리아의 송민석 대표는 “유니티는 혁신적인 아이디어와 기술을 바탕으로 자유롭게 상상력을 발휘할 수 있는 크리에이터들이 더 많아지는 세상을 위해 나아가고 있다”면서, “유나이트 서울 2025에서 준비한 다양한 세션과 프로그램이 크리에이터의 성장과 출발에 도움이 될 수 있길 기대한다”고 말했다.
작성일 : 2025-03-12
[칼럼] 인공지능 시대에 나는 무엇을 아는가?
디지털 지식전문가 조형식의 지식마당   챗GPT(ChatGPT)의 광풍으로 시작된 생성형 AI(generative AI)의 열풍이 벌써 3년이 지나가고, 최근에는 중국의 인공지능 제품인 딥시크(DeepSeek)의 돌풍으로 잠시나마 미국 엔비디아의 주식이 폭락하는 사태가 있었다. 딥시크의 희망은 엄청난 투자 없이도 인공지능 사업이 가능한 것처럼 보였다. 한편, 최근 일론 머스크는 그록 3(Grok 3)라는 설명 가능 인공지능 XAI(explainable AI)를 발표했다. 그록 3는 엔비디아 GPU 칩을 20 만 개 사용해서 훈련을 했다고 한다. 엔비디아 H100 15만개 + H200 5만개라고 발표했는데, 아직은 엄청난 투자가 필요한 부분임을 알 수 있었다.   그림 1.  챗봇 전성시대   여러가지 호불호 사건에도 불구하고, 이제 인공지능 챗봇의 시대는 거역할 수 없는 대세가 되고 있다. 필자 역시 대부분의 시간을 인공지능을 공부하는 데 사용하고 있다. 지난 2년 동안은 오픈AI의 챗GPT와 구글의 제미나이(Gemini)를 사용하고 최근에는 딥시크, 며칠 전부터는 그록 3를 모두 사용하고 있다. 그리고 장기적으로는 개인 인공지능(personal AI) 환경에도 관심이 많다. 최근에 더 많은 지식과 복잡한 대답을 손 쉽게 얻을 수 있었지만, 이런 의문점이 생겼다. 이러한 인공지능 시대에 ‘우리의 지식의 정의와 관점이 어떻게 되어야 할 것인가?’라는 생각이다. 수백 년 전 16세기 프랑스의 철학자인 몽테뉴(Michel de Montaigne)는 이런 인간 지식의 한계에 대해서 “나는 무엇을 아는가?”라고 짚었다. 이는 몽테뉴의 ‘수상록’에 담긴 철학적 질문이자, 회의주의적 태도를 상징하는 문구이다. 몽테뉴는 이 질문을 통해 인간 지식의 한계와 불확실성(uncertainty)을 강조하며, 겸손하고 열린 마음으로 세상을 바라볼 것을 권했다. 최근 인공지능의 발전과 결과는 이런 질문을 너무 간단한 것으로 느껴게 한다. ‘나는 무엇을 아는가?’라는 물음의 의미에 대해 몽테뉴는 인간이 자신의 감각, 이성, 경험에 의존하여 지식을 얻지만, 이러한 것조차 불완전하고 주관적일 수 있다고 보았다. 그는 인간의 인식이 상황에 따라 달라지고 오류를 범하기 쉽다는 점을 지적하며, 절대적인 진리나 확실한 지식은 존재하지 않을 수 있다는 회의적인 입장을 표명했다.   그림 2. Que sais-je?(나는 무엇을 아는가?) – 몽테뉴   과연 이런의 인간의 지식을 학습한 현재의 AI는 괜찮을 것일까 하는 회의가 생긴다. ‘나는 무엇을 아는가?’라는 질문은 이러한 몽테뉴의 회의주의적 인식을 담고 있다. 그는 이 질문을 통해 인간 지식의 한계를 인정하고, 자신의 무지를 자각하는 것이 진정한 지혜의 시작이라고 보았다. 인공지능(AI)의 발전은 지식의 개념과 분류에 대한 새로운 논의를 불러일으키고 있다. 2025년 현재, 우리는 AI가 단순한 데이터 처리를 넘어 인간의 인지 능력을 모방하고 창의적인 결과물을 생성하는 시대에 살고 있다. 이러한 시대적 배경 속에서 지식은 다음과 같이 재정의되고 분류될 수 있다. 첫 번째, 인공지능 시대에 지식의 새로운 기준이 필요하다. 이전의 지식과는 다른 차원의 기준과 사용법과 습득 전략이 필요하다고 생각한다. 인공지능은 방대한 데이터를 처리하고 분석하여 인간의 능력을 뛰어넘는 지식을 생산한다. 이러한 인공지능의 등장은 기존의 지식 체계에 대한 근본적인 질문을 던진다. 우리는 인공지능이 제공하는 정보를 어떻게 받아들여야 할까? 인공지능이 제시하는 지식이 절대적인 진리일까? 인공지능 시대에 지식의 의미와 기준을 다시 생각하게 한다. 두 번째, 인간 지능의 가치가 무엇일까? 인공지능이 발전할 수록 인간 지능의 가치는 더욱 중요해진다고 생각하지만, 설명이 아직 빈약하다. 인공지능은 데이터 분석과 계산에 뛰어나지만 창의적인 사고, 비판적 판단, 윤리적 책임과 같은 인간 고유의 능력은 따라올 수 없다고 한다. 우리는 그렇게 믿고 싶어 한다. 몽테뉴의 사상은 인간 지능의 한계를 인정하면서도 동시에 그 중요성을 강조했다. 인공지능 시대에 우리는 인간 지능의 가치를 다시 한번 되새기고, 이를 발전시키기 위해 노력해야 한다. 세 번째, 인공지능 시대에는 겸손과 성찰의 자세가 더욱 중요하다고 한다. 우리는 인공지능이 제공하는 정보를 맹목적으로 받아들이기보다는 비판적으로 검토하고, 자신의 지식과 판단에 대해 끊임 없이 질문해야 한다. 몽테뉴는 자신의 무지를 자각하고 겸손한 태도를 갖는 것이 진정한 지혜의 시작이라고 말했다. 인공지능 시대에 우리는 몽테뉴의 가르침을 되새기며, 겸손하고 성찰하는 자세를 유지해야 한다. 인공지능이 인간처럼 철학 책을 읽고 겸손과 성찰을 할 수 있을까 하는 생각도 든다. 아직은 가능하지 않은 것 같다. 네 번째, 인간과 인공지능의 공존이다. 어쩔 수 없이 인공지능 시대는 인간과 인공지능이 공존하는 시대이다. 우리는 인공지능을 활용하여 삶의 질을 높이고 새로운 지식을 창출할 수 있다. 하지만, 동시에 인공지능의 위험성을 경계하고 인간의 존엄성을 지키기 위해 노력해야 한다. 몽테뉴의 생각은 인공지능 시대를 사는 현대인에게 인간의 한계와 가능성을 동시에 보여주었다. 인공지능 시대에 우리는 몽테뉴의 정신을 바탕으로 인간과 인공지능의 조화로운 공존을 추구해야 한다. 결론적으로 몽테뉴의 생각은 인공지능 시대에 인간 지식의 의미와 가치, 겸손과 성찰의 자세, 인간과 인공지능의 공존에 대한 중요한 질문을 던진다. 몽테뉴은 질문이 시작에 불과하며, 우리는 이런 인공지능 시대에 필요한 지혜를 찾아야 한다. 그렇지 않으면 우리의 문명이 이번 세기에서 인간 지식의 위기를 맞을 수 있다. “Que sais-je?(나는 무엇을 아는가?)”– 몽테뉴   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-03-06
[Q&A] 자율제조 핵심기술, SDM과 AI의 만남(박한구 명예회장)
CNG TV '자율제조 핵심기술, SDM과 AI의 만남' 방송 Q&A 내용 정리합니다. 일시 : 2025-02-17 16:00 ~ 17:00 출연자 : 박한구 명예회장(한국인더스트리4.0협회) 방송 다시보기 및 발표자료 다운로드  Q&A 정리 1. SDM(Software Defined Manufacturing)과 AI의 개념 및 핵심 기술 관련 질문 ✅ SDM이 기존의 제조 방식과 어떻게 다른가요?    공급기업 의존형해서 하드웨어 벤더와 관계없이 다양한 소프트웨어 도입 ✅ SDM을 적용하면 제조업에서 어떤 실질적인 변화가 생기나요?    종속성을 탈피하여 유연생산을 경제적으로 ✅ AI가 제조업에서 어떻게 활용되며, SDM과 결합될 때의 시너지는 무엇인가요?    사람대신 예측하여 협업하는 모습에서 동일한 설비로 다양한 제품을 소프트웨어로 변경으로  가능 ✅ SDM과 기존 스마트팩토리(Industry 4.0)와의 차이점은 무엇인가요?         H/W, SI 벤더 Free System 구축 ✅ 현재 SDM을 적극적으로 도입한 글로벌 기업의 사례가 있나요?         TESLA, SIEMENS, BOSCH 2. AI 기반 자율제조 트렌드 및 기술 적용 관련 질문 ✅ AI가 제조업에서 품질 관리, 예측 유지보수 등에 어떻게 적용될 수 있나요?            품질 좋은 데이터가 수집저장되고 글로벌 시장에서 검증된 솔루션을 적용해야 가능     스타트업과 Testbed 협업 개발 상호성장 ✅ 자율제조 시스템에서 AI가 결정하는 수준은 어느 정도인가요? (예: 완전 자동화 vs. 인간 보조)      인간보조에서 완전 자동화로 단계적발전 ✅ AI 기반 제조업이 노동시장에 미치는 영향은? (자동화로 인한 일자리 변화)         양질의 일자리 제공 - 운전, 징비 잘에게 분석,판단,조치를 가이드하고, 스스로 제어하도록 지속 협업 노력으로. 지식  근로자 전환 ✅ 디지털 트윈과 AI의 결합이 자율제조에 어떤 영향을 미치나요?     인간에게 보조에서 더 정확한 예측 정도향상으로 스스로 자율 공장 제어로 경제적 생산 ✅ 자율생산 공정에서 AI의 판단 오류를 방지하는 방법은 무엇인가요?     지속적인 다양한 시나리오로 학습 능력 3. SDM과 AI 도입의 실질적인 도전과 기회 관련 질문 ✅ SDM과 AI를 도입하려면 기존의 제조업체들은 어떤 준비가 필요할까요?     기존 설비의 소프트웨어를 해석하고 변경가능한 시스템으로 전환하고 디지털 트윈화해야. ✅ SDM과 AI 기술을 도입할 때 기업이 직면하는 가장 큰 도전 과제는 무엇인가요?      OT 운영자, 정비자,관리자, 경영자의 마인드 변화  - 수용성과 신속한 변화와 혁신 ✅ 한국 제조업체가 SDM과 AI 도입을 성공적으로 추진하기 위해 필요한 정부 지원 정책은?    국내 제조업에서 설비는 부품교체하나 제어시스템과 소프트웨어는 도입당시 고집할수ㅈ밖에 없는 상황으로 이분야에 스타트 업 육성하는 정책 필요.  미국 등 SDM 중시하나 우리는 SDA 에 중점 육성하는 틈새시장 공략 ✅ 기업 내 조직 문화와 사고방식은 어떻게 변화해야 하나요?    관료적 하드웨어적 사고에서 소프트웨어 사고 전화 ✅ AI 기반 제조 공장에서 데이터 보안과 사이버 보안은 어떻게 관리해야 하나요?   보안은 온 프러이스에서 퍼브립 클라우드로 전환 4. 실무 적용 및 ROI(투자 대비 효과) 관련 질문 ✅ SDM과 AI 도입 시 투자 비용 대비 효과(ROI)는 어떻게 측정할 수 있나요?     데이터 기반 자둥으로 KPI 모니터링 ✅ 자율제조 시스템이 기존 생산성과 품질에 미치는 긍정적인 효과는?      돌발 고장 최소화로 생산성 향상, 공정 이상을 사전 예측하여 품질불량 최소화. ✅ SDM과 AI를 도입한 기업의 성공 사례를 들어주실 수 있나요?     Tesla PC based SDA 시스템 ✅ SDM 도입을 고려하는 중소 제조업체들이 쉽게 접근할 수 있는 방법은?    정확한 이해로 투자사업시 정확한 요구사항을 담아 공급업처 선정 ✅ 기존의 제조 설비와 SDM 및 AI를 어떻게 통합할 수 있나요?     기존 설비를 자동화하고 센싱 데이터를 수집 저장하는 디지털화 부터 5. SDM과 AI의 미래 전망 관련 질문 ✅ 향후 10년간 SDM과 AI 기반 자율제조의 발전 방향은?          기업은 구하기 힘들고 고가의 인건비를 대체하는 로봇, 자동화 시스템 도입할 것임     이제 하드웨어에 관련 없는 소프트웨어 도입으로 전환 ✅ AI 자율제조 시스템이 글로벌 제조업 트렌드에서 차지하는 역할은?      단계적, 선두에 있는 기업이 시장 장악      통큰 투자가 이분야에 투자 필요 ✅ SDM과 AI를 기반으로 한 제조업이 ESG(환경·사회·지배구조) 및 지속 가능성(Sustainability)에 미치는 영향은?    저탄소 생산공장으로 저탄소 배출하는 친환경적인 제품을 자율생산과서비스 하는 기업이 지속성장할 것임 ✅ 자율제조 시대가 오면 인간의 역할은 어떻게 변화할까요?    지식 근로자로 AI 협업하여 더 풍요로운 살을 누리는 생산과 제품 개발에 집중 결론: 방송의 핵심 키포인트 정리 SDM과 AI의 결합이 어떻게 제조업을 혁신할 것인지에 대한 설명이 필요함. 기술 도입의 실질적인 이점과 도전 과제에 대한 명확한 사례 제시가 중요. 청중은 AI와 SDM이 실제 제조업에서 어떤 방식으로 적용되는지, 경제적 가치가 얼마나 되는지에 대해 궁금해할 가능성이 큼. 미래 제조업의 변화와 인간의 역할 변화에 대한 비전 제시가 필요.
작성일 : 2025-03-05
인텔, AI 어시스턴트 개발 돕는 AI 스위트 공개
인텔은 고객들이 AI 어시스턴트를 신속하게 개발할 수 있도록 지원하는 새로운 인공지능(AI) 스위트(Suite)를 공개했다. 2023년 12월, 인텔 코어 울트라(Intel Core Ultra) 프로세서 제품군과 함께 등장한 새로운 세대의 PC는 중앙처리장치(CPU), 그래픽처리장치(GPU), 신경망처리장치(NPU)를 결합해 사용자의 생산성, 창의성, 게임, 엔터테인먼트, 보안 등 다양한 분야에서 새로운 가능성을 열어가고 있다. 최신 AI 워크로드를 처리할 수 있는 강력한 하드웨어는 뛰어난 AI PC를 만드는 요소 중 하나에 불과하다. PC 산업은 이 최신 하드웨어를 활용해 새로운 AI 소프트웨어와 사용자 경험을 창출할 수 있는 중요한 기회를 맞이하고 있다. AI PC가 최상의 AI 경험을 제공하기 위해서는 일상적인 작업을 돕는 AI 어시스턴트를 더욱 빠르고 효율적으로 개발하는 것이 중요하다. 인텔은 2025년 1월 라스베이거스에서 열린 CES 2025에서 컴퓨터 제조업체와 소프트웨어 벤더가 몇 분 만에 맞춤형 AI 어시스턴트를 개발할 수 있도록 지원하는 ‘인텔 AI 어시스턴트 빌더(코드명 프로젝트 슈퍼빌더(Project SuperBuilder))’를 공개했다.     AI 어시스턴트 빌더는 복잡한 과정 없이 AI 모델을 손쉽게 개발할 수 있도록 지원하는 설루션이다. 이 설루션은 세 단계만 거치면 AI 어시스턴트를 구축할 수 있도록 설계되었다. 먼저, 준비된 AI 어시스턴트 모델을 선택하고, 이를 다운로드 및 설치한 후, 프로그램을 실행하면 된다. 이 앱은 사용자가 채팅 창에서 질문을 하고, PDF, 스프레드시트, 프레젠테이션, 텍스트 파일 등 다양한 형식의 문서를 업로드하거나 삭제할 수 있도록 지원한다. 사용자가 질문을 하면 AI 어시스턴트는 질문에 맞춰 응답하며, 대화 기록, 관련 문서, 그리고 대규모 언어 모델(LLM)의 내재적 지식을 바탕으로 학습한다. 또한, 욕설 필터와 모델이 편향 없이 안전하게 응답하도록 유도하는 보조 안전 시스템을 포함한 고급 AI 안전 장치를 갖추고 있다. 사용자가 다양한 고급 기능을 선택해 자신만의 AI 어시스턴트를 맞춤형으로 구축할 수 있도록, 지속적으로 새로운 기능이 추가되고 있다. 인텔의 올레나 주(Olena Zhu) 클라이언트 컴퓨팅 그룹 수석 엔지니어는 “인텔은 업계에 자체 AI 중심 콘텐츠를 만들 수 있는 기반을 제공하고 있다. 이를 통해 인텔 고객들은 전체 개발 시간을 단축하고 자신만의 스마트 설루션 출시 속도를 앞당길 수 있다”고 설명했다. 한편, 인텔은 자사의 주요 파트너들이 이미 AI 어시스턴트 빌더를 활용해 특정 요구에 맞는 맞춤형 모델을 개발하고 있다고 소개했다. 에이서는 자사의 카메라 비전 기술을 통합한 AI 세일즈 어시스턴트 기술 증명(POC)을 3일 만에 개발했다. 한국에서는 인텔과 삼성전자가 교보문고에 클라우드가 아닌 온디바이스에서 실행되는 생성형 AI 챗봇을 도입했다. 이 챗봇은 스마트 LLM을 기반으로 하여, 고객이 책을 검색하고 맞춤형 정보를 받을 수 있도록 지원한다. 에이수스는 인텔의 기술을 활용해 NUC 고객을 위한 기술 특화 Q&A 어시스턴트를 개발했다. AI 어시스턴트를 처음부터 완성도 높게 개발하려면 몇 주에서 몇 달이 걸리며, 소프트웨어 프로그래밍과 AI에 대한 깊은 전문 지식이 요구된다. 그러나 AI 어시스턴트 빌더는 출시가 제안된 지 불과 몇 달 만에 전 세계 PC 제조업체(OEM)와 독립 소프트웨어 벤더(ISV)들에 의해 활발히 활용되고 있다. 또한, 인텔의 AI PC 플랫폼이 성숙해짐에 따라 더 많은 고객들이 인텔과 협업을 추진하고 있다. AI 어시스턴트 빌더는 특정 하드웨어 요구사항을 충족하는 모든 인텔 기반 AI PC에서 원활하게 실행된다. 최소 사양은 인텔 코어 울트라 프로세서(시리즈 1), 16GB 램(RAM), 그리고 내장 인텔 그래픽(Integrated Intel Graphics)을 탑재한 PC다. 2024년 9월, 인텔은 이전 세대 대비 AI 성능을 3배 향상시키고 전력 소모를 최대 50% 줄인 인텔 코어 울트라 프로세서(시리즈 2)를 공개했다.
작성일 : 2025-02-24
엔비디아, 더 강력하고 지능적인 AI 구축을 돕는 ‘스케일링 법칙’ 소개
엔비디아가 더 강력하고 지능적인 AI 구축을 지원하는 ‘스케일링 법칙’을 소개했다. 엔비디아는 이 법칙이 훈련 데이터, 모델 파라미터 또는 컴퓨팅 리소스 크기가 증가함에 따라 AI 시스템 성능이 향상되는 방식을 설명한다고 밝혔다. AI 분야에서 오랫동안 정의된 아이디어 중 하나는 컴퓨팅, 훈련 데이터, 파라미터가 더 많을수록 더 나은 AI 모델이 만들어진다는 것이다. 하지만 이후 AI에는 컴퓨팅 리소스를 다양한 방식으로 적용하는 것이 모델 성능에 어떻게 영향을 미치는지 설명하는 세 가지 법칙이 대두됐다. 이는 사전 훈련 스케일링(pretraining scaling), 사후 훈련 스케일링(post-training scaling), 긴 사고(long thinking)라고도 불리는 테스트 타임 스케일링(test-time scaling)이다. 이들 법칙은 점점 더 복잡해지는 다양한 AI 사용 사례에서 추가 컴퓨팅을 사용하는 기술을 통해 AI 분야가 어떻게 발전해왔는지를 보여준다. 최근 추론 시 더 많은 컴퓨팅을 적용해 정확도를 향상시키는 테스트 타임 스케일링이 부상하면서 AI 추론 모델의 발전을 가능하게 했다. 이 모델은 작업을 해결하는 데 필요한 단계를 설명하면서 복잡한 문제를 해결하기 위해 여러 추론 패스를 수행하는 새로운 종류의 대규모 언어 모델(LLM)이다. 테스트 타임 스케일링은 AI 추론을 지원하기 위해 많은 양의 컴퓨팅 리소스를 필요로 하며, 이는 가속 컴퓨팅에 대한 수요를 더욱 증가시킬 것이다.     사전 훈련 스케일링은 AI 개발의 기본 법칙이다. 이는 훈련 데이터 세트 크기, 모델 파라미터 수, 컴퓨팅 리소스를 늘림으로써 개발자가 모델 지능과 정확도의 예측 가능한 향상을 기대할 수 있음을 입증했다. 한 연구 논문에서 설명한 사전 훈련 스케일링 법칙에 따르면, 규모가 큰 모델에 더 많은 데이터가 공급되면 모델의 전반적인 성능이 향상된다. 이를 실현하려면 개발자는 컴퓨팅을 확장해야 하며, 이 거대한 훈련 워크로드를 실행하기 위해서는 강력한 가속 컴퓨팅 리소스가 필요하다. 사후 훈련 기법은 조직이 원하는 사용 사례에 맞춰 모델의 특이성과 관련성을 더욱 향상시킬 수 있다. 사전 훈련이 AI 모델을 학교에 보내 파운데이션 기술을 배우게 하는 것이라면, 사후 훈련은 목표한 업무에 적용할 수 있는 기술을 갖추도록 모델을 향상시키는 과정이다. 예를 들어, LLM은 감정 분석이나 번역과 같은 작업을 수행하거나 의료, 법률과 같은 특정 분야의 전문 용어를 이해하도록 사후 훈련될 수 있다. 긴 사고라고도 하는 테스트 타임 스케일링은 추론 중에 발생한다. 사용자 프롬프트에 대한 단답형 답변을 빠르게 생성하는 기존 AI 모델과 달리, 이 기술을 사용하는 모델은 추론 중에 추가적인 계산 작업을 할당한다. 이를 통해 여러 가지 잠재적 답변을 추론한 후 최적의 답변에 도달할 수 있도록 한다. 테스트 타임 컴퓨팅의 부상으로 AI는 복잡한 개방형 사용자 쿼리에 대해 합리적이고 유용하며 보다 정확한 답변을 제공하는 능력을 갖추게 됐다. 이러한 기능은 자율 에이전틱 AI와 피지컬 AI(Physical AI) 애플리케이션에서 기대되는 세밀하고 다단계의 추론 작업에 매우 중요하다. 또한, 산업 전반에서 사용자에게 업무 속도를 높일 수 있는 고성능 비서를 제공해 효율성과 생산성을 향상시킬 수 있다. 의료 분야에서는 모델이 테스트 타임 스케일링을 사용해 방대한 양의 데이터를 분석하고 질병이 어떻게 진행될지 추론할 수 있다. 뿐만 아니라, 약물 분자의 화학 구조를 기반으로 새로운 치료법이 불러올 수 있는 잠재적인 합병증을 예측할 수 있다. 소매와 공급망 물류 분야에서는 긴 사고가 단기적인 운영 과제와 장기적인 전략 목표를 해결하는 데 필요한 복잡한 의사 결정을 도와줄 수 있다. 추론 기법은 여러 시나리오를 동시에 예측하고 평가해 기업이 위험을 줄이고 확장성 문제를 해결하는 데 도움이 된다. 이를 통해 보다 정확한 수요 예측, 간소화된 공급망 이동 경로, 조직의 지속 가능성 이니셔티브에 부합하는 소싱 결정을 가능하게 한다. 나아가 글로벌 기업에서는 이 기술을 세부적인 사업 계획 작성, 소프트웨어 디버깅을 위한 복잡한 코드 생성, 배송 트럭과 창고 로봇, 로보택시의 이동 경로 최적화 등에 적용할 수 있다. AI 추론 모델은 빠르게 진화하고 있다. 최근 몇 주 동안 OpenAI(오픈AI) o1-미니(o1-mini)와 o3-미니(o3-mini), 딥시크(DeepSeek) R1, 구글 딥마인드(Google DeepMind) 제미나이 2.0 플래시 씽킹(Gemini 2.0 Flash Thinking)이 소개됐으며, 곧 새로운 모델이 추가로 출시될 예정이다. 이러한 모델은 추론 중에 사고하고, 복잡한 질문에 대한 정답을 생성하기 위해 훨씬 더 많은 컴퓨팅이 필요하다. 따라서 기업은 복잡한 문제 해결, 코딩, 다단계 계획을 지원할 수 있는 차세대 AI 추론 도구를 제공하기 위해 가속 컴퓨팅 리소스를 확장해야 한다.
작성일 : 2025-02-14
전문 BIM 자료를 이해하는 대규모 언어 모델 파인튜닝하기
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 전문적인 BIM 자료를 이해할 수 있는 대규모 언어 모델(LLM, Large Language Model)을 개발하는 방법을 알아본다. BIM 기반 LLM을 개발하는 방법은 여러 가지가 있으나, 여기에서는 그 중 하나인 RAG(Retrieval Augumented Generation, 증강 검색 생성) 시 LLM이 잘 추론할 수 있도록 모델을 파인튜닝(fine-turning)하는 기술을 사용해 본다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   LLM 모델 파인튜닝의 개념 파인튜닝이란 사전에 학습된 LLM을 특정 도메인이나 작업에 맞게 최적화하는 과정이다. 기본적으로 LLM은 일반적인 자연어 처리 작업을 수행하도록 설계되어 있지만, 전문적인 특정 지식 도메인(예 : 건설 분야의 BIM 데이터)이나 문제를 다룰 때는 환각 현상이 심해지므로 해당 도메인에 특화된 데이터로 모델을 재학습시켜야 한다. 이를 통해 모델이 특정 영역에서 더 정확하고 유용한 결과를 생성하도록 만든다. 파인튜닝 과정은 다음과 같은 단계로 이루어진다.  ① 사전 학습된 모델 선택 : 이미 대규모 데이터로 학습된 LLM을 선택한다. ② 도메인 특화 데이터 준비 : 대상 분야와 관련된 고품질 데이터를 수집하고, 이를 정제 및 전처리한다. ③ 모델 파라미터 조정 : LoRA(Low-Rank Adaptation)같은 기법을 사용하여 모델 파라미터를 특정 도메인에 맞게 업데이트한다.  ④ 훈련 및 검증 : 준비된 데이터로 모델을 학습시키고, 성능을 검증하며 최적화한다. 여기서, LoRA 기술은 LLM을 파인튜닝하는 데 사용되는 효율적인 기법이다. 이 방법은 모델 전체를 다시 학습시키는 대신, 모델의 일부 파라미터에만 저차원(lowrank) 업데이트를 적용하여 파인튜닝한다. 이를 통해 학습 비용과 메모리 사용량을 대폭 줄이면서도 높은 성능을 유지할 수 있다. 이 글에서 사용된 라마 3(Llama 3)는 메타가 개발한 LLM 제품이다. 모델은 15조 개의 토큰으로 구성된 광범위한 데이터 세트에서 훈련되었다.(라마 2의 경우 2T 토큰과 비교) 700억 개의 파라미터 모델과 더 작은 80억 개의 파라미터 모델의 두 가지 모델 크기가 출시되었다. 70B 모델은 MMLU 벤치마크에서 82점, HumanEval 벤치마크에서 81.7점을 기록하며 이미 인상적인 성능을 보여주었다. 라마 3 모델은 컨텍스트 길이를 최대 8192개 토큰(라마 2의 경우 4096개 토큰)까지 늘렸으며, RoPE를 통해 최대 32k까지 확장할 수 있다. 또한 이 모델은 128K 토큰 어휘가 있는 새로운 토크나이저를 사용하여 텍스트를 인코딩하는 데 필요한 토큰 수를 15% 줄인다.   개발 환경 준비 개발 환경은 엔비디아 지포스 RTX 3090 GPU(VRAM 8GB), 인텔 i9 CPU, 32GB RAM으로 구성되었다. 이러한 하드웨어 구성은 대규모 BIM 데이터를 처리하고 모델을 학습시키는 최소한의 환경이다. 이 글에서는 사전 학습모델은 허깅페이스(HF)에서 제공하는 Llama-3-8B 모델을 사용한다. 파인튜닝을 위해서는 다음과 같은 환경이 준비되어 있다고 가정한다.  파이토치 설치 : https://pytorch.org/get-started/locally  올라마(Ollama) 설치 : https://ollama.com 허깅페이스에서 제공하는 LLM 모델을 사용할 것이므로, 접속 토큰(access token)을 얻어야 한다. 다음 링크에서 가입하고 토큰을 생성(Create new token)한다. 이 토큰은 다음 소스코드의 해당 부분에 입력해야 동작한다.  허깅페이스 가입 및 토큰 획득 : https://huggingface.co/ settings/tokens   그림 1   명령 터미널에서 다음을 실행해 라이브러리를 설치한다.   pip install langchain pypdf fastembed chardet pandas pip install -U transformers pip install -U datasets pip install -U accelerate pip install -U peft pip install -U trl pip install -U bitsandbytes pip install -U wandb   개발된 BIM LLM 모델 성능이 향상되었는지를 검증할 수 있도록, 기초 모델이 인터넷에서 쉽게 수집 후 학습할 수 있는 BIM 자료를 제외한 데이터를 학습용으로 사용할 필요가 있다. 이런 이유로, 최근 릴리스되어 기존 상용 대규모 언어 모델이 학습하기 어려운 ISO/TS 19166에 대한 기술 논문 내용을 테스트하고, 학습 데이터 소스로 사용한다. 참고로, ISO/TS 19166은 BIM-GIS conceptual mapping 목적을 가진 국제표준으로 기술 사양(TS)을 담고 있다. 학습 데이터로 사용될 파일을 다음 링크에서 PDF 다운로드하여 저장한다.  BIM-GIS 매핑 표준 논문 PDF 파일 : https://www.mdpi. com/2220-9964/7/5/162   BIM 기반 LLM 모델 학습 데이터 준비와 파인튜닝 파라미터 설정 학습 데이터를 자동 생성하기 위해, 미리 다운로드한 PDF 파일을 PyPDF 및 라마 3를 이용해 질문-답변 데이터를 자동 생성한 후 JSON 파일로 저장한다. 이를 통해 수 백개 이상의 QA 데이터셋을 자동 생성할 수 있다. 이 중 품질이 낮은 데이터셋은 수작업으로 삭제, 제거한다.    그림 2. 자동화된 BIM 기반 LLM 학습 데이터 생성 절차     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-02-04