• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "지오메트리"에 대한 통합 검색 내용이 289개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
혼합 오더 메시 커브
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (10)   이번 호에서는 CFD에 유한요소법을 활용해 더 적은 요소 수로 해석 정확도를 높일 수 있는 곡선형 혼합 오더 메시(Mixed Order Mesh)를 생성하는 방법을 살펴본다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   High-Order 메시 커브는 전산유체역학(CFD) 솔버 커뮤니티에서 유한요소법(FEM)을 활용하는 사람들에게 큰 도움이 될 새로운 기술이다. 유한요소기법은 유한 체적 및 유한 미분 방법과 같은 기존 CFD 방법보다 적은 요소 수로 정확도를 높인다. 선형 요소의 가장자리, 면, 내부에 버텍스(새로운 자유도)를 추가로 도입하여 정확도를 높일 수 있다. 곡선 지오메트리에 인접한 요소의 경우 이러한 새로운 자유도가 지오메트리에 위치해야 하므로 원래 선형 요소의 모양이 변경된다. 메시가 점성이 있는 경계를 향해 요소들이 모여 있는 경우 이 과정은 더 어렵다. 또한 내부 요소의 가장자리와 면은 요소 반전을 방지하기 위해 경계 요소 곡률에 따라 곡선을 만들어야 한다. 케이던스 피델리티 포인트와이즈(Cadence Fidelity Pointwise)에서 사용하는 WCN 스무딩에 대한 연구를 통해 혼합 오더 메시(Mixed Order Mesh)를 사용하여 지오메트리 곡률을 해결할 수 있다. 요소는 곡률이 심한 지오메트리 근처에서는 최대 4차 다항식(quartic)까지 올라갈 수 있으며, 곡률이 심한 지오메트리에서 멀리 떨어진 곳에서는 선형을 유지한다. 메시 평활화 방법은 비용 함수를 사용하여 원하는 요소 모양과 양의 자코비안을 각 요소에 적용한다. 요소가 지오메트리 근처에서 곡선이 될 때 점성 메시 간격이 유지된다. 결과는 복잡한 3D 구성에 대해 표시된다.   지오메트리 선형 메시를 올리고 표면 곡률에 따라 곡선을 그리려면 지오메트리에 쉽게 액세스하고 강력한 초기화 및 평활화 프로세스가 필요하다. 초기화 중에 고차 노드가 지오메트리에 정확하게 배치되고 메시 평활화 중에 표면에 유지되도록 하려면, 지오메트리에 대한 표면 검색작업이 필요하다. 엘리베이트 및 스무딩을 위한 지오메트리 액세스는 메시링크 API¹) 를 통해 제공된다. 메시링크는 지오메트리 및 메시 데이터를 관리하기 위한 라이브러리로, 메시 생성 및 메시 적응 애플리케이션과 관련된 함수를 쿼리할 수 있는 간단한 인터페이스를 제공한다.   혼합 오더 커브 프로세스 혼합 오더 메시 커브는 유효한 선형 메시로 시작하는 프로세스를 사용한다. 프로세스의 주요 구성 요소는 <그림 1>의 순서도에 나와 있다. 이 백서 전체에서 요소의 차수 또는 다항식 차수는 선형, 이차, 입방체와 같은 Q1~4 명명법을 사용하여 표시되며, 이차 요소는 각각 Q1, Q2, Q3, Q4이다. 고차 요소는 라그랑지안 기저 함수를 사용하여 요소의 가장자리, 면, 내부에 고차 노드를 고르게 분포시킨다. 이러한 물리적 노드는 하위 요소와 요소 모양을 적용하기 위해 WCN 방식에 필수이다.   그림 1. 혼합 오더 메시 커브 프로세스의 순서도에는 가장 안쪽 고도 루프를 통과하는 여러 경로가 포함되어 있다. 진입 지점에 따라 색상으로 구분된 화살표를 따라가게 된다.   고도 프로세스는 입력된 선형 메시에서 시작하여 사용자가 요청한 최종 차수인 Qfinal에 도달할 때까지 최대 차수인 Qmax를 한번에 하나씩 증가시킨다. 각 차수 패스동안 먼저 표면 요소와 볼륨 요소의 편차를 테스트한다. 고차 점이 지오메트리에서 너무 많이 벗어나는 서피스 요소(허용 오차 기준)는 높이가 올라가고, 그 섭동이 볼륨에 퍼진다. 마지막으로, 요소 반전을 수정하고 엘리베이션 프로세스에서 생성된 요소의 품질을 개선하기 위해 WCN 메시 스무딩이 수행된다. 각 스무딩 반복 후 각 볼륨 요소의 편차를 다시 테스트하여 추가 높이 조정이 필요한지 여부를 결정한다. 이 프로세스는 모든 요소가 편차 기준을 충족하거나 최종 정도에 도달할 때까지 반복되며, 메시 평활화 프로세스가 수렴한다. 품질 제약 조건은 인접한 요소가 한 차수 이상 차이가 나지 않도록 보장한다. 최종 출력은 같은 차수의 요소 간에 공유되는 고차 노드가 포함된 메시이다. 그러나 차수가 다른 요소 간에 공유되는 면과 가장자리는 동일한 인터페이스 노드를 공유하지 않다. 따라서 내보내기 전에 이러한 인터페이스에서 형상 적합성을 적용한다.   요소 편차 메트릭 편차 메트릭(Deviation Metric)은 엘리먼트 엘리베이션 프로세스 및 메시 스무딩 프로세스의 일부로, 엘리먼트 엘리베이션 프로세스를 제어한다. 편차 메트릭은 곡선 경계 또는 다른 볼륨 요소에 인접한 요소의 가장자리와 면에 있는 테스트 노드의 변위를 측정한다. 이러한 테스트 노드의 변위가 임계값 거리를 초과하면 해당 요소에 상승 플래그가 지정된다. 높이를 트리거하는 임계값은 요소 내의 최소 선형 에지 길이에 입력 편차 임계값 파라미터(일반적으로 1~5%)를 곱한 값이다.   서피스 요소 편차 곡선 경계에 인접한 요소의 경우 편차 메트릭은 6차 가우스 구적법 점 위치에 배치된 테스트 노드를 사용한다. 그런 다음 테스트 노드를 지오메트리에 투영하고, 원래 위치와 투영된 위치 사이의 거리를 측정한다. 편차량은 <그림 2>에서 선형 삼각형의 중심(청록색)에 있는 테스트 노드를 곡선 지오메트리 표면(주황색)에 투영하여 보여준다.   그림 2. 지오메트리에 투영된 표면 요소의 중심에 있는 테스트 노드     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-07-04
언리얼 엔진 5.4 : 비주얼 콘텐츠 제작의 퍼포먼스 . 품질 . 생산성 향상
개발 및 공급 : 에픽게임즈 주요 특징 : 캐릭터 애니메이션을 위한 툴세트 업데이트, 나나이트 연산 머티리얼을 통한 변수 레이트 셰이딩 도입, 렌더링 퍼포먼스 개선 및 셰이더 컴파일 최적화, 파생 데이터 캐시를 위한 클라우드 스토리지 시스템 지원, 분산 컴파일 솔루션인 언리얼 빌드 액셀러레이터 추가 등   ▲ 언리얼 엔진 5.4 기능 하이라이트 영상   언리얼 엔진 5.4가 정식 출시됐다. 이번 버전은 게임 개발자와 모든 산업 분야의 크리에이터를 위해 퍼포먼스, 비주얼 퀄리티, 생산성에 대한 신규 기능과 개선 사항을 제공하며, 에픽게임즈가 ‘포트나이트’ 챕터 5, ‘로켓 레이싱’, ‘포트나이트 페스티벌’, ‘LEGO 포트나이트’를 제작하고 출시하기 위해 내부적으로 사용한 툴세트를 선보였다.   애니메이션 캐릭터 리깅 및 애니메이션 제작 이번 버전에서는 언리얼 엔진의 기본 애니메이션 툴세트가 대폭 업데이트되었다. 더 이상 여러 외부 애플리케이션에서 번거롭게 작업할 필요 없이, 엔진에서 직접 캐릭터를 쉽고 빠르게 리깅하고 애니메이션을 제작할 수 있게 되었다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지   신규 실험 단계 기능인 ‘모듈형 컨트롤 릭’을 활용하면 복잡하고 세분화된 그래프 대신 이해하기 쉬운 모듈형 파트로 애니메이션 릭을 제작할 수 있다. ‘자동 리타기팅’은 이족보행 캐릭터 애니메이션을 재사용할 때 뛰어난 결과물을 더 쉽게 얻을 수 있다. 또한, ‘스켈레탈 에디터’가 확장되고 새로운 디포머 기능 세트들이 추가되어 ‘디포머 그래프’를 더 손쉽게 이용할 수 있다. 애니메이션 제작 측면에서는 애니메이션 툴세트를 보다 직관적이고 강력하게 만드는 동시에 워크플로를 간소화하는 데 중점을 두었다. 새로운 실험단 계 기능인 ‘기즈모’, 개편된 ‘애님 디테일’, ‘컨스트레인트’ 시스템 업그레이드 및 향상, 애님 클립에 애니메이션을 추가하는 과정을 대폭 간소화시켜 주는 신규 기능인 ‘레이어드 컨트롤 릭’ 등을 제공한다. 뿐만 아니라 언리얼 엔진의 비선형 애니메이션 에디터인 ‘시퀀서’는 시퀀서 트리의 다양한 측면에서 가독성과 사용성이 대폭 향상되었다. 이번 버전에 도입된 다른 신규 기능 중에는 ‘키프레임 스크립트’ 방식도 추가되어, 커스텀 애니메이션 툴 제작의 가능성이 열리게 되었다.   애니메이션 게임플레이 이전 버전에서 실험 단계 기능으로 도입되었던 ‘모션 매칭’이 정식 버전이 되었다. 이 기능은 ‘포트나이트 배틀 로얄’에서 철저한 테스트를 거쳐 모바일부터 콘솔까지 모든 플랫폼에서 100개 이상의 캐릭터와 NPC에 적용되었다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지   모션 매칭은 애니메이션 기능을 위한 확장 가능한 차세대 프레임워크이다. 런타임에서 애니메이션 클립을 선택하고 전환하기 위해 복잡한 로직을 사용하는 대신, 게임 내 캐릭터의 현재 모션 정보를 키로 사용하여 상대적으로 큰 규모의 캡처된 애니메이션 데이터베이스를 검색하는 방식을 활용한다. 또한, 이번 버전에서는 언리얼 엔진의 애니메이터 친화적인 툴세트를 강력하고 뛰어난 성능과 메모리 확장이 가능한 툴로 만드는 데 중점을 두었으며, 개발자가 내부에서 일어나는 작업을 파악할 수 있는 디버깅 툴세트를 추가했다. 게임플레이 측면에서도 ‘선택기’를 추가하여, 이제 게임 컨텍스트를 활용해 애니메이션을 선택할 수 있게 되었다. 이 시스템은 변수를 사용해 선택을 알리고, 이 선택에 따라 변수를 설정하여 게임플레이 로직에 다시 정보를 제공할 수 있다.   렌더링 나나이트 언리얼 엔진 5의 가상화된 마이크로폴리곤 지오메트리 시스템인 ‘나나이트(Ninite)’는 원본 메시를 변경하지 않고도 렌더링 시 균열이나 범프 같은 미세한 디테일을 추가할 수 있게 해주는 신규 실험 단계 기능 ‘테셀레이션’을 시작으로 지속적인 향상이 이루어지고 있다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지   나나이트 연산 머티리얼을 통한 ‘변수 레이트 셰이딩(Variable Rate Shading : VRS)’의 도입으로 퍼포먼스가 대폭 향상되었으며, 랜드스케이프에 도로를 생성하는 것과 같은 작업에 유용한 ‘스플라인 메시 워크플로’도 지원된다. 또한, UV 보간을 비활성화하는 신규 옵션을 활용하면 버텍스 애니메이션 텍스처를 월드 포지션 오프셋 애니메이션에 사용할 수 있게 되어, 이제 ‘AnimToTexture’ 플러그인을 나나이트 지오메트리와 함께 사용할 수 있다.   템포럴 슈퍼 해상도 이번 버전에서 ‘템포럴 슈퍼 해상도(Temporal Super Resolution : TSR)’의 안정성과 성능이 향상되어, 타깃 플랫폼에 관계 없이 예측 가능한 결과물을 얻을 수 있게 되었다. 그 중 새로운 히스토리 리저렉션 휴리스틱과 픽셀 애니메이션을 사용하는 머티리얼에 플래그를 지정하는 기능 덕분에 고스팅 현상이 감소되었다. 또한, TSR의 비헤이비어(behavior)를 더 손쉽게 미세조정하고 디버깅할 수 있는 ‘신규 시각화 모드’를 추가했고, 타깃 퍼포먼스에 따라 제어할 수 있도록 엔진 퀄리티 설정에 다양한 신규 옵션도 추가됐다.   렌더링 퍼포먼스 에픽게임즈는 60Hz 경험을 목표로 하는 많은 개발자를 위해 언리얼 엔진 5.4의 렌더링 퍼포먼스 향상에 노력을 기울였다. 이를 통해 더 높은 수준의 병렬화를 지원하기 위한 시스템 리팩터링과 하드웨어 레이 트레이싱에 GPU 인스턴스 컬링이 추가되어, 이제 추가적인 프리미티브 유형과 최적화된 패스 트레이서의 이점을 활용할 수 있게 되었다. 또한, 셰이더 컴파일도 더욱 최적화되어 프로젝트 쿠킹 시간이 눈에 띄게 향상되었다.   무비 렌더 그래프   ▲ 이미지 출처 : 언리얼 엔진 홈페이지   언리얼 엔진 5.4는 단방향 콘텐츠를 제작하는 크리에이터를 위해 무비 렌더 큐에 실험 단계 기능으로 주요 업데이트를 선보였다. ‘무비 렌더 그래프(Movie Render Graph : MRG)’로 불리는 이 신규 노드 기반 아키텍처를 통해 사용자는 단일 샷을 렌더링하는 그래프를 구성하거나, 대규모 아티스트 팀의 경우 복잡한 멀티샷 워크플로 전반에 걸쳐 확장하도록 설계할 수 있다. 그래프는 파이프라인 친화적이며 스튜디오는 파이썬 훅(Python Hook)으로 툴을 제작하고 자동화할 수 있다. MRG에는 ‘렌더 레이어’가 제공되어 전경과 배경 요소를 분리하는 등 포스트 컴포지팅을 위한 고퀄리티 요소를 손쉽게 생성할 수 있으며, 패스 트레이서와 디퍼드 렌더러를 모두 지원한다.   AI 및 머신러닝 신경망 엔진 언리얼 엔진 5.4에는 ‘신경망 엔진(NNE)’이 실험 단계 기능에서 베타 기능으로 업데이트되었다. NNE는 에디터와 런타임 애플리케이션을 모두 지원하며, 개발자는 사전 트레이닝된 신경망 모델을 로드하여 효율적으로 실행할 수 있다. 사용 예시로는 툴링, 애니메이션, 렌더링, 피직스 등이 있으며, 이들은 플랫폼 및 모델 지원별로 각기 다른 요구사항을 갖추고 있다. NNE는 필요에 따라 백엔드를 쉽게 교체할 수 있도록 공통 API를 제공하여 이러한 다양한 요구사항을 해결한다. 또한, 서드파티 개발자가 플러그인에서 NNE 인터페이스를 구현할 수 있도록 확장성 훅 역시 제공된다.   개발자 반복 작업 클라우드 및 로컬 파생 데이터 캐시 이번 출시를 통해 새롭게 선보이는 ‘언리얼 클라우드 DDC’는 언리얼 엔진 파생 데이터 캐시(DDC)를 위한 자체 호스팅 클라우드 스토리지 시스템이다. 여러 장소에 분산된 사용자와 팀을 위해 설계된 이 기능을 사용하면, 공용 네트워크 연결을 통해 언리얼 엔진 캐시 데이터를 효율적으로 공유할 수 있다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지 영상 캡처   유지보수가 용이하고 안정적이며 접근성이 뛰어난 이 솔루션은 여러 지역에 걸쳐 언리얼 클라우드 DDC로 호스팅되는 엔드포인트 간에 데이터를 자동으로 복제하여, 사용자가 언제나 가장 가까운 엔드포인트에 접속할 수 있도록 지원한다. OIDC 로그인 및 인증으로 보호되는 이 시스템은 에픽게임즈의 AWS를 통해 실전 검증을 마쳤으며, 애저(Azure)에 대한 디플로이 가이드라인을 함께 제공한다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지 영상 캡처   또한, 이번 버전에서는 새로운 ‘언리얼 Zen Storage’ 서버 아키텍처를 사용하여 로컬 DDC가 향상되었다. 이를 통해 데이터 컨디셔닝 퍼포먼스가 향상된 것은 물론, 에디터 로드 시간이 더욱 빨라졌다. 또한, 에디터에서 플레이(PIE) 워크플로가 제공되며 캐시 쓰기, 제거, 데이터 복제 방지를 더욱 효과적으로 제어할 수 있다.   멀티 프로세스 쿡 언리얼 엔진 5.3에 베타 기능으로 도입되었던 ‘멀티 프로세스 쿡’이 이제 정식 버전으로 제공된다. 이 기능을 통해 개발자는 콘텐츠를 내부 UE 포맷에서 플랫폼별 포맷으로 변환할 때 추가 CPU 및 메모리 리소스를 활용할 수 있어, 빌드 팜 서버 또는 로컬 워크스테이션에서 쿠킹된 결과물을 얻는 데 걸리는 시간을 크게 줄일 수 있다.   언리얼 빌드 액셀러레이터 이번 버전에서 새롭게 선보이는 ‘언리얼 빌드 액셀러레이터(Unreal Build Accelerator : UBA)’는 C++를 위한 확장 가능한 분산 컴파일 솔루션으로, 언리얼 빌드 툴 및/또는 언리얼 호드의 원격 실행(연산 작업) 시스템과 함께 빌드 컴파일 시간을 단축하는 데 사용된다. 현재 베타 기능인 UBA는 이번 버전에서 C++ 컴파일 작업을 위한 윈도우 OS를 지원하며, 네이티브 맥OS 및 리눅스 지원은 프로세스 유휴 감지 및 셰이더 컴파일과 함께 실험 단계로 제공된다.   미디어 및 엔터테인먼트 모션 그래픽 언리얼 엔진 5.4는 복잡한 2D 모션 그래픽 제작용 전문 툴로 구성된 새로운 ‘모션 디자인 모드’를 실험 단계 기능으로 선보였다. 주요 방송사의 프로덕션 테스트와 피드백을 바탕으로 개발된 이 기능은 모션 디자이너에게 향상된 사용자 경험과 지속적인 생산성을 제공하고자 설계되었으며, 3D 클로너, 이펙터, 모디파이어, 애니메이터 등을 포함한 포괄적인 툴세트를 제공한다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지   버추얼 프로덕션 버추얼 프로덕션을 도입하는 영화 제작자들은 이제 정식 버전으로 제공되는 언리얼 엔진의 버추얼 카메라 툴에서 이루어진 업데이트와 함께 기존 iOS 플랫폼은 물론 이제 안드로이드까지 지원되어 많은 혜택을 누릴 수 있게 되었다. 또한, 맥OS용 언리얼 엔진에서도 버추얼 카메라 워크플로가 완전히 지원된다. 이 모바일 애플리케이션은 ‘언리얼 VCam’이라는 새로운 이름으로 애플 앱 스토어 및 구글 플레이에서 다운로드할 수 있다. VR 스카우팅에서는 ‘XR 크리에이티브 프레임워크’를 활용하는 완전히 커스터마이징이 가능한 새로운 툴키트를 실험 단계 기능으로 선보였다. 이를 통해 오큘러스(Oculus)와 밸브 인덱스(Valve Index) 등의 OpenXR HMD를 지원하여 기존 버추얼 스카우팅 툴키트보다 대폭 향상된 사용자 경험을 제공한다.  ICVFX의 경우, 새로운 ‘뎁스 오브 필드’ 보정 기능을 통해 nDisplay로 렌더링된 디지털 콘텐츠의 DOF 감쇠량을 영화 카메라에 보이는 대로 정확히 제어할 수 있어, 더 나은 클로즈업 뷰티 샷을 얻을 수 있게 되었다. 또한, ‘멀티 프로세스 내부 프러스텀’을 추가하여 영화 카메라로 보이는 장면을 더 많은 GPU와 하드웨어 리소스로 분할 렌더링할 수 있으며, SMPTE 2110 지원에 대한 다양한 안정성 및 개선 사항을 추가했다.    리눅스 지원 리눅스를 사용하는 스튜디오도 해당 플랫폼에서 향상된 에디터 안정성을 경험할 수 있으며, 실험 단계로 제공되는 벌칸(Vulkan) 레이 트레이싱 지원을 통해 많은 이점을 누릴 수 있다.   의상 시뮬레이션 USD 임포터 패널 클로스 에디터에 새로운 USD 임포터가 추가되면서, ‘Marvelous Designer’ 또는 ‘CLO’에서 의상과 시뮬레이션 파라미터를 임포트하여 단 몇 분 만에 실시간으로 시뮬레이션을 구성할 수 있게 되었다. 자동 시뮬레이션 그래프 설정, 스키닝, 레벨 오브 디테일(LOD) 생성 기능과 함께 이 새로운 워크플로를 사용하면 관련 경험이 없는 사용자도 언리얼 엔진 캐릭터의 사실적인 의상을 제작할 수 있도록 지원한다.   그 외 개선 사항 언리얼 엔진 5.4의 신규 기능과 향상된 기능 관련한 전체 내용을 확인하려면 출시 노트를 참고하면 된다. 언리얼 엔진 5.4 출시 노트 : https://dev.epicgames.com/documentation/ko-kr/unreal-engine/unreal-engine-5.4-release-notes   비게임 분야를 위한 새로운 가격 모델 출시 에픽게임즈는 2023년 미국 뉴올리언스에서 열린 ‘언리얼 페스트’에서 2024년부터 일반 산업 분야를 위한 시트 기반의 엔터프라이즈 소프트웨어 가격 모델을 제공하겠다고 발표한 바 있다. 이번 언리얼 엔진 5.4 출시와 함께 에픽게임즈는 비게임 분야를 위한 새로운 시트 기반의 언리얼 구독 플랜을 출시했다. 가격 변경 사항은 언리얼 엔진 5.3 또는 그 이전 버전을 사용하는 신규 또는 기존 사용자에게는 적용되지 않으며, 5.4 버전 이상을 사용할 사용자에게만 적용된다. 각 시트는 언리얼 엔진 5.4 및 구독 기간 동안 출시되는 후속 버전과 함께 언리얼 엔진과 호환되는 창작 툴인 ‘트윈모션(Twinmotion)’과 ‘리얼리티캡처(RealityCapture)’까지 세 개 제품을 한 명의 사용자가 이용할 수 있도록 제공된다. 또한, 세 개의 제품을 모두 사용할 수 있는 30일 무료 체험판도 제공된다. 보다 더 자세한 내용은 언리얼 엔진 홈페이지에서 확인할 수 있다. 한편, 이번 언리얼 엔진 5.4 출시를 기점으로 트윈모션과 리얼리티캡처도 이제 학생, 교육자, 개인 사용자 그리고 회사의 연간 총매출이 100만 달러 미만인 경우 모두 무료로 사용할 수 있다. 에픽게임즈는 다양한 산업 분야의 팀들이 고퀄리티 3D 경험을 효율적으로 제작할 수 있도록 트윈모션과 리얼리티캡처를 구독 플랜에 포함하여 제공하며, 2025년 말까지 두 제품을 언리얼 엔진에 완전히 통합할 계획이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-06-03
[케이스 스터디] 유니티 뮤즈의 텍스처/스프라이트 생성 및 파운데이션 모델
책임감 있는 AI 활용 및 향상된 모델 훈련   이번 호에서는 AI를 활용해 실시간 3D 콘텐츠를 제작하는 툴인 유니티 뮤즈(Unity Muse)에서 결과를 생성하는 방법을 설명하고, 유니티의 모델 훈련 방법론 및 새로운 파운데이션 모델 두 가지를 소개한다. ■ 자료 제공 : 유니티 코리아   유니티 뮤즈는 AI 기능을 바탕으로 사용자의 탐색, 아이디어 구상 및 반복 작업을 지원한다. 이러한 기능 중 텍스처(Texture) 및 스프라이트(Sprite)는 자연어와 시각적 입력을 애셋으로 변환한다. 뮤즈를 통해 유니티 에디터에 AI를 도입하면 아이디어를 가시적인 콘텐츠로 빠르게 구현할 수 있으므로, 비전을 더 손쉽게 실현할 수 있다. 프로젝트에 사용 가능한 실제 결과물로 변환할 수 있는 텍스트 프롬프트와 패턴, 색, 스케치를 이용하여 조정 및 반복 작업도 가능하다. 유니티는 뮤즈를 통한 스프라이트 및 텍스트 생성의 기반이 되는 AI 모델에 대한 훈련 기법을 혁신하는데 노력을 들였다. 이를 통해 안전하고 책임감 있으며 다른 크리에이터의 저작권을 존중하는 유용한 결과물을 제공하고자 한다.   AI 모델 훈련 유니티는 뮤즈의 텍스처 및 스프라이트 기능을 선보이면서, 유니티가 보유하거나 라이선스를 받은 독점 데이터를 기반으로 처음부터 훈련을 받은 두 가지 맞춤형 확산 모델도 개발하고 있다.   자체 콘텐츠 라이브러리 확장 데이터 증강은 유니티가 데이터 세트의 스케일과 다양성을 높이기 위해 사용하는 핵심 기술 중 하나로, 이 기술을 이용하여 유니티는 보유 중인 원본 데이터 샘플에서 많은 변형(variation)을 생성할 수 있다. 이러한 역량으로 훈련 세트를 더 풍부하게 만들 수 있으며, 모델이 한정된 샘플을 기반으로 일반화를 수행하는 기능을 향상할 수 있다. 아울러 지오메트리 변환, 색 공간 조정, 노이즈 삽입, 스테이블 디퓨전(Stable Diffusion) 같은 생성형 모델을 통한 샘플 배리에이션 등의 기법을 사용해 데이터 세트를 종합적으로 확장한다. 최근 스테이블 디퓨전과 관련하여, 본래 인터넷에서 수집된 데이터를 기반으로 훈련된 모델이라는 이유로 윤리적인 면에서 우려가 발생한 바 있다. 유니티는 뮤즈의 텍스처 및 스프라이트 기능을 제작하면서, 자체적으로 소유하고 책임감 있게 선별한 원본 데이터 세트를 기반으로 잠재적 확산 모델 아키텍처를 처음부터 훈련하는 방식을 통해 사전 훈련된 모델에 대한 의존도를 낮췄다. 데이터 증강 기법의 일부로 스테이블 디퓨전 모델의 사용을 최소로 제한해 안전하게 사용함으로써, 유니티가 보유한 원본 애셋 라이브러리를 강력하고 다양한 결과물의 저장소로 확장할 수 있었다. 이러한 결과물은 고유하고 독창적이며, 저작권을 가진 어떠한 아트 스타일도 포함하지 않는다. 유니티는 또한 추가로 완화 조치를 적용했으며, 뮤즈의 텍스처 및 스프라이트 기능에 사용되는 유니티의 잠재적 확산 모델을 위한 훈련 데이터 세트는 인터넷에서 수집된 어떤 데이터도 포함하지 않는다. 다음은 앞에서 설명한 증강 기법을 통해 확장되는 콘텐츠의 예시이다.   그림 1   <그림 1>은 원본 데이터 샘플(왼쪽 상단)과 복합적인 증강 기법으로 얻은 합성 배리에이션이다. 두 가지 모두 노이즈 기반(색 공간 조정, 위에서 아래로) 및 생성 기반(왼쪽에서 오른쪽으로)이다. 기존 데이터를 증강한 이후에도 여전히 다양한 소재에서 채워야 하는 부분이 있었다. 이 작업을 위해 행동에 의미 있는 변화가 나타날 때까지 자체 콘텐츠로 스테이블 디퓨전을 훈련시켰다. 또한 이러한 파생 모델을 사용하여 사전 필터링된 소재 목록으로 완전히 새로운 합성 데이터를 만들었다.(그림 2)   그림 2   실제 인력에 의한 검토와 LLM(대규모 언어 모델)을 사용하는 자동화된 추가 필터링을 이러한 소재 목록에 모두 적용함으로써, 유니티의 가이드 원칙을 위반하고 인식 가능한 아트 스타일, 저작권이 있는 머티리얼, 잠재적으로 유해한 콘텐츠가 전혀 포함되지 않은 데이터 세트를 만들겠다는 유니티의 목표에 맞지 않는 합성 이미지가 생성될 가능성을 차단했다. 그 결과 증강되고 완전한 대규모의 합성 이미지 데이터 세트 두 개가 만들어졌고, 여기에는 원치 않는 콘셉트가 포함되지 않았다는 확신이 있었다. 하지만 그러한 확신에도 불구하고, 유니티는 더 많은 필터링을 추가해 모델의 안전성을 보장하고자 했다.   안전하고 유용한 결과물을 위한 추가 데이터 필터링 가장 중요한 사항은 안전 및 개인정보와 부정적인 영향 없이 사용자를 지원하는 툴의 제공이었으므로, 유니티는 추가 데이터 세트 필터링을 위한 별도의 분류기 모델을 개발했다. 이 모델을 사용한 결과, 데이터 세트에 포함된 모든 콘텐츠가 유니티의 AI 원칙에 명시된 표준을 충족하고 추가적인 이미지 품질 검사를 통과할 수 있었다. 리뷰어 모델은 합성 이미지에서 다음 사항을 식별하는 역할을 함께 담당했다. 인식 가능한 사람의 특징이 포함되어 있지 않음 일반적이지 않은 어떤 아트 스타일도 포함되어 있지 않음 어떤 IP 캐릭터나 로고도 포함되어 있지 않음 허용될 수 있는 수준의 품질을 갖추고 있음 4개의 리뷰어 모델이 요구하는 신뢰도 높은 임계 수준을 하나라도 통과하지 못하는 이미지는 데이터 세트에서 폐기되었다. 가장 높은 신뢰도를 보이는 이미지만 필터를 통과해 최종 데이터 세트에 합류할 수 있도록 철저하게 주의를 기울이며, 모델의 결격 사유를 엄격하게 평가했다.   모델 소개 유니티의 유나이트 이벤트에서 뮤즈의 텍스처 및 스프라이트 기능에 대한 얼리 액세스가 발표되었다. 이러한 툴을 지원하는 모델의 첫 번째 반복 수정을 내부적으로 ‘Photo-Real-Unity-Texture-1’ 및 ‘Photo-Real-Unity-Sprite-1’이라고 한다. 이는 스타일화에 대한 기초적인 이해만 갖추도록 설계된 모델로, 주로 포토리얼리즘에 집중되어 있다. 모델을 프로젝트의 기존 스타일에 맞게 가이드하고 싶다면, 유니티의 스타일 훈련 시스템에 약간의 고유 레퍼런스 애셋을 제공하여 콘텐츠를 특정 아트 스타일로 생성하는 방법을 모델에 학습시킬 수 있다. 그렇게 하면 결과물 가이드를 위해 메인 모델과 함께 작동하는 소규모의 후속 모델이 생성된다. 이 소규모 후속 모델은 훈련 담당자나 그 조직에 공개되지 않으며, 유니티는 메인 모델 훈련에 이 콘텐츠를 사용하지 않는다. 포토리얼리즘에 중점을 두는 모델이기 때문에 유니티는 메인 모델을 수많은 다양한 스타일로 훈련시킬 필요가 없었다. 이 아키텍처를 통해 더 손쉽게 책임감 있는 AI를 향한 유니티의 약속을 지키면서 메인 모델을 훈련시킬 수 있으며, 크리에이터가 아트 수준을 더 세부적으로 제어하도록 할 수 있다. 이러한 모델은 시작에 불과하다. 뮤즈의 스마트한 역량은 점점 더 향상되어 더 나은 결과물로 이어질 것이며, 유니티는 그러한 과정에서 모델 향상 로드맵을 통해 모델을 더 높은 완성도로 이끈다는 비전을 내세운다.   Photo-Real-Unity-Texture-1 로드맵 유니티의 텍스처 모델은 모든 분야에서 유용하게 쓰일 수 있다. 큰 규모의 콘셉트를 인식하고 있으며, 이러한 모델을 통해 서로 관련이 없는 여러 콘셉트를 자유롭게 혼합하고 <그림 3>에서 볼 수 있는 ‘메탈 슬라임’ 또는 ‘파란색 크리스탈 유리 암석’ 같은 결과물을 구현할 수 있다.   그림 3   이 모델이 현 단계에서 유용하기는 하지만, 다양한 프롬프트와 입력 방식에 어떻게 반응하는지 학습해 본 결과 단일 단어로 구성된 프롬프트로는 고급 머티리얼 콘셉트를 구현하기 어려울 수도 있다는 사실을 알 수 있었다. 원하는 목표에 맞게 모델을 가이드하는 데에 도움이 되는 방법이 더 있지만, 유니티는 기본 프롬프트의 정확도를 높이고 새로운 모델 가이드 방법을 추가하는 방식으로 사용자가 모델을 계속 더 자유롭게 제어할 수 있도록 할 예정이다. 앞으로 컬러 피커, 추가적인 사전 제작 가이드 패턴, 자체 가이드 패턴 생성을 위한 개선된 시스템 및 기타 새로운 시각적 입력 방법을 추가할 계획이며, 이 모든 사항은 현재 실험 단계에 있다. Photo-Real-Unity-Texture-1에서 유니티가 가장 중점을 두는 사항은 성과가 저조한 머티리얼 콘셉트를 식별하고 모델 재훈련을 자주 실행하여 전반적인 품질과 기능을 지속적으로 개선하는 것이다. 툴 내 평가 시스템을 통한 사용자의 피드백은 유니티가 모델 기능에서 취약점을 식별하여 더 나은 툴을 만드는 데 도움이 된다. 유니티는 빈도 높은 훈련 일정으로 모델을 빠르게 개선하고, 모델의 사용성을 높이며, 머티리얼 분야에 대한 지식을 축적하고 있다.   Photo-Real-Unity-Sprite-1 로드맵 Photo-Real-Unity-Texture-1과 유사하게 유니티의 기본적인 스프라이트 모델은 전반적으로 유용하며 많은 콘셉트를 인식한다. 툴에 아직 빌트인 애니메이션 기능이 없기 때문에, 유니티는 초기에는 가장 흔하게 사용되는 정적 스프라이트 콘셉트의 품질을 극대화하는데 주력하기로 했다. 기본 모델의 원시 결과물을 <그림 4>에서 확인할 수 있다. 일반적인 사용 사례에서 이는 사용자 훈련 모델에 의해 특정 아트 스타일에 맞게 조정된다.   그림 4   정적 오브젝트는 이미 안정적이지만 유니티는 동물과 인간의 해부학적 정확도를 개선하기 위해 계속 노력하고 있다. 이러한 유형의 소재를 사용할 때 결과가 바람직할 수도 있지만, 사지가 늘어나거나 누락되는 경우 또는 안면이 왜곡되는 경우가 발생할 수도 있다. 이는 책임감 있는 AI 및 사용 가능한 데이터에 대한 엄격한 제한을 지향하는 유니티의 조치에 따른 부작용이라고 할 수 있다. 유니티는 개인정보 보호와 안전을 중요하게 인지하고 있으며, 이로 인해 초기 얼리 액세스 릴리스에서 일부 소재의 품질이 완벽하지 않을 수 있다. 완전히 공백인 스프라이트가 생성될 수도 있으며, 이는 시각적 콘텐츠 검수 필터에 따른 결과이다. 유니티는 Photo-Real-Unity-Sprite-1의 초기 출시 버전에서는 출력 필터링에 관해 신중하게 접근하는 방향을 택했으며, 이로 인해 일부 아트 스타일의 경우 필터링에서 1종 오류가 발생할 수 있다. 유니티는 지속적으로 피드백을 수렴하고 콘텐츠 필터를 개선하면서 점차 제한을 완화할 계획이다. 유니티는 피드백을 수렴하고 책임감 있는 자세로 계속 더 많은 데이터를 소싱하면서 전반적으로 모든 소재의 품질이 빠르게 향상될 것으로 기대하고 있다. Photo-Real-Unity-Sprite-1에도 Photo-Real-Unity-Texture-1과 유사하게 철저한 훈련 일정이 적용될 예정이다.   AI 강화 개발을 향한 유니티의 행보 뮤즈는 책임감 있고 타인의 독창성을 존중하는 방식으로 생성형 AI의 잠재력을 활용해 커뮤니티에 더 강력한 창작물 제어 권한을 부여하려는 유니티의 첫걸음이다. 이 제품은 사용자를 우선으로 고려하여 제작되었으며, 유니티는 사용자의 피드백을 기반으로 변화와 개선을 진행할 예정이다. 유니티는 콘텐츠 제작 업계에서 생성형 AI가 가지는 잠재적 영향력을 인식하며 중요하게 다루고 있다. 이 툴은 크리에이터를 대체하는 것이 아닌, 크리에이터의 역량을 강화하기 위한 노력의 결과이다. 유니티는 크리에이터가 더 많아질수록 세상은 더 매력적인 곳이 될 것이라고 믿으며, 뮤즈와 이를 지원하는 모델을 통해 이러한 사명을 계속 이어간다는 비전을 제시한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-05-02
구조 해석 소프트웨어, ZWSim Structural
구조 해석 소프트웨어, ZWSim Structural   주요 CAE 소프트웨어 소개   ■ 개발 : Zwsoft, www.zwsoft.com ■ 자료 제공 : 인피니크, 02-565-4123, www.zw3d-cad.kr 1. 주요 특징  ZWSim Structural은 모델링과 시뮬레이션을 통합하는 구조 시뮬레이터이다. 유한 요소 방법(FEM)을 사용하여 구조물의 물리적 동작을 시뮬레이션한다. 구조 역학 문제를 해결하여 다양한 산업 분야의 엔지니어가 구조 설계의 합리성을 평가하고, 더 빠르고 더 나은 결정을 내려 R&D 시간과 비용을 줄이는 데 도움이 된다. 2. 주요 기능 (1) 친절하고 사용하기 쉬움 명확한 워크플로와 친숙한 GUI를 통해 바로 사용할 수 있다. (2) 원활한 데이터 교환을 위한 높은 호환성 20 개 이상의 표준 및 상용 포맷이 지원되므로 파일을 쉽게 가져오고 내보낼 수 있다. (3) 강력한 모델링 기능 자체 개발한 오버 드라이브 커널을 사용하면 더 빠르고 더 나은 모델링을 위해 파라메트릭 모델링과 솔리드 및 서피스 하이브리드 모델링을 사용할 수 있다. (4) 고품질 및 효율적인 메싱 Hybrid Advancing-Front & Delaunay Mesh Generation은 고품질 1D/2D/3D 메시 생성과 수천만 메시 생성을 지원하기 위해 채택되었다. 3. 주요 특징 (1) 여러 유형의 구조 시뮬레이션 선형 정적, 좌굴, 주파수 및 모드 모양, 정상-상태 열 전달 및 과도-상태 열 전달 분석이 지원되어 다양한 애플리케이션 요구 사항을 충족한다. (2) 풍부한 유형의 메시 삼각형, 사변형, 사면체, 육면체(triangle, quadrilateral, tetrahedral, hexahedral) 및 기타 유형의 메시를 생성하여 다양한 유형의 솔버를 맞출 수 있다. (3) 다양한 구속과 하중 지오메트리 고정, 롤러/슬라이더, 고정 힌지와 같은 제약 조건, 힘, 압력, 토크와 같은 구조 하중 및 온도, 열 전력, 열 흐름과 같은 열 하중에 액세스하여 실제 환경을 더 잘 시뮬레이션할 수 있다. (4) 사용자 정의 및 재사용 가능한 재질 특정 요구에 따라 재료의 속성을 사용자 정의하고 편리하게 재사용 할 수 있도록 라이브러리에 추가할 수 있다. (5) 높은 정밀도를 위한 효과적인 검사 시뮬레이션을 실행하기 전에 형상, 재료, 구속 조건, 하중, 메시 등의 정확성을 확인할 수 있으므로 결과의 정확성이 향상된다. (6) 결과를 표시하는 다양한 방법 시뮬레이션 결과는 플롯, 테이블, 애니메이션 등으로 표시하거나 원하는 대로 사용자 지정할 수 있다. 결과를 조사하고 관련 보고서를 생성할 수도 있다. 4. 도입 효과 비용 효율적이고 사용하기 쉬우며 최신의 해석 기법을 사용하여 다양한 분야에 적용 가능하므로, 중소 규모의 업체 등에서 해석 분야에 다양하고 쉽게 접근이 가능할 것으로 보인다.   좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기   
작성일 : 2024-02-12
Visual Crash Studio : 충돌 구조물의 설계 해석 및 최적화 프로그램
개발 : Impact Design Europe 주요 특징 : 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화 지원, SFE 및 SBE 기반으로 충돌하중을 받는 박판구조물의 설계/해석/최적화, 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과 도출, 사용자 친화적인 통합 작업 환경 등 사용 환경 : 윈도우 PC/랩톱 자료 제공 : 브이에스텍   그림 1. 유한요소 모델   그림 2. VCS 모델   차량 충돌 안전 법규 및 상품성 평가는 실제 충돌 상황을 최대한 반영하고 승객의 사망 및 심각한 상해를 줄이기 위하여 지속적으로 강화되고 있고, 자동차 제조업체는 이러한 평가 프로토콜에 따라 차량의 안전 등급을 높이기 위해 노력하고 있다. 다양한 충돌 테스트는 제품 설계 및 개발 프로세스를 가속화하기 위해 가상 엔지니어링 모델링 및 시뮬레이션 기술에 크게 의존하는 차량 제조업체에 상당한 부담을 주고 있다. 일반적으로 각 설계 단계에서 CAD 모델 준비, 각 하중 케이스/물리적 테스트에 대한 유한요소(FE) 모델 생성, 평가 및 개선 작업이 필요하므로 복잡하고 많은 시간이 소비되어, 간편하고 빠르게 차량의 충돌 성능을 평가하고 개선하는 것이 큰 관심사이다. 특히, 프로토타입 제작 및 개발 프로세스 후반의 설계 변경으로 인한 시간과 비용을 줄이기 위해서는 초기 콘셉트 단계에서부터 다양한 설계에 대한 충돌 성능의 평가 및 개선을 통한 충돌 성능의 최적화가 필요하다. 매크로요소법(Macro Element Method)을 사용하는 Visual Crash Studio(VCS)는 비전형적 모델링 및 시뮬레이션 접근 방식으로 단순한 설계 환경에서 빠르고 신뢰할 수 있는 결과를 제공하며, 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화가 가능한 CAE 소프트웨어이다.   그림 3   VCS의 주요 특징 매크로요소법, 수퍼폴딩요소(SFE : Super-folding Element) 및 수퍼빔요소(SBE : Super-beam Element) 개념을 기반으로 객체지향유한요소(OOEF : Object Oriented Finite Element) 정식화와 결합된 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화가 가능 다양한 재료의 박판구조물의 대변형 붕괴 거동의 예측에 성공적으로 적용이 가능하며, 유한요소 솔버와 경쟁이 아닌 보완 관계 매크로요소법에 기반한 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과의 도출을 통해 설계 초기 단계에서부터 충돌 부재의 충돌 성능 분석 및 최적화 가능 사용자 친화적인 통합(all-in-one) 작업 환경 주요 기능 : Material Editor, Cross Section Editor, 3D environment, Cross Section Optimizer, Chart Wizard 단면 수준에서 부재의 충돌 특성 파악 및 설계를 위한 2D 환경 제공 부재, 어셈블리 및 전체 구조물 등의 복잡한 충돌 해석 및 설계를 위한 3D 환경 제공 2D 및 3D 환경에서 독립적으로 설계 수정 및 계산이 가능하며, 각 환경에서의 수정 및 계산 결과는 자동으로 전 모델에 반영 통합 전/후처리 도구 : 솔버와 통합된 전/후처리 프로세스로 모델링 및 설계 변경이 간단하여 다양한 설계안의 충돌 성능 평가가 빠른 시간에 가능하고 챗 위저드(Chart Wizard) 등으로 다양한 결과의 비교 분석이 용이   그림 4. VCS의 일반적 설계 및 계산 프로세스   VCS의 작업 프로세스 박판 충돌구조물의 설계, 해석 및 최적화는 통합 환경에서 수행되며, 일반적인 작업 프로세스는 <그림 4>와 같다. <그림 5>는 VCS의 메인 뷰(Main View) 화면이며, 메인 툴바(Main Toolbar)는 작업 프로세스에 따른 툴 그룹(File, Model, Calculate and Results, Analysis, View 및 Help Tool)으로 구성된다. ‘Model Tool’은 모델 생성 프로세스에 필요한 모든 도구(Select, Nodes, Beams, Spine-line, Rigid, Contact, Group, Special, Measure 등)를 제공하며, ‘Calculate and Results Tool’은 계산 및 결과 비교에 유용한 처리 장치(Processing Unit), Chart Wizard, 애니메이션 도구 모음 등의 기능이 있다. ‘Analysis Tool’은 단면자동분석(Cross Section Analyzer) 기능 전용이며 ‘View Tool’은 추가 3D 보기 도구를 제공한다. ‘Help Tool’에서는 VCS 소프트웨어의 모든 기능에 대한 최신 설명서와 도움말 정보를 찾을 수 있다. 또한 개발사 홈페이지에서도 모든 사용 매뉴얼과 따라하기 매뉴얼을 다운로드할 수 있다.   그림 5. VCS의 메인 뷰 화면   VCS의 작업 프로세스의 순서에 따른 주요 기능은 다음과 같다.   FE Mesh/Initial geometry import 다양한 FE 데이터 및 CAD 지오메트리(geometry) 불러오기 기능을 제공한다.   재료 정의(Material Editor) 재료상수(Material Constraint) : Hardening Factor, Mass Density, Poisson Ratio, Proof Strain, Proof Stress, Young Modulus 응력-변형률(Stress-Strain) 특성 : Array, Power Law, Polynomial, User Function-2D, Array 3D 변형률속도(strain rate) 특성 : Cowper Symonds, Modified Cowper Symonds, User defined function-3D, Johnson Cook   Fracture Indicator : Surface strains, Cockcroft-Latham/Norris LS-DYNA MAT24(MAT_PIECEWISE_LINEAR_PLASTICITY) 호환 Material & Characteristic Repository 기능   2D Structure(Cross Section Editor) : Cross Sections & Cross Section analysis Cross Section Editor는 단면의 충돌 성능 최대화를 위한 설계, 계산 및 최적화를 위한 편집기이다. 여기서 처리된 단면은 3D 수퍼빔요소(SBE)에 사용되며, Cross Section Editor의 이론적 배경의 핵심은 수퍼폴딩요소(SFE)이다. Point, plate, segment, SFE 및 connection으로 모든 단면을 생성할 수 있으며, 쉽고 편리한 단면 형상 및 재료 특성의 변경으로 다양한 디자인의 빠른 변경이 가능하다. Cross Section 계산 결과 단면 상태에서는 7가지의 충돌 거동(Axial Response, Design Recommendations, Bending Response, Lateral Response, Denting Response, Torsion Response, Elastic Properties-축/굽힘/전단 강성 등)을 결과로 표시 각 결과는 주어진 붕괴 응답 모드에 대한 특성 파라미터((최대 하중 및 모멘트, 에너지 흡수 능력, 굽힘힌지의 총 회전 등과 같은 변형제한 값)의 정보 표시 Design Recommendations   효과적인 축방향 붕괴를 위한 단면 최적화 프로세스 : 결함이 있는 단면은 점진적 붕괴가 발생하지 않고 불규칙한 접힘으로 인해 많은 에너지 흡수가 적음 상세 단면 형상 근사화를 위한 단순화 모델링 과정을 통한 결함 제거 : 단면 수준에서 허용 가능한 접힘 모드를 선택하면 다음단계로 단면에 대한 각 SFE에 대해 결함 제거 과정을 수동으로 진행 단면 계산 결과 비교 툴 제공 및 결과 report 생성   3D Structure : Super Beams 3D 가상 설계 공간은 SBE를 기반으로 한 부재 및 박판구조물의 모델링과 계산에 사용 유한요소 모델로부터 SFE를 바로 생성할 수 있는 도구 제공 VCS 3D 모델을 구성하는 모든 객체는 빔(beam)과 강체(rigid body)를 정의할 수 있는 노드(node)로 구성되며, 노드는 VCS 객체에 대한 공간 참조 point로 사용 노드 속성 : 형상(CoG, Origine), 질량(mass, Concentrated Mass) 및 관성(Concentrated Inertia, Principal Moments, Transformed Moments) SBE는 두개의 노드로 구성되고 2D 계산에서 사용된 단면 형상이 적용되며, 하나의 노드에 다수의 SBE가 연결될 수 있다. 또한 동적 해석(초기/구속 조건 등)을 위해 필요한 많은 데이터를 포함한다. 3차원 공간에서 구조물(부재, 어셈블리, 전체 차량)의 생성을 위해서는 Node, Beam, Rigid body 등이 사용되며, 매크로요소법에 기반한 SFE가 포함된 SBE의 생성으로 시작 다양한 충돌 하중조건에 대한 풀 카(full car)의 해석을 위해 VCS 전용 배리어가 제공 차량 충돌 설계를 위해 매크로요소법을 사용하는 데 있어 유한요소법 대비 주요 장벽은 구조물 조인트의 강성을 정확하게 모델링하는 것이다. VCS는 구조적 조인트에 대해 교차하는 하중 전달 빔의 기하학적 중심에서 연결되며, X, Y 및 Z 오프셋은 위치와 길이를 수정하기 위해 교차하는 빔의 시작과 끝에 적용할 수 있어 구조물의 실제 형상과 조인트의 강체 코어를 보다 사실적으로 근사화할 수 있다.   3D : Additional elements & Mass distribution 엔진 및 기어박스와 같이 충격 하중 동안 거의 변형되지 않는 부품은 강체로 모델링 강체를 생성하기 위해 부품의 무게 중심에 있는 노드가 정의되고 이 노드에 총 질량 및 관성 행렬(inertia matrix)이 할당 노드는 나머지 구조물에 직접 연결되는 반면, 여러 장착 위치의 경우 간단한 원형 단면을 갖는 SBE를 사용할 수 있음 3D 환경에서 생성된 각 객체의 질량 정보는 해당 요소가 정의된 노드에 위치하며, 추가 질량은 노드에 집중질량으로 정의하거나 정의된 질량/또는 밀도로 새로운 강체를 생성하여 추가   Initial & Boundary conditions 및 Contact settings 초기 및 경계조건(Kinematic Constraints-Angular Velocities & Linear Velocities, Concentrated Loadings- Forces & Moments)은 모두 노드에 정의 전체 모델이 구축되면 접촉을 정의하며, 접촉 정의에 필요한 부품의 부피를 나타내기 위해 질량이 없는 강체(sphere, cone, cylinder and box 형상)가 이 절점에서 생성되고, 모델의 형상에 따라 배치한 후 접촉 정의 - 전용 접촉 감지 루틴으로 물리적 접촉 메커니즘을 구현 변형체의 접촉 정의를 위해 변형가능 배리어(Deformable barrier) 툴 제공   Solution Settings Solution Explorer tree에서 자세한 솔루션 파라미터를 정의 : Attributes, Animation Progress, Time Stepping Routine, Fields and global parameters, Settings 및 Statistics section 특히, Statistics section은 모델 확인의 마지막 단계에서 유용하며, 모델의 요소 수, 질량 및 무게중심에 대한 정보 제공   Calculations & Animation 계산 프로세스는 Process Unit에서 한번의 클릭으로 진행되며, Process Unit 창에서 시각적으로 진행 상황을 모니터링 전체 차량 충돌 해석은 일반 데스크탑 PC/노트북에서 1분 내외로 계산이 완료되며, 다중 계산이 가능하여 계산시간 추가 단축 가능 계산 프로세스가 완료된 후 하중 조건에 따른 해석 결과를 애니메이션으로 확인할 수 있으며, SBE를 색깔 별로 간단히 구분하여 SBE의 순간 변형 상태를 쉽게 분석   Results : Chart Wizard 애니메이션과 함께 다양한 결과를 그래프로 생성하며, 사용자는 VCS 결과 파일 내에서 어느 객체든 선택 후 결과를 볼 수 있음 3D view에서 선택한 VCS 모델의 각 객체는 Selection Window에 자동으로 추가   VCS의 도입 효과 설계 초기 콘셉트 안으로 충돌 부재 단면 최적화가 가능하여 제품 개발 프로세스 촉진 장비 도입/운영 비용 절감 : 매크로 요소법에 기반한 빠른 계산으로 랩톱에서도 수초 또는 수분내에 계산이 가능 단순한 작업 환경에서 간편한 설계 변경이 가능하여, 해석 엔지니어가 아닌 설계 엔지니어도 쉽게 활용 가능   VCS의 주요 적용 분야 자동차 산업 및 조선산업 등에서 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화 충돌/충격 부재의 단면 충돌 특성 평가/개선 및 최적화 컴포넌트(에너지 흡수 구조 부품, bumper back beam, FR Side 멤버, Fillar component 등)의 충돌 특성 평가 및 개선 부분 충돌 모델 및 풀 카 충돌 모델의 충돌 성능 평가 및 개선   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-02-01
구조, 열, 피로 해석 소프트웨어, T-Flex Analysis
구조, 열, 피로 해석 소프트웨어, T-Flex Analysis 주요 CAE 소프트웨어 소개   ■ 개발 : Top Systems ■ 자료 제공 : 설아테크, 02-1661-3215, www.t-flex.co.kr T-FLEX Analysis는 엔지니어가 복잡한 부품 및 어셈블리를 가상으로 테스트하고 해석할 수 있도록 광범위한 전문 해석 도구를 제공한다. 정적, 주파수, 좌굴, 열, 최적화, 피로 및 기타를 수행하기 위해 유한 요소 방법을 사용한다. 해석. T-FLEX 해석은 모델이 구축되기 전에 실제 조건에서 어떻게 작동하는지 보여준다. 1. 연계 모델 CAE 모델은 기본 T-FLEX CAD 지오메트리를 사용하기 때문에 설계 모델과 완전히 연관된다. T-FLEX 해석은 시간이 많이 걸리는 지오메트리 변환이나 데이터 재생성 없이도 시뮬레이션에 최신 설계 정보를 사용할 수 있도록한다. 모델의 설계 변경 사항은 해석 계산을 위해 자동으로 업데이트 되며 메시는 가장 복잡한 모델 지오메트리에도 자동으로 적용된다. 2. 사용자 인터페이스 T-FLEX CAD와의 완벽한 통합은 T-FLEX Analysis 사용자가 설계 해석을 수행할 수 있음을 의미한다. 3. CAD 사용자 인터페이스 T-FLEX 해석은 T-FLEX CAD 모델 트리, 속성 대화상자 명령 및 메뉴 구조, 많은 동일한 마우스 및 키보드 명령을 활용하므로 T-FLEX CAD에서 부품을 설계할 수 있는 사람은 누구나 부품을 해석할 필요없이 해석할 수 있다.  4. 애플리케이션 영역 빠르고 저렴한 해석은 종종 직관적이지 않은 솔루션을 드러내고 제품 특성에 대한 더 나은 이해를 제공함으로써 엔지니어에게 도움이 된다. 기계, 전자 기계, 항공 우주, 운송, 전력, 의료 또는 건설 산업에서 사용되든 T-FLEX 해석은 개발 시간 단축, 테스트 비용 절감, 제품 품질 향상, 수익성 향상, 출시 시간 단축에 도움이 될 수 있다. 5. 구조 정적 분석 구조 해석 기능을 통해 엔지니어는 다양한 하중 조건에서 부품 및 어셈블리의 정적 응력 해석을 수행할 수 있다. 정적 스터디는 변위, 반력, 변형, 응력 및 안전 분포 계수를 계산한다. 정적 분석은 높은 스트레스로 인한 고장을 방지하는데 도움이 된다. 힘, 압력, 중력, 회전 하중, 베어링 힘, 토크, 규정된 변위, 온도 등 다양한 구조적 하중과 구속을 지정할 수 있다. 6. 주파수 해석 주파수 해석은 부품의 고유 주파수 및 관련 모드 모양을 결정한다. 부품이 모터와 같은 연결된 동력 구동 장치의 주파수에서 공진하는지 확인할 수 있다. 구조의 공명은 일반적으로 피하거나 감쇠해야 하지만 엔지니어는 다른 응용 분야에서 공명을 활용할 수 있다. 일반적인 응용 분야에는 음향 스피커 설계, 항공 우주 구조 설계, 교량 및 육교 건축, 건설 장비 설계, 악기 연구, 로봇 시스템 분석, 회전 기계 및 터빈 설계, 진동 컨베이어 최적화 등이 있다. 7. 좌굴 해석 임계 좌굴 하중 해석은 주로 축 방향 하중 하에서 모델의 기하학적 안정성을 조사한다. 이는 갑작스런 큰 변위를 의미하는 좌굴로 인한 고장을 방지하는데 도움이 되며 대부분의 제품을 정상적으로 사용할 때 발생하면 치명적일 수 있다. 좌굴 해석은 가장 낮은 좌굴 하중을 제공한다. 일반적으로 자동차 프레임 설계, 기둥 설계, 인프라 설계, 안전 계수 결정, 송전탑 설계, 차량 스킨 설계 등과 같은 응용 분야에 사용된다. 8. 열 해석 열 효과를 시뮬레이션하는 기능에는 정상 상태 및 과도 열 전달 해석이 포함된다. 열 연구는 열 생성, 전도, 대류 및 복사 조건을 기반으로 온도, 온도 구배 및 열 흐름을 계산한다. 열 해석은 과열 및 용융과 같은 바람직하지 않은 열 조건을 방지하는데 도움이 된다. 9. 최적화  성능 기준을 충족하는 혁신적인 제품을 설계하고 생산하는 것은 모든 제조업체의 목표이다. 최적화 기술을 사용하여 엔지니어는 제안된 설계를 개선하여 최소 비용으로 최상의 제품을 만들 수 있다. 설계에 복잡한 상호 관계가 있는 수백 개의 변수 파라메터가 있을 수 있으므로 수동 반복을 통해 최적의 설계를 찾는 것은 기껏해야 히트 또는 미스이다. T-FLEX 해석은 사양과 성능을 비교하는 반복 프로세스를 자동화하여 제품 설계 개선의 부담을 덜어준다. 10. 주파수 응답 해석 주파수 응답 해석은 지속적인 고조파 부하를 받는 기계, 차량 또는 공정 장비 설계의 정상 상태 작동을 결정한다. 선형 과도 응력 해석과 비교하여 주파수 응답 해석은 입력이 일정한 주파수와 진폭으로 쉽고 빠른 방법을 제공한다. 예를 들어, 이 해석 유형은 하중이 불균형인 세탁기 또는 차량의 휠이 구부러진 상태에서 진동 효과를 결정하는데 사용할 수 있다. 11. 피로 해석 반복적인 로딩 및 언로딩은 유도 응력이 허용 응력 한계보다 상당히 적더라도 시간이 지남에 따라 물체를 약화시킨다. 피로 해석은 강철 레일, 빔 및 대들보와 같은 제품에 매우 중요하다. 이러한 제품은 반복적이거나 다양한 하중에서 기계적 고장을 경험할 수 있으며 단일 응용 분야에서 고장을 일으킬 수 있는 수준에 도달하지 않는다. T-FLEX 해석은 피로 기반 고장을 시뮬레이션하고 사용자가 제품의 내구성 한계를 결정하고 안전성을 보장하기 위해 제품에 스트레스를 주기적으로 적용하여 내구성을 설계할 수 있도록 한다. 12. 해석 결과(후처리) T-FLEX Analysis는 스터디 및 결과 유형에 따라 애니메이션, 다양한 플롯, 목록 및 그래프와 함께 포괄적인 후 처리 작업을 제공한다. 특수보고 명령은 인터넷 지원 보고서를 생성하여 연구를 빠르고 체계적으로 문서화하는데 도움이 된다. 보고서는 연구의 모든 측면을 설명하도록 구성되어 있다. 13. 좌굴 해석 임계 좌굴 하중 해석은 주로 축 방향 하중 하에서 모델의 기하학적 안정성을 조사한다. 이는 갑작스런 큰 변위를 의미하는 좌굴로 인한 고장을 방지하는데 도움이 되며 대부분의 제품을 정상적으로 사용할 때 발생하면 치명적일 수 있다. 좌굴 해석은 가장 낮은 좌굴 하중을 제공하며 이는 일반적으로 자동차 프레임과 같은 애플리케이션에 사용된다. 설계, 기둥 설계, 인프라 설계, 안전 계수 결정, 송전탑 설계, 차량 외피 설계 등이다. 14. 열 해석 열 효과를 시뮬레이션하는 기능에는 정상 상태 및 과도 열 전달 해석이 포함된다. 열 연구는 열 생성, 전도, 대류 및 복사 조건을 기반으로 온도, 온도 구배 및 열 흐름을 계산한다. 열 해석은 과열 및 용융과 같은 바람직하지 않은 열 조건을 방지하는데 도움이 된다. 15. 최적화  성능 기준을 충족하는 혁신적인 제품을 설계하고 생산하는 것은 모든 제조업체의 목표이다. 최적화 기술을 사용하여 엔지니어는 제안된 설계를 개선하여 최소 비용으로 최상의 제품을 만들 수 있다. 설계에 복잡한 상호 관계가 있는 수백 개의 변수 파라메터가 있을 수 있으므로 수동 반복을 통해 최적의 설계를 찾는 것은 히트 또는 미스이다. T-FLEX 분석은 사양과 성능을 비교하는 반복 프로세스를 자동화하여 제품 설계 개선의 부담을 덜어준다. 16. 주파수 응답 해석 주파수 응답 해석은 지속적인 고조파 부하를 받는 기계, 차량 또는 공정 장비 설계의 정상 상태 작동을 결정한다. 선형 과도 응력 해석과 비교하여 주파수 응답 해석은 입력이 일정한 주파수와 진폭인 쉽고 빠른 방법을 제공한다. 예를 들어, 이 분석 유형은 하중이 불균형인 세탁기 또는 차량의 휠이 구부러진 상태에서 진동 효과를 결정하는데 사용할 수 있다. 17. 피로 해석 반복적인 로딩 및 언로딩은 유도 응력이 허용 응력 한계보다 상당히 적더라도 시간이 지남에 따라 물체를 약화시킨다. 피로 해석은 강철 레일, 빔 및 대들보와 같은 제품에 매우 중요하다. 이러한 제품은 반복적이거나 다양한 하중에서 기계적 고장을 경험할 수 있으며 단일 응용 분야에서 고장을 일으킬 수있는 수준에 도달하지 않는다. T-FLEX 해석은 피로 기반 고장을 시뮬레이션하고 사용자가 제품의 내구성 한계를 결정하고 안전성을 보장하기 위해 제품에 스트레스를 주기적으로 적용하여 내구성을 설계할 수 있도록 한다. 18. 해석 결과(후 처리) T-FLEX Analysis는 스터디 및 결과 유형에 따라 애니메이션, 다양한 플롯, 목록 및 그래프와 함께 포괄적인 후 처리 작업을 제공한다. 특수보고 명령은 인터넷 지원 보고서를 생성하여 연구를 빠르고 체계적으로 문서화하는데 도움이 된다. 보고서는 연구의 모든 측면을 설명하도록 구성되어 있다.     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-01-08
설계자를 위한 유동해석 소프트웨어, SOLIDWORKS Flow Simulation
설계자를 위한 유동 해석 소프트웨어, SOLIDWORKS Flow Simulation   주요 CAE 소프트웨어 소개    ■ 개발 : Dassault Systèmes, www.solidworks.com/domain/simulation ■ 자료 제공 : 다쏘시스템코리아, 02-3270-7800, www.3ds.com/ko / 노드데이타, 02-595-4450, www.nodedata.com / 메이븐, 02-852-2555, www.swmaven.co.kr SOLIDWORKS(솔리드웍스) 사용자가 사용할 수 있는 SOLIDWORKS Flow Simulation은 설계 시 유체 유동 및 열전달 시뮬레이션 수행을 통해 제품의 성능을 향상하고 설계 통찰을 얻을 수 있는 포괄적인 유동 해석 기능을 제공한다.  CFD(Computational Fluid Dynamics)를 기반으로 해석을 수행하며 Add-in 형태로 제공되어, SOLIDWORKS CAD 모델을 SOLIDWORKS Flow Simulation 환경에서 그대로 활용할 수 있다. 따라서 CAD 모델 변경시 해석 모델이 자동으로 업데이트되는 장점을 지닌다. 제품 개발 시 설계와 해석을 동시에 진행하여야 하는 경우 합리적이고 효율적으로 업무를 진행할 수 있다. SOLIDWORKS Flow Simulation은 단일 파트로 구성된 지오메트리에서 어셈블리까지 모두 활용할 수 있으며 외부 유동, 내부 유동, 복합 열전달, 비뉴턴 유체, 자유수면 고려, 다공성 매체, 입자 스터디 등 다양한 해석 기법을 제공하며 정상 상태에서 비정상 상태 해석까지 수행할 수 있다. 다양한 난류 모델 및 내장되어 있는 유체 모델을 손쉽게 선택할 수 있도록 구성되어 있으며 ‘마법사’ 기능을 통해 까다로운 유동해석 조건을 손쉽게 부여할 수 있다. Electronics Cooling 및 HVAC 모듈을 추가할 경우 확장된 해석 기능 활용을 통해 전자제품 냉각 해석 및 HVAC 관련 해석을 수행할 수 있다.  SOLIDWORKS Flow Simulation은 지오메트리 변경에 따른 최적화 해석을 자동으로 수행하는 기능을 제공하는 등 해석에 국한하지 않고 설계 전반에 필요한 통찰을 제공한다. 해석 시 사용자가 보유한 모든 computing resource(Number of CPU Cores) 사용에 제약이 없으며, SOLIDWORKS Simulation 구조 해석에 필요한 정적 하중을 생성할 수 있다. 해석에 필요한 모델 생성의 경우 지오메트리 기반으로 자동 생성되며, 손쉽게 수정 및 관리할 수 있다.   좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-01-06
멀티피직스 해석, 시스템 시뮬레이션, Simcenter Amesim 
멀티피직스 해석, 시스템 시뮬레이션, Simcenter Amesim  주요 CAE 소프트웨어 소개    ■ 개발 : 지멘스 디지털 인더스트리 소프트웨어, www.plm.automation.siemens.com/global/ko ■ 자료 제공 : 지멘스 디지털 인더스트리 소프트웨어, 02-3016-2000, www.plm.automation.siemens.com/global/ko / 델타이에스, 070-8255-6001, www.deltaes.co.kr / 플로우마스터코리아, 02-2093-2689, www.flowsystem.co.kr Simcenter Amesim은 시스템 시뮬레이션 엔지니어가 시스템의 성능을 가상으로 평가하고 최적화할 수 있도록 지원하는 통합 메카트로닉스 시스템 시뮬레이션 플랫폼이다. Simcenter Amesim을 통해 초기 개발 단계에서 최종 성능 검증 및 제어 Calibration 단계에 이르기까지, 전체 시스템 엔지니어링의 생산성을 크게 향상시킬 수 있다. 또한 확장 가능한 통합 시스템 시뮬레이션 플랫폼을 사용하여, 시장 출시 지연 및 품질 저하 없이 제품의 혁신을 창출할 수 있다.  Simcenter Amesim은 강력한 플랫폼 기능으로 지원되는 애플리케이션 및 산업별 특화 솔루션과 결합된 즉시 사용 가능한 다중 물리 라이브러리를 포함하며, 이를 통해 모델을 신속하게 만들고 해석을 정확하게 수행할 수 있도록 한다. 또한 엔터프라이즈 프로세스에 통합할 수 있는 개방형 환경을 제공하며, 소프트웨어를 CAE(Computer-Aided Engineering), CAD(Computer-Aided Design), 제어 소프트웨어 패키지와 손쉽게 통합하고, FMI(Functional Mock-up Interface), Modelica와 상호 호환되고, 이를 다른 Simcenter 솔루션, Teamcenter, Excel 등과 연결할 수 있다. 1. 주요 기능 (1) 시스템 시뮬레이션 플랫폼 개방적이며 강력한, 사용자 친화적인 다중 물리 시스템 시뮬레이션 플랫폼의 이점을 활용해 복잡한 시스템과 구성 요소를 모델링, 실행 및 해석할 수 있다. 1D 다중 물리학 시스템 시뮬레이션과 강력한 설계를 구현하는 데 쉽게 사용할 수 있는 고급 환경을 제공해, 다양한 스크립팅 및 커스터마이제이션을 가능하게 하여, 기존 설계 프로세스 내에서 Simcenter를 매끄럽게 통합할 수 있도록 한다.  1D 및 3D CAE 소프트웨어 솔루션과 효율적으로 상호작용하며, 지속적이며 일관된 MiL(model-in-the-loop), SiL(software-in-the-loop), HiL(hardware-in-the-loop) 가능 프레임워크를 제공해 표준 실시간 대상에 대한 모델을 신속하게 도출하여 사용할 수 있다.   (2) 시스템 통합 개발 장벽을 없애고 증가하는 시스템 복잡성을 효과적으로 처리한다. 모델 기반 설계(MBD)를 성공적으로 도입하려면 초기 아키텍처 설계에서 Calibration 단계에 이르기까지 일관성 있는 모델링 방식을 적용해야 하는데, 이러한 엔지니어링 혁신을 지원하기 위해 사용자 경험을 간소화해 효율성을 높인다. 또한 물리적 모델링과 관련된 유용한 기능과 다분야의 고유 기능이 통합돼 자동차, 비행기, 굴착기, 선박 및 그 외 산업 응용 분야에 가장 효과적인 엔지니어링 설계 프로세스를 설정할 수 있다.  (3) 메카니컬 시스템 시뮬레이션 증가하는 기계 시스템 엔지니어링 복잡성에 대응하여, 다차원(1D, 2D 및 3D) 동적 시뮬레이션을 지원하는 최첨단 모델링 기술로 저주파/고주파 현상을 해석해 강체 또는 유연체, 복잡한 비선형 마찰에 대해 알아볼 수 있다. 복잡한 지오메트리 간 접촉을 고려해 메카니즘의 신뢰성과 견고성을 향상시킨다. 또한 아키텍처 및 설계 결정을 프론트로딩할 수 있다. 플랜트 모델과 제어 모델, 코드를 연결해 강력한 메카트로닉 시스템 개발을 지원한다. (4) 열 관리 시스템 시뮬레이션 열 통합 문제를 해결할 수 있도록 사전 설계 단계에서 최종 검증에 이른 전체 설계 사이클을 망라하는 포괄적 솔루션 세트를 제공해, 열 관리를 최적화하고 효율적이며 안정적인 시스템을 설계한다. 이러한 기능을 통해 자동차, 비행기 또는 실내 쾌적성과 같은 열 성능을 극대화하는 동시에 에너지 효율성을 최적화할 수 있으며, 주변 환경과의 상호 작용을 비롯한 시스템의 실제 운영 환경을 나타낼 수 있다. 또한 에너지 회수 시스템 통합과 이것이 성능과 에너지 소비에 미치는 영향을 연구할 수 있으며, 고급의 포스트 프로세싱 기능을 활용해 시스템의 에너지 흐름을 그래픽으로 시각화할 수 있다. (5) 유체 시스템 시뮬레이션 기능 모델에서 상세 모델에 이르는 유체 시스템을 모델링할 때 전문/비전문 사용자 모두를 지원하는 포괄적인 구성요소 라이브러리를 제공해, 물리적 프로토타입 사용을 엄격히 제한하면서 유압 및 공압 구성요소의 동적 거동을 최적화한다. 다양한 구성요소, 기능 및 애플리케이션 중심 툴을 갖춘 Simcenter를 사용하면 모바일 유압 작동 시스템, 파워트레인 시스템, 항공기 연료 및 환경 제어 시스템과 같은 다양한 애플리케이션을 위한 유체 시스템을 모델링할 수 있다. (6) 전기 시스템 시뮬레이션 전장화의 핵심 시스템인 연료전지, 배터리, 모터, 인버터, 제어기 등의 시스템에 대한 기본 모델부터 상세 모델들을 제공한다. 콘셉트 설계부터 제어 검증까지 전기 및 전자 기계 시스템을 시뮬레이션할 수 있다. 메카트로닉스 시스템의 동적 성능을 최적화하고 전력 소비를 분석하며, 자동차, 항공 우주, 산업 기계 및 중장비 산업을 위해 전기 장치 제어 법칙을 설계하고 검증할 수 있는 기능을 제공한다. (8) 연료전지 시스템 시뮬레이션 연료전지 스택(PEMFC)의 맵 기반 모델, 시험 데이터 기반의 모델부터 전기화학적 모델 라이브러리 및 데모를 지원한다. 다양한 운전환경(온도, 습도, 압력 등)에 따른 스택의 전압을 예측할 수 있으며 고압탱크, 수소공급계통, 공기공급계통의 요소의 모델링을 통해 전체 연료전지 시스템의 성능과 효율을 검증할 수 있다. 나아가 연료전지 자동차의 통합 시스템 모델을 구축함으로써 콘셉트 검증 및 연비 예측, 스택의 출력 및 효율 예측, 열관리 성능을 평가할 수 있으며 제어 전략을 수립할 수 있다. (7) 추진 시스템 시뮬레이션 차세대 추진 시스템을 개발할 수 있다. 다중 물리 시스템 시뮬레이션 방식을 사용하면 다양한 아키텍처와 기술을 처리할 수 있다. 예시로는 자동차 파워트레인 전기화, UAM을 위한 전기/하이브리드 파워트레인, 우주 산업을 위한 재사용 가능한 발사 시스템, 선박을 위한 대체 연료(LNG) 사용 등을 들 수 있다. 단일 플랫폼에서 교차 시스템 영향에 대한 완전한 해석을 수행해 온보드 발전 또는 차량 오염 물질 배출과 같은 다양한 메트릭에 대한 추진 시스템의 영향을 설계하고 평가할 수 있다.     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-01-01
멀티피직스 해석, 안전 시뮬레이션, Simcenter 3D
멀티피직스 해석, 안전 시뮬레이션, Simcenter 3D   주요 CAE 소프트웨어 소개    ■ 개발 : 지멘스 디지털 인더스트리 소프트웨어, www.plm.automation.siemens.com/global/ko ■ 자료 제공 : 지멘스 디지털 인더스트리 소프트웨어, 02-3016-2000, www.plm.automation.siemens.com/global/ko / 델타이에스, 070-8255-6001, www.deltaes.co.kr / 스페이스솔루션, 02-2027-5930, www.spacesolution.kr   Simcenter 3D는 구조, 음향, 유동, 열, 모션, 전자기장, 재료 및 복합소재 해석을 지원하고, 최적화 및 다중 물리 시뮬레이션을 포함하는 시뮬레이션 솔루션이다.  솔버 및 전/후처리 기능은 시뮬레이션 기반의 통찰력을 시간 내에 얻기 위해 필요한 모든 도구를 제공한다. 또한, 1D/3D를 연동한 시뮬레이션 및 시험/시뮬레이션을 연계한 Hybrid 모델링 기능 덕분에 Simcenter 3D는 이전보다 현실적인 시뮬레이션 성능을 제공할 뿐만 아니라, 데이터 관리 기능을 갖춘 확장 가능한 개방형 CAE 통합 환경이다.  Simcenter 3D는 고성능의 지오메트리 편집, 연상 시뮬레이션 모델링 및 다분야 솔루션을 업계 전문 기술과 통합하여 시뮬레이션 프로세스 속도를 단축한다. Simcenter 3D는 모든 CAD 데이터와 함께 사용할 수 있는 독립형 시뮬레이션 환경을 제공하며, NX와 통합되어 원활한 CAD/CAE 경험을 제공한다. 1. 주요 기능 (1) CAE 전처리(Pre-Processing) 기능 CAD/CAE 단일 사용자 환경에서 설계자부터 전문 해석자까지 사용 가능한 CAE 전/후처리 도구를 제공하고, 높은 수준의 CAD 수정/편집 기능을 이용하여 더욱 효율적이고 빠르게 3D 시뮬레이션 모델을 생성할 수 있다. ■ 설계 검증을 위한 CAE/CAE 통합 사용자 환경지원 ■ 다분야, 다물리 해석을 위한 플랫폼 제공 ■ 동기화 기술로 직관적이고 빠른 CAD 수정 ■ CAD 형상 연계 유한요소 생성 ■ 복잡한 모델을 위한 유한요소 Assembly 구조 지원 ■ Simcenter Nastran 외 3rd Party Solver 지원 ■ 설계 검증 프로세스 구축 및 자동화 가능 (2) 구조 해석 Nastran Solver를 이용하여 정적, 모드, 좌굴 해석 등의 선형 구조 해석을 지원하고, 미소변형 및 거동하는 대형 제품의 구조 해석을 빠르게 수행하는 SMP, DMP 방식의 병렬계산을 지원한다. 기하 비선형, 접촉, 소성, 크립, 초탄성 거동 등 모든 비선형 모델을 지원할 뿐만 아니라, 대부분의 선형 비선형 문제를 순차적으로 수행할 수 있는 Multistep 솔루션을 제공한다.  특히 가스터빈, 펌프 등의 회전 시스템이 작동할 때 회전 RPM/Unbalance/Gyroscope 효과에 의해 공진주파수가 변화하여 진동을 유발하는 형상에 대해 예측하고 개선하는 Rotor Dynamics 솔루션과 3D Printing 형상의 제작 과정에서 열변형 등의 문제를 사전에 예측하여 변형된 보상 형상을 CAM에 내보냄으로써 실제로 출력하고자 하는 형상을 trial-and-error를 최소화하는 Additive Manufacturing 솔루션을 제공한다. (3) 음향 분석 음향 해석은 보다 조용한 제품, 소음 규제 준수, 음장 예측 작업 등 당면 과제를 해결하는 데에 도움이 될 수 있다. Simcenter 3D는 통합 솔루션 내에서 내부 및 외부 음향 해석을 제공하여 초기 설계 단계에서 정보에 기반한 의사 결정을 지원하여, 제품의 음향 성능을 최적화하도록 한다. 확장 가능한 통합 모델링 환경에는 효율적인 솔버와 해석이 용이한 시각화 기능이 통합되어 있어서 제품의 음향 성능을 신속하게 파악할 수 있다. ■ 경계요소법(BEM), 유한요소법(FEM), 기하 음향학(RAY) 기반의 음향해석 지원 ■ AML(Automatically Matched Layer)을 이용한 무한 방사조건 지원 ■ FEM AO(Adaptive Order)를 이용한 계산속도 향상 ■ 다양한 시뮬레이션을 이용한 소음해석 프로세스 → MBD/EM/CFD to NVH (4) NVH & FE-TEST Correlation 시스템 수준의 FE 및 테스트 결합 Hybrid 모델을 만들고 실질적 하중 조건 규명(TPA)과 소음 및 진동 반응을 시뮬레이션 하는데 필요한 도구가 결합되어 있다. 소음 및 진동 성능을 탐색하고 가장 중요한 원인을 정확히 파악하기 위한 여러 가지 시각화 및 해석 도구가 여기에 포함된다. 사용자에게 익숙한 도구를 통해 엔지니어는 설계를 신속하게 수정하고 소음 및 진동 성능의 영향을 몇 분 안에 평가할 수 있다.  Simcenter 3D는 시뮬레이션 모델의 신뢰성을 향상시킬 목적으로 측정된 동특성과 예측 모델 사이의 상관관계를 규명하고, Nastran SOL200 기반의 민감도 해석을 통해 시뮬레이션 모델의 신뢰성 향상 및 모델링 표준화를 지원하는 FE-TEST Correlation을 지원한다. (5) 모션 해석 복사기, 슬라이딩 선루프 또는 윙플랩 같은 복잡한 기계 시스템의 작동 환경을 이해하는 것은 어려울 수 있다. 모션 시뮬레이션은 기계 시스템의 반력, 토크, 속도, 가속도 등을 계산한다. CAD 형상 및 어셈블리 구속조건을 정확한 모션 모델로 즉시 변환하거나 처음부터 직접 모션 모델을 만들 수 있으며, 내장된 모션 솔버와 후처리 기능을 통해 제품의 다양한 거동을 연구할 수 있다. (6) 내구 해석 내구성 엔지니어에게 가장 어려운 작업은 가장 효율적인 방식으로 오류 방지 구성요소와 시스템을 설계하는 작업이라는 데에는 이견이 없다. 피로 강도가 충분하지 않은 시스템 부품은 영구적인 구조적 손상과 생명에 위협이 될 수 있는 상황을 초래할 수 있다. 실수는 제품 리콜을 초래해 제품뿐만 아니라 전체 브랜드 이미지에 부정적인 영향을 미칠 수 있다.  개발 사이클이 짧아지고 품질 요구사항이 계속 증가하면서 테스트 기반 내구성 방식은 그 한계를 드러내고 있다. 시뮬레이션 방법으로 내구성 성능을 평가하고 향상시키는 것이 유일하게 유효한 대안이다. Simcenter는 실제 하중 조건을 빠르고 정확하게 고려해 피로 수명 예측 해석을 수행할 수 있는 최첨단 해석 방법에 대한 액세스를 제공한다. (7) 열해석 Simcenter 3D Thermal은 열 전달 솔루션을 제공하고 복잡한 제품 및 대형 어셈블리에 대한 전도, 대류 및 복사 현상을 시뮬레이션할 수 있는 기본 기능 뿐만 아니라 정교한 복사 분석, 고급 광학 특성, 복사 및 전기가열 모델, 1차원 유압 네트워크 모델링 및 위상 변화, 탄화(Charring) 및 삭마(Ablation)와 같은 고급 재료모델을 위한 광범위한 방법을 제공한다. 사용자는 Simcenter 3D 통합 환경을 활용하여 신속한 설계변경 및 열 성능에 대한 신속한 피드백을 얻을 수 있고, 설계 및 엔지니어링 프로세스와 쉽게 통합되는 Simcenter 3D 열 해석 솔루션은 설계자와 해석자의 공동작업을 용이하게 하여 제품 개발의 생산성 향상을 지원한다. ■ 분리, 불일치 요소면, 형상의 자동 연결 ■ 모델링 자동화를 위한 유저 서브루틴, 유저 플러그인, 수식 및 API를 지원 ■ 통합된 환경에서 복합 열전달, 열-유동, 열-구조 등 연성해석 수행 가능 ■ ECAD와 연계로 반복작업과 모델링 에러 개선 (8) 유동해석 Simcenter 3D Flow는 복잡한 부품 및 어셈블리의 유체 유동을 모델링하고 시뮬레이션하기 위한 정교한 도구를 제공하는 CFD 솔루션이다. 잘 확립된 Control-Volume 공식의 성능과 정확성을 Cell-Vertex 공식과 결합하여 Navier-Stokes 방정식으로 설명된 유체 운동을 이산화하고 효율적으로 해결한다. 압축성(Compressible) 유체 및 고속(High Speed) 유동, non-Newtonian 유체, 무거운 입자추적(tracking of heavy Particles) 및 다중회전 기준 프레임(multiple rotating frames of reference)을 포함하는 내부 또는 외부 유체의 유동 시뮬레이션을 지원한다. ■ 단일 환경에서 Multi-Physics 시뮬레이션 기능 지원, 열-구조-유동 연성해석 ■ ECAD와 연동하여 전자장치의 냉각을 위한 최적화된 열-유동 해석 도구를 제공 (9) Material Engineering 오늘날 다양한 분야에서 첨단 소재를 사용함으로써 제품을 혁신하고 있으며, 이러한 이유로 새로운 소재들이 시장에 빠른 속도로 도입되고 있다. 첨단 소재를 제품에 적용할 때 균열은 매우 중요한 고려 사항이지만, 첨단 소재의 마이크로(micro) 및 메조(meso) 균열은 기존의 유한 요소법으로 모델링 및 해석하기가 어렵다.  하지만 Simcenter 3D는 완전한 대표 체적요소(RVE : Representative Volume Element) 분리, 소재 내부의 균열 또는 응집 영역(cohesive zones) 등 마이크로 레벨의 재료 특성을 고려할 수 있으며, 이를 통해 매크로(macro) 구조 모델과 마이크로 구조 모델이 전체 격자가 분리된 상태에서 균열이 소재를 통해 전파되는 현상을 해석할 수 있다.  (10) 저주파 전자기장 해석 Simcenter 3D LFEM은 모터, 변압기, 스피커 등의 전기기기에 대한 성능, 열에 의한 에너지 손실과 같은 전자기적 특성을 예측하는 솔루션을 제공한다. 3D CAD 모델로부터 전자기장 해석 모델을 구축하여 정교한 자성 재료 정의하고 속성, 경계 조건 및 통합 1D 회로 모델링 도구를 사용하는 부하를 정의할 수 있으며, 결과의 정교한 후처리를 수행하는 전자기장 해석 전과정을 지원한다. ■ 전자기장 해석에 필요한 고급 재료물성 지원 ■ 6자유도 운동을 고려한 전자기장 해석 ■ 해석 시간을 절감하는 고급 격자생성 기능 및 경계조건 지원(Smart Meshing & BC) ■ 전자기-열 연성해석 ■ 전자기장 해석결과로부터 열/유동/소음진동 해석을 진행하는 프로세스 제공 (11) 고주파 전자기장 해석 Simcenter 3D HFEM은 항공우주 산업의 전자기 호환성(EMC) 관련 인증의 핵심 주제인 번개(IEL) 및 고강도 복사장(HIRF)의 간접 효과를 검증하는 시뮬레이션을 지원한다. 또한 자동차 산업에서 ADAS(Advanced Driver Assistance System) 및 센서뿐만 아니라 EV 파워 트레인의 EMC 및 전자기 간섭(EMI) 성능을 검증하고 개선하는 고주파 시뮬레이션을 지원한다. Simcenter 3D에 탑재된 Simcenter 고주파수 EM 솔버는 Maxwell의 전자기 방정식을 풀기 위한 적분방(MoM 및 MLFMA)을 기반으로 하는 전파 솔버를 지원한다. 또한 UTD 및 IPO를 기반으로 점근법(asymptotic methods)을 사용할 수 있고, 2.5D 및 전체 3D 필드 문제를 효율적으로 해결하기 위해 다양한 솔버가 통합되었다. 솔버 가속 옵션(MLFMA, DDM, 다중 경계 조건 MoM기반 알고리즘)이 내장되어 대규모 시스템의 계산 시간을 단축한다. (12) 안전 시뮬레이션  Simcenter 3D Safety(Madymo)는 자동차 안전 시뮬레이션에 광범위하게 사용되고 있으며, 엔지니어가 고급 통합 안전 시스템을 생성하는 데에 필요한 기능을 제공한다. Simcenter 3D Safety는 탑승자 및 보행자 안전 개발을 위한 전용 사용자 환경을 제공하며, 빠르고 정확한 솔버는 광범위한 DOE 및 최적화 연구를 가능하게 한다.  Simcenter 3D Safety는 다물체 동역학(MBD), 유한요소(FE) 및 전산유체역학(CFD) 기술을 단일 솔버에 통합하여, 엔지니어에게 정확성과 속도 간의 적절한 균형을 유지하면서 안전 시스템을 모델링할 수 있는 유연성을 제공한다. 또한 활성 인체 모델은 모든 뼈, 근육 및 연부조직 재료로 인체를 모델링할 수 있어, 충돌 안전 시뮬레이션 시 차량 탑승자 및 보행자의 골격, 근육, 관절 등의 상세 상해정도 분석 및 평가를 지원한다. (13) 타이어 시뮬레이션 Simcenter 3D Tire는 차량의 동적 시뮬레이션을 위해 타이어의 거동을 모델링하는 플랫폼과 서비스를 제공한다. Simcenter 3D Tire를 통해 차량 제조 업체와 공급 업체는 실질적인 타이어 특성을 고려할 수 있고, 모든 동역학 시뮬레이션 툴 및 연산 시스템과 연동될 수 있는 타이어 모델을 변수화 및 표준화하기 위해 필요한 타이어 테스트를 최소화할 수 있다.  MF-Tyre는 모든 주요 차량 동적 시뮬레이션 툴에서 사용할 수 있는 Pacejka Magic Formula 기반 타이어 모델이다. MF-Swift는 승차감, 도로 하중 및 진동 분석을 위한 MF-Tyre의 확장 모듈이다. MF-Swift는 MF-Tyre 기능에 일반적인 3D 장애물 포위(obstacle enveloping) 및 타이어 벨트 동역학을 추가 지원한다. 이러한 접근 방식을 통해 모든 관련 차량 동적 시뮬레이션을 수행할 수 있는 올인원(all-in-one) 타이어 모델의 생성을 지원한다.      좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-31
기어박스/구동계/베어링 설계 해석, Romax
기어박스/구동계/베어링 설계 해석, Romax     주요 CAE 소프트웨어 소개    ■ 개발 : Romax Technology, https://romaxtech.com ■ 자료 제공 : 한국엠에스씨소프트웨어, 031-719-4466, www.mscsoftware.com/kr 1. Romax Nexus Romax Nexus(로맥스 넥서스)는 기어박스뿐 아니라 전기-기계 시뮬레이션 분야의 시뮬레이션 플랫폼이다. 빠른 모델링과 디자인 콘셉트 해석으로부터 상세한 시뮬레이션 및 가상 제품 완성에 이르기까지 Romax Nexus 애플리케이션은 고객의 구동계와 변속기 개발 사이클과 연결되어 있다. Romax Nexus는 애플리케이션 구성을 위해 CAE 영역을 지능적으로 통합하였고, 이를 통해 개발 초기 단계부터 올바른 설계를 가능하게 한다. ■ Romax Concept : 구동계 아키텍처에 대한 신속한 모델 생성과 레이아웃 및 사이징을 통하여 설계 방향을 설정하고 개발 위험을 감소시킨다.  ■ Romax Enduro : 강건하고 내구성 있는 전기-기계 구동 시스템을 개발하기 위한 신뢰할 수 있는 구조 시뮬레이션 및 최적화 기능을 제공한다.  ■ Romax Spectrum : 기어 및 모터의 가진 특성을 포함한 전체 전동화 기어박스의 NVH 시뮬레이션을 수행할 수 있다.  ■ Romax Energy : 구동계와 변속기에 대한 전반적인 효율 예측 도구를 제공한다.  ■ Romax Spin : 구름 베어링에 대한 최신의 고급 시뮬레이션 환경을 제공하여 베어링 설계자와 응용 엔지니어 모두가 활용할 수 있다.  ■ Romax Evolve : 모터 설계자를 위한 전기-기계 시뮬레이션 환경을 제공한다.  모든 Romax Nexus 제품은 각 구성 요소의 엔지니어링 기반 파라메트릭 정의를 사용하여 전체 시스템에 통합된 접근 방식을 제공한다. 또한 주요 CAD 및 FEA 소프트웨어에 대한 인터페이스와 빠르고 사용하기 쉬운 모델링 프로세스를 제공하여, 개발 사이클 초기 단계에서도 CAE를 활용할 수 있으므로 원활한 설계 프로세스 진행이 가능하다. Romax Nexus의 장점은 다음과 같다: ■ 빠른 계산 속도 ■ 다양한 산업에서의 반복된 검증 ■ 단일 모델로부터 경험적 분석 및 유한요소 해석과의 통합 해석에 이르기까지 다양한 모델 수준의 신뢰성 검증에 적합 ■ 기어와 베어링에 대한 정교한 접촉 모델 제공  1. Romax Concept (1) 주요 기능 ■ 빠르고 직관적인 모델링 : CAD 시스템과의 연결과 사용하기 쉬운 드래그 앤 드롭 인터페이스를 통해 다양한 레이아웃의 전체 시스템 구동계 시뮬레이션 모델을 몇 분 안에 신속하게 생성한다.  ■ 초기 단계 분석 : 개발 검토 중인 다양한 디자인 콘셉트의 성능을 분석하여 차량 성능, 내구성, 효율, NVH, 패키징, 무게, 비용 등과 같은 여러 개발 목표 간의 Trade-off를 관리한다. ■ 전체 시스템 내에서 구성 요소 설계 : 카탈로그 구성 요소를 선택하거나 기어비 및 매크로 지오메트리를 정의할 때 개발 초기부터 시스템 상호 작용을 고려할 수 있다. (2) 적용 효과 ■ 속도와 정확도가 적절하게 조화된 다양하고 혁신적인 레이아웃 탐색을 통해 개발 사이클 초기에 최적의 디자인을 선정할 수 있으며 결과적으로 개발 비용과 위험을 줄일 수 있다. ■ CAD와 MBD, CAE와 통합되는 유연한 도구로 개발 오류를 줄이고 프로세스를 간소화시킬 수 있으며 개발 제품을 시장에 조기 출시할 수 있다. ■ 제품 개발 초기 단계에서 엔지니어의 의사결정을 가능하게 하는 유용하고 전문적인 정보를 제공한다. 2. Romax Enduro  (1) 주요 기능 ■ 최신의 구성요소 분석 및 평가를 포함한 전기-기계 구동 시스템에 대한 빠르고 자동화된 구조 해석 시뮬레이션을 제공한다. ■ 기어 접촉과 굽힘, 베어링 수명, 샤프트 피로 및 스플라인 등급에 대한 DIN, ISO, AGMA 등과 같은 표준 데이터베이스를 포함하여 종합적인 부하운전 사이클에 대한 내구 해석을 수행한다. ■ 시스템 분석에 기반한 기어 및 스플라인의 매크로 및 마이크로 지오메트리 설계 도구와 기어 메시 접촉 및 이뿌리 응력 해석을 수행한다. ■ Full factorial, Monte Carlo, 민감도 분석, 최적화를 위한 유전 알고리즘, 외부 도구와 연결하기 위한 batch 작업 등을 이용하여 파라메트릭 분석을 수행한다. ■ 제품 개발의 모든 단계에 적합하도록 초기 개념으로부터 상세한 표현에 이르기까지 다양하고 신뢰할 수 있는 구성 요소 모델을 제공한다. (2) 적용 효과 ■ 높은 정확도 : 검증되고 신뢰할 수 있는 전체 시스템 구조 해석, 최신 베어링 강성 모델, 시스템의 모든 기어 메시를 고려한 전체 커플 시스템의 6자유도 기어 접촉 해석 기능을 제공한다. ■ CAE에 기반한 설계 : 유연한 형상 정의, CAD와의 통합, 빠른 시뮬레이션 및 결과 후처리를 통해 개념에서 상세 설계에 이르는 엔지니어링 인사이트를 제공한다. ■ 프로세스 자동화, 최적화 및 통합 : 반복적이고 자동화된 프로세스를 통한 시스템의 다중 속성 최적화를 제공하기 위하여 다른 Romax Nexus 제품 및 파트너 소프트웨어와 원활하게 연동된다. 3. Romax Spectrum (1) 주요 기능 ■ 진동 및 방사 소음에 대한 완전 통합형 파워트레인 모델링, 시뮬레이션, 분석 및 최적화 기능을 제공한다. ■ 동적 기어 가진 특성을 예측하기 위한 검증된 해석 기법과 고유한 유성 기어 시뮬레이션, 모터 가진을 계산하기 위한 전자기장 해석 소프트웨어와의 연결을 제공한다. ■ 시스템 진동 응답의 주파수 영역 시뮬레이션을 수행한다. ■ 내장된 소음 해석 솔버는 설계 목표를 검증하기 위한 자동화된 계산을 통해 비전문가도 복잡한 방사 소음 시뮬레이션을 수행할 수 있게 지원한다. (2) 적용 효과 ■ 민감한 NVH 시뮬레이션에 필요한 정확도와 인사이트를 제공하므로 엔지니어링 인사이트를 확보하고 설계를 개선할 수 있다. ■ 신속하고 검증된 직관적인 시뮬레이션 기법과 분석으로 개발 프로세스 초기부터 NVH를 고려한 CAE 기반 설계를 지원하므로, 엔지니어링 결정을 도우며 NVH 테스트 및 시제품 제작을 최소화할 수 있다. ■ 차량 NVH 시뮬레이션과 다물체 동역학 시뮬레이션, 전동기의 가진을 위한 표준 해석 도구들과 연결한다.   4. Romax Energy (1) 주요 기능 ■ 업계에서 널리 사용되는 방식 뿐 아니라 독자적 드래그 모델을 사용하여 종합적인 변속기 동력 손실 예측 계산을 지원한다. ■ 윤활유가 시스템 효율에 미치는 영향을 정확하게 예측할 수 있으며, 효율 최적화를 위하여 최적의 오일을 선택하고 시스템을 설계할 수 있다. ■ 매개변수(예 : 토크, 속도, 온도, 윤활유)가 시스템 효율에 미치는 영향을 조사하기 위한 파라메트릭 분석을 수행한다. ■ 연료 소모량 및 CO2 배출량을 계산한다. (2) 적용 효과 ■ 동력 손실을 예측할 수 있는 Romax Energy의 종합적인 효율 모델을 사용하여 설계를 안정적으로 개선함으로써 목표 효율을 달성할 수 있다. ■ 다양한 지오메트리 및 운전 매개변수가 전체 시스템 성능에 미치는 영향을 조사하고 이해함으로써, 고효율 설계를 위한 구성 요소를 설계하고 최적화한다. ■ FVA345 방법론을 기반으로 한 고급 윤활 모델 및 독자적 방법을 사용하여, 오일 첨가제와 마찰 저감제가 시스템 효율에 미치는 영향과 손실을 정확하게 예측한다.  5. Romax Spin  (1) 주요 기능  ■ 6만 개 이상의 SKF, Schaeffler, Timken, JTEKT, Nachi 베어링 데이터뿐 아니라 모든 내외부 치수 및 마이크로 지오메트리를 포함한 전체 볼 및 롤러 유형의 완전 맞춤형 베어링을 모델링 할 수 있다.  ■ 링 유연성, 틈새 및 압입, 예압, 내부 틈새, 마운팅 변형, 온도, 기타 조립 및 작동 속성을 정의한다.  ■ 전체 시스템 변형, 하중 분석 및 베어링 오정렬을 고려하여 요소 및 궤도 응력, 리브 접촉, 모서리 응력, 접촉 절단을 정확하게 예측한다.  ■ ISO/TS 16281과 같은 최신 수명 예측 기법을 적용한 고급 롤러 접촉 해석을 수행한다.  ■ 동적 특성을 분석하고 스키딩과 같은 비정상적인 파손 모드를 방지하기 위하여 시간 영역 시뮬레이션을 수행한다.  (2) 적용 효과  ■ 협업 작업 : Romax Spin은 베어링 개발 업체와 해당 고객사에서 널리 사용되는 소프트웨어로 양사간의 협업을 촉진하며 민감한 지적재산권을 보호할 수 있다.  ■ 고급 분석 알고리즘 : 설계 프로세스의 모든 단계에 사용할 수 있을 만큼 빠른 해석이 가능하며 접촉 응력 동작 특성 및 베어링 성능의 세부 사항, 수명에 미치는 영향을 상세히 포착할 수 있을 만큼 정확하다.  ■ 엔지니어링 인사이트 : 특정 응용분야에 적합한 최적의 베어링을 설계하거나 선정하고 베어링 파손현상을 이해하며 적절한 대응책을 파악한다.  6. Romax Evolve  (1) 주요 기능  ■ 광범위한 베어링 카탈로그, FE 구성 요소, 모터의 형상정보 및 가진 값을 가져오기 위한 전자기장 FE 소프트웨어와 CAD 패키지와의 연결 등 간편한 파라메트릭 구조 모델링을 지원한다.  ■ 모터 하우징 및 샤프트 변형에 대한 정적 해석을 신속하게 수행한다.  ■ 내구성 및 동력 손실의 관점에서 베어링을 평가하고 분석한다.  ■ 로터 샤프트 시스템의 로터 다이나믹스 특성을 계산하고 불균형 자기력(UMP)이 정적 및 동적 동작에 미치는 영향을 파악한다.  ■ 모터의 전기-기계적 가진 및 로터의 기계적 불균형 등을 고려한 모터의 NVH 해석을 수행한다.  ■ 내장된 소음해석 솔버를 통해 비전문가도 복잡한 방사 소음 시뮬레이션을 수행할 수 있다.  (2) 적용 효과  ■ 사용하기 쉽고 애플리케이션에 특화된 도구이며, 신뢰할 수 있는 전문 지식과 검증된 전기-기계 시스템 해석 기능을 바탕으로 모터 개발에 필수적인 구조 및 NVH 해석을 제공한다.  ■ 주요 전자기장 해석 소프트웨어에 대한 인터페이스 및 워크플로를 통해 기존 툴체인을 보완하고 개선한다.  ■ 모터 개발을 위한 CAE 기반 설계 프로세스 : 문제가 발생하기 전 예방할 수 있도록 개발 초기 단계부터 구조 및 NVH 성능을 고려한다.     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-31