• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "인식"에 대한 통합 검색 내용이 3,065개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (3)   이번 호에서는 심센터 히즈(Simcenter HEEDS)를 사용하여 수집된 외부 데이터를 시각화하고 분석하는 데 초점을 맞추고, 데이터 시각화의 중요성과 분석 기법의 활용 방안을 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   데이터 분석의 중요성 오늘날 데이터는 우리의 일상과 비즈니스 운영에서 점점 더 중요한 역할을 하고 있다. 수집되고 측정된 데이터의 양이 증가하면서 이를 효과적으로 처리하고 분석하는 방법은 더욱 필요해지고 있다. 이러한 변화 속에서, 지멘스의 심센터 히즈는 강력한 데이터 분석 및 시각화 기능을 제공하여 다양한 산업 분야에서 최적의 해결책을 찾는 데 기여하고 있다. 이번 호에서는 히즈의 기능을 효과적으로 활용하여 어떻게 복잡한 데이터를 이해하고 의미 있는 인사이트를 얻을 수 있는지 살펴볼 것이다.   히즈의 데이터 분석 기능 히즈의 Discover(디스커버) 탭은 사용자가 데이터 사이의 관계 및 최적화 가능성을 탐구할 수 있도록 다양한 도구를 제공한다. Discover 기능은 주요한 데이터 분석 및 이해를 도와주는 여러 방법을 포함하고 있다.    그림 1   다음은 각각의 기능에 대한 설명이다.  Closest : 특정 데이터 포인트에 가장 가까운 변화를 식별한다. 이를 통해 최적화 과정에서의 데이터 민감성을 이해하고 결정에 도움을 줄 수 있다.  Similar : 사용자가 선택한 기준에 따라 유사한 데이터 집합을 찾는 기능이다. 이는 집합의 규칙 또는 모델을 파악하는 데 유용하다. Clusters : 데이터 세트를 서로 연관된 그룹으로 분류한다. 군집화 기법을 통해 데이터의 패턴을 식별하고 알고리즘에 의한 데이터 이해를 개선할 수 있다.  Trade-offs : 다수의 설계 목표 간의 상충 관계를 분석한다. 이를 통해 각각의 설계 대안이 어떻게 특정 목표를 달성하는지에 대해 명확하게 이해할 수 있다.  Patterns : 데이터 내의 반복되는 경향이나 구조를 발견하여 예측 및 모델링에 도움을 주는 기능이다. 패턴 인식은 정보의 신뢰도를 높이는 데 중요하다.  Preview History : 사용자가 수행한 변경이나 실행의 기록을 미리 보면서 데이터 분석의 이력을 관리할 수 있다.  Design Set : 여러 디자인 시나리오를 만들고 비교하여 최적의 설계를 도출하는 데 도움을 준다.  Performance & Plot : 데이터의 성능을 평가하고 시각적으로 플롯하여 분석 결과를 명확하게 표현한다.  Discover 탭의 이러한 기능은 히즈 사용자가 데이터를 깊이 이해하고 시뮬레이션 최적화 과정에서 효과적인 의사 결정을 내리도록 돕는다. 이를 바탕으로 보다 정확하고 신뢰성 있는 설계와 분석 결과를 도출할 수 있다.   데이터 분석을 위한 예제   그림 2    목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(σ) ≤ 200 MPa  최대 끝단 처짐(δ) ≤ 2 mm  설계 변수 Length : 5,000 mm  Load P : 6,500 N  E : 200 MPa  H : 50 mm ≤ H ≤ 100 mm  h1 : 5 mm ≤ h1 ≤ 30 mm  b1 : 50 mm ≤ b1 ≤ 100 mm  b2 : 5 mm ≤ b2 ≤ 50 mm 히즈의 Discovery Method를 사용하여 분석할 데이터는 우리가 지금까지 계속 예제로 사용한 외팔보의 처짐 문제를 기반으로 Adaptive Sampling Study(어댑티브 샘플링 스터디)에서 500개의 데이터를 생성하여 사용할 것이다. 아니면 독자들이 가지고 있는 데이터를 사용해도 괜찮다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
아키텍처 모델과 1D 모델의 전략적 연계
MBSE를 위한 아키텍처-1D 모델 연계의 중요성 및 적용 전략 (1)   제조산업에서 설계 효율 향상과 개발 기간 단축을 위해 모델 기반 개발(MBD)을 적극 도입하고 있지만, 아키텍처 모델과 1D 모델 간의 연계 부족으로 인해 개발 단계에서 모델의 실질적인 활용과 의사결정 지원이 어려운 경우도 많다. 이번 호에서는 MBD의 성과를 높이기 위한 아키텍처 모델과 1D 모델의 체계적인 연계 방안을 제시하고, 이를 통한 설계 효율 및 개발 정확성 향상의 전략적 방향을 살펴본다.   ■ 오재응 한양대학교 명예교수, LG전자 기술고문   최근 제조산업은 제품의 개발 기간 단축과 다품종 생산이라는 트렌드에 대응하기 위해 개발의 효율성을 극대화하고 반복 설계를 최소화하는 방향으로 변화하고 있다. 이러한 흐름 속에서 모델 기반 개발(Model-Based Development : MBD)은 이미 많은 제조업체가 적극 추진하고 있으며, 이를 통해 설계 초기부터 제품의 동작을 예측하고 최적화할 수 있는 기반을 마련하고자 한다. 그러나 모델 기반 개발을 도입하고 실제로 모델을 구축했음에도 불구하고, 현업에서 모델이 제대로 활용되지 못하는 경우가 많다. 이는 구축된 모델이 단지 형식적으로 존재할 뿐, 제품 개발의 맥락 속에서 아키텍처적, 1D적 연결성을 갖추지 못해 실질적인 의사결정과 개발 단계에서 활용되지 못하고 있기 때문이다. 즉, 원래 의도한 목적이나 아키텍처적 요구와 연계되지 않은 모델이기 때문에, 사용자는 해당 모델이 ‘내 일에 어떻게 쓰이는지’를 이해하지 못하고 거리감을 느끼는 것이다. 이러한 문제를 극복하기 위해서는 아키텍처 모델과 1D 모델을 유기적으로 연계하고, 이를 기반으로 아키텍처 요구사항을 구체화할 수 있어야 한다. 아키텍처 모델이란 제품의 구조, 기능, 물리적 메커니즘 등 아키텍처적 개념을 설명하는 모델이며, 1D 모델은 이러한 개념을 수학적으로 해석하고 시뮬레이션 가능한 형태로 정형화한 것이다. 따라서 아키텍처 모델과 1D 모델 간의 연계는 제품 개발의 전체 V자 프로세스에서 핵심 역할을 하며, 상호보완적으로 작용하여 제품 성능 검증 및 요구사항 만족 여부를 평가하는 데 기여한다.   그림 1. 아키텍처 모델 – 1D 모델 연계   <그림 1>은 이러한 개념을 시각적으로 설명한다. 초기의 아키텍처 설계 단계에서 아키텍처 요구와 구조를 정의한 뒤 이를 바탕으로 1D 모델이 생성되고, 시뮬레이션 및 해석을 통해 결과를 도출하며, 이 결과는 다시 상위의 아키텍처 요구사항에 대한 검증으로 이어진다. 이처럼 상향식-하향식 피드백 루프를 통해 아키텍처 모델과 1D 모델이 반복적으로 연계되어야 진정한 의미의 모델 기반 개발이 실현될 수 있다. 특히 설계자와 개발자는 1D 모델은 제품을 해석하고 튜닝하는 강력한 도구라고 인식하지만, ‘왜 이 설계를 했는가’, ‘서브시스템 간 구조는 어떻게 되는가’, ‘요구사항은 어떻게 충족되는가’와 같은 질문에는 답하지 못한다. 그 해답을 주는 것이 바로 아키텍처 모델(MBSE)이며, 이 두 모델을 연결해야만 설계의 정확성, 추적성, 협업성이 동시에 확보된다.   다양한 유형의 아키텍처적 측정 간의 관계   그림 2. ISO/IEC 15288 System Life Cycle Technical Processes & Life Cycle   ISO/IEC 15288(그림 2)은 시스템 수명주기 전반에 걸친 아키텍처 프로세스의 흐름과 체계를 정의한 국제 표준이다. 특히 이 표준은 모델 기반 시스템 엔지니어링(Model-Based Systems Engineering : MBSE) 관점에서 시스템 개발 활동을 구조화한 것으로, 시스템 수명 주기(V 모델)를 기반으로 요구 분석, 설계, 검증 및 확인, 유지보수 등 각 단계의 아키텍처적 활동과 그 상호 관계를 정립한다. 시스템 엔지니어링 활동을 통해 성공적인 시스템을 구축하기 위해서는 다양한 아키텍처적 성과 지표와 측정 지표가 필요하며, 이를 통해 시스템의 목표 달성 여부를 판단할 수 있다. 대표적인 지표로는 다음과 같은 세 가지가 있다. MOE(Measure of Effectiveness, 효과성 측정지표)는 시스템이 실제 운용 환경에서 얼마나 효과적으로 임무를 수행할 수 있는지를 평가하는 지표로, 주로 고객 요구사항이나 운용 목표 달성 여부에 초점을 맞춘다.  MOP(Measure of Performance, 성능 측정지표)는 시스템의 성능 수준을 수치적으로 정량화한 것으로, 설계 명세나 요구된 성능 기준을 얼마나 충족하는지를 평가한다.  TPM(Technical Performance Measure, 아키텍처 성과 측정지표)은 개발 과정 중 아키텍처 적인 목표 도달 여부를 지속적으로 모니터링하고 예측하는 데 사용되는 지표로, 시스템 개발 리스크를 조기에 식별하고 관리하는 데 활용된다. 이러한 측정 지표는 예측 차이나 실측 차이를 바탕으로 비교 분석할 수 있으며, 시스템 개발 단계에서 시스템의 위험 요인에 대한 조기 탐지와 개선 대책의 선제 적용이 가능하도록 지원한다. 이는 곧 사업의 비용 효율성 제고와 일정 준수에 기여하며, 전체 수명주기 동안 긍정적인 영향을 유도할 수 있다.  <그림 2>는 ISO/IEC 15288의 V-모델과 아키텍처적 측정 지표가 어떻게 연계되는지를 보여준다. 요구사항 도출과 검증, 설계와 확인 간의 대응 관계를 통해 아키텍처적 활동이 체계적으로 연결되며, 수명주기 전체에서 MOE, MOP, TPM이 통합적으로 작동하여 아키텍처적 리스크를 관리하고 시스템의 성공적인 구현을 가능하게 한다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[케이스 스터디] 미래 모빌리티를 위한 자율주행 시뮬레이터, 모라이 심
실시간 3D 엔진을 활용해 더욱 현실적인 시뮬레이션 구축   시뮬레이션은 어느새 산업에서 반드시 거쳐야 하는 단계로 자리잡았다. 이번 호에서는 자율주행 시뮬레이터 기술을 개발하는 모라이(MORAI)의 모라이 시뮬레이션 플랫폼(MORAI Simulation Platform)을 소개한다. ■ 자료 제공 : 유니티 코리아     모라이 시뮬레이션 플랫폼 모라이는 주로 ‘디지털 트윈’, ‘개발 도구’, ‘검증 도구’로 불리는 시뮬레이션 툴을 통해 자율주행 기술의 안전성과 신뢰성을 검증한다. 실제 도로에서 발생할 수 있는 다양한 돌발 상황을 가상화한 환경에서 테스트하고 개발함으로써, 실제 도로에서의 복잡하고 위험한 테스트를 대신할 수 있다. 이를 통해 개발자는 안전하고 효율적으로 자율주행 시스템을 검증하고 개선할 수 있다. 모라이에서 개발한 모라이 시뮬레이션 플랫폼은 자율주행, 자율 비행 등 자율 이동체를 테스트하고 개발할 수 있는 종합적인 미래 모빌리티 시뮬레이터이다. 이 솔루션은 자율주행 자동차, UAM(도심 항공 모빌리티), 무인 로봇, 무인 선박 등 다양한 차세대 모빌리티 산업에 적용되며, 자율주행 상용화를 가속화하는 핵심 가상 검증 플랫폼으로 주목받고 있다.   유니티를 도입하게 된 이유 유니티의 강력한 기능과 사용자 친화적인 인터페이스 덕분에, 짧은 시간 내에 모라이가 원하는 가상 환경 및 시뮬레이터를 개발할 수 있었다. 이는 특히 프로젝트의 초기 단계에서 도움이 되었다. 유니티를 통해 현실적이고 정교한 3D 시뮬레이션 환경을 구현함으로써, 자율주행 기술의 테스트와 검증 과정을 더욱 효율적이고 안전하게 수행할 수 있는 기능을 개발할 수 있었다. 이와 함께, 유니티의 커뮤니티와 풍부한 리소스는 문제 해결과 기술 향상에 도움이 되었다. 다양한 예제와 튜토리얼을 통해 개발자들이 빠르게 학습하고, 프로젝트에 필요한 기능을 구현할 수 있었다. 결과적으로, 유니티 도입 이후 모라이는 프로젝트의 개발 속도와 품질을 높였으며, 더 나은 자율주행 시뮬레이션 환경을 제공할 수 있게 되었다.   플랫폼 구성 요소 기본적으로 가상 환경을 렌더링하고 사용자 인터페이스를 제공하는 베이스 플랫폼(Base Platform)이 중심을 이룬다. 이 베이스 플랫폼 위에 다양한 모듈이 결합되어, 정밀하고 현실적인 시뮬레이션 환경을 구현한다. 첫 번째로 정밀 지도 도로 모듈이 있다. 이 모듈은 실제 도로와 동일한 환경을 가상으로 재현하며, 자율주행 차량이 운행할 수 있는 도로 네트워크를 제공한다. 이를 통해 현실적인 도로 상황에서의 테스트와 검증이 가능하다.  두 번째로 차량 동역학(Vehicle Dynamics) 모듈이 있다. 이 모듈은 차량의 물리적 특성과 동역학을 시뮬레이션하여, 다양한 운전 조건에서 차량의 반응을 정확하게 모델링한다. 이를 통해 차량의 주행 성능과 안전성을 평가할 수 있다. 세 번째로 센서 모델(Sensor Model) 모듈이 있다. 이 모듈은 자율주행 차량에 장착된 다양한 센서의 데이터를 시뮬레이션한다. 카메라, 라이다, 레이더 등의 센서가 실제 환경에서 어떻게 작동하는지를 가상으로 재현하여, 센서의 정확도와 신뢰성을 검증할 수 있다. 네 번째로 교통 모델(Traffic Model) 모듈이 있다. 이 모듈은 다양한 교통 상황을 시뮬레이션하여, 자율주행 차량이 실제 도로에서 마주할 수 있는 다양한 교통 상황을 가상으로 재현한다. 이를 통해 교통 혼잡, 돌발 상황, 보행자와의 상호작용 등을 테스트할 수 있다. 마지막으로 인터페이스(Interface) 모듈이 있다. 이 모듈은 외부 시스템과의 연동을 가능하게 하여, 다양한 테스트 시나리오와 데이터를 효율적으로 관리하고 분석할 수 있게 한다. 이를 통해 개발자가 자율주행 시스템을 더 효과적으로 개발하고 검증할 수 있다. 이 모든 구성 요소가 결합되어, 모라이 시뮬레이션 플랫폼은 자율주행 시스템의 개발, 테스트, 검증을 위한 강력한 도구로서의 역할을 수행한다.     가상환경과 현실의 차이를 최소화하기 위한 노력 모라이가 시뮬레이션 플랫폼을 구축하면서 가장 신경 썼던 부분은 현실과의 차이를 최소화하는 것이었다. 이를 위해 고충실도 시뮬레이션 환경을 제공하고, 실제 지도 데이터, 교통 데이터, 센서 데이터를 기반으로 가상과 실제 환경의 갭을 최소화하는 데 집중했다. 이를 위해 자율주행차가 실제 도로에서 맞닥뜨릴 수 있는 거의 모든 상황을 가상 환경에서 묘사할 수 있도록 다양한 요소 기술을 개발하고 있다. 이는 사람이 실제 도로에 나가지 않더라도 최대한 많은 테스트를 할 수 있도록 하기 위한 것이다. 예를 들어, 보행자 충돌 위험성 등 실제 도로에서 검증하기 어려운 시나리오를 수만 번 반복하여 테스트할 수 있다. 이를 통해 자율주행 개발 기업과 연구원들은 더욱 신뢰성과 안전성을 갖춘 검증을 할 수 있다. 또한, 가상과 실제 환경이 직접적으로 연계될 수 있도록 설계했다. 시뮬레이션이 실제 환경의 데이터와 상호작용할 수 있도록 하여, 개발자들이 현실적인 조건에서 자율주행 시스템을 테스트하고 개선할 수 있게 했다. 이와 같은 접근 방식은 실제 도로에서 발생할 수 있는 다양한 상황을 사전에 예측하고 대응하는 데 도움이 된다.   모라이 시뮬레이션 플랫폼에 대한 고객의 니즈 우선 고객사들은 현실적인 그래픽과 정밀한 도로 환경을 원했다. 자율주행 차량은 다양한 도로 상황과 환경에서 운행되므로, 시뮬레이터가 실제 도로와 유사한 환경을 재현해야 한다. 이를 통해 개발자는 도시, 고속도로, 교외 지역 등 다양한 도로 상황에서 자율주행 시스템의 성능을 테스트할 수 있다. 또한 다양한 교통 상황과 돌발 상황을 시뮬레이션할 수 있어야 했다. 교통 혼잡, 보행자와의 상호작용, 돌발적인 장애물 등 실제 도로에서 발생할 수 있는 모든 상황을 가상 환경에서 재현하여, 자율주행 시스템이 어떻게 대응하는지 평가할 수 있어야 한다. 아울러, 고객사들은 다양한 센서 데이터를 필요로 했다. 자율주행 차량은 카메라, 라이다, 레이더 등의 센서를 통해 주변 환경을 인식하기 때문에, 시뮬레이터는 이러한 센서의 데이터를 정확하게 생성하고, 실제 환경에서의 센서 성능을 재현할 수 있어야 한다.   개발 시 어려웠던 점과 해결 방법 자율주행 시뮬레이터를 개발하는 것은 다양한 기술을 통합해야 하기 때문에 많은 어려움이 따른다. 기본적으로 3D 엔진에 대한 이해도가 필요하며, 그 위에 올라가는 센서, 차량 동역학, 통신 등 각각의 모듈에 대한 깊은 이해와 적절한 통합 과정이 필요하다. 이 과정에서 각 개발자의 이해도와 전문 분야가 다르기 때문에, 이를 하나의 시뮬레이터로 통합하는 것이 가장 어려운 부분이었다. 다행히, 유니티는 이러한 다양한 요소들을 모두 통합할 수 있는 개발 환경을 제공했다. 각 모듈 개발자들이 개발할 때마다 바로 결과를 확인할 수 있었고, 다른 모듈에 대한 이해도를 높일 수 있었다. 이를 통해 각 모듈이 전체 시스템에 어떤 영향을 미치는지 파악할 수 있었고, 빠르게 개발을 진행할 수 있었다. 또한, SDV(Software Defined Vehicle : 소프트웨어 정의 차량)와 UAM 등의 복잡한 시뮬레이션 환경을 구축하는 데 있어서도 유니티의 유연한 개발 환경이 도움이 되었다. 유니티의 그래픽 엔진과 실시간 데이터 처리 능력을 활용하여 현실과 유사한 고충실도의 시뮬레이션 환경을 구현할 수 있었고, 이를 통해 다양한 테스트와 검증을 효율적으로 수행할 수 있었다.     모라이의 목표 모라이는 자율주행 시뮬레이션 시장에서 개발뿐만 아니라 검증과 인증까지 가능한 시뮬레이터를 제공하고자 한다. 앞서 설명한 대로 개발자들이 손쉽게 사용할 수 있는 가상 공간과 시뮬레이션 도구를 공급하여, 이 툴을 기반으로 빠르게 기술을 개발하고 정량적으로 시험 평가할 수 있도록 하는 것이 모라이의 목표이다. 또한, 모라이는 고객이 많은 노력을 들이지 않아도 바로 이해하고 현업에 적용할 수 있는 개발 도구를 제공하는 것을 중요하게 생각하고 있다. 이를 통해 고객은 복잡한 설정이나 학습 없이도 자율주행 기술을 개발하고 테스트할 수 있게 된다.  궁극적으로는 자율주행 자동차, UAM, 무인 로봇, 무인 선박 등 모든 무인 이동체의 기술 개발 및 통합 검증에 사용되는 도구가 되는 것이 모라이의 목표이다.  모라이의 공동설립자인 홍준 CTO는 “이 과정에서 유니티는 핵심 개발 도구로서 중요한 역할을 하고 있다. 유니티의 강력한 3D 엔진과 사용자 친화적인 인터페이스 덕분에 우리는 고품질의 시뮬레이션 환경을 빠르게 개발할 수 있다. 또한, 유니티의 지속적인 기술 지원과 업데이트는 우리가 최신 기술을 빠르게 도입하고, 고객의 요구에 맞는 기능을 신속하게 제공하는 데 큰 도움이 된다”고 전했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[케이스 스터디] 노트르담 대성당의 영광스러운 복원을 선보인 언리얼 엔진 5 라이팅
리얼타임 3D 기술을 도입하여 한층 발전된 프로젝션 매핑 구현   화재로 큰 피해를 입은 파리의 노트르담 대성당이 5년에 걸친 복원 끝에 재개관했다. 복원된 성당을 더욱 돋보이게 한 프로젝션 매핑 작업은 언리얼 엔진의 실시간 렌더링 기술을 활용해 역사적 건축물을 사실적이고 정교하게 되살린 혁신적인 사례로 주목받고 있다. ■ 자료 제공 : 에픽게임즈   ▲ 이미지 제공 : 코스모 AV    2019년 4월, 파리의 상징인 노트르담 대성당에서 끔찍한 화재가 발생했다. 건물 처마 밑에서 시작된 불길은 곧 첨탑과 목조 지붕 대부분을 집어삼키며 다음 날 아침까지 밤새 타올랐다. 이후 장대한 복원 프로젝트가 진행되었으며, 5년에 걸쳐 1200명 이상의 인원이 재건에 힘을 쏟았다. 채석장 작업자와 목수, 모르타르 제조자, 석공 등 숙련된 장인이 고용되어 12세기 건축 당시와 똑같은 재료와 기법으로 대성당을 재건했다.  2024년 12월, 잿더미에서 부활한 노트르담 대성당의 재개관식이 TV 시청 황금 시간대에 방송되었다. 프랑스 텔레비지옹(France Télévisions)은 복원된 대성당의 영광스러운 모습을 선보이기 위해 비디오 매핑 회사인 코스모 AV(Cosmo AV)에 의뢰했고, 코스모 AV는 프로젝션 매핑 전문가 앙투안 부르구앵(Antoine Bourgouin)에게 재개관식을 위한 멋진 건축 라이팅을 제작해 달라고 요청했다.   ▲ 이미지 제공 : 코스모 AV   언리얼 엔진을 사용한 프로젝션 매핑 지난 2010년, 앙투안 부르구앵은 거대한 트롱프뢰유를 보여줄 캔버스로 건물을 사용하는 데 처음 관심을 갖게 되었다. 트롱프뢰유는 ‘눈속임’이라는 뜻의 프랑스어로, 2차원 표면에 3차원 공간과 물체를 표현하는 극사실적인 착시 기법을 나타내는 미술 용어다. 이는 주로 회화에서 관람자가 그림 속의 사물이나 공간을 실제처럼 인식하도록 속이는 기법을 일컫는다. 초기에는 이러한 종류의 작업을 구현할 수 있는 툴이 시중에 없어, 건물의 윤곽과 규모에 맞는 비주얼을 제작하려면 직접 컴퓨터 프로그램을 개발해야 했다. 하지만 부르구앵은 비디오 프로젝터 컨트롤러와 같은 역할을 하는 소프트웨어인 모듈로 플레이어(Modulo Player)를 사용하여 벽이나 건물과 같은 표면에 영상을 투영하여 재생하고, 각 표면에 맞게 영상을 정밀하게 변형시키고 조정할 수 있도록 했다. 특히, 부르구앵은 이 과정에 리얼타임 기술을 도입하여 프로젝션 매핑 기술을 더욱 발전시키고 있다. 전통적인 비디오 매핑은 사전 녹화된 영상을 투영하는 방식이었지만, 부르구앵은 언리얼 엔진을 사용해 개발한 비주얼을 실시간으로 건물에 투영한다. 이러한 혁신적인 아이디어로 그는 플레이어의 스마트폰을 게임 패드처럼 사용하는 비디오 게임을 제작하겠다는 아이디어로 메가그랜트를 지원하게 되었다. 이러한 아이디어를 실현하고자 부르구앵은 코스모 AV의 CEO이자 인텐스시티(IntensCity)의 공동 설립자인 피에르 이브 툴로(Pierre-Yves Toulot)를 만났다.    ▲ 이미지 제공 : 코스모 AV   3D 모델에 라이팅 매핑 코스모 AV는 프랑스 국영 텔레비전 방송사인 프랑스 텔레비지옹으로부터 노트르담 대성당 재개관을 위한 프로젝션 매핑 비주얼 제작을 의뢰받았다. 그 요청 중 하나는 대성당의 외관을 돋보이게 할 아름다운 라이팅 연출을 제작하는 것이었다. 툴로와 부르구앵은 이전에도 비슷한 프로젝트에서 협업한 적이 있었는데, 특별하면서도  우아함이 필요한 작업에서는 뛰어난 전통 건축 라이팅 디자이너인 장 프랑수아 투샤(Jean-François Touchard)의 기술을 활용했다. 툴로가 노트르담 프로젝트에 부르구앵과 투샤를 합류시킨 것은 당연한 결정이었다. 먼저 부르구앵은 노트르담 대성당의 3D 스캔 모델을 언리얼 엔진으로 가져왔고, 이 과정은 FBX 파일을 임포트하는 것만큼이나 간단했다. 부르구앵은 “언리얼 엔진과 나나이트(Ninite) 기술 덕분에 이제는 임포트한 메시의 폴리곤 밀도에 더 이상 신경 쓰지 않아도 된다. 노트르담 모델은 400만 개의 트라이앵글로 구성된 메시 구조였지만, 현재 언리얼 엔진에서는 이 정도의 폴리곤 수를 아주 쉽게 처리할 수 있다”고 말했다. 나나이트는 언리얼 엔진 5의 가상화된 지오메트리 시스템으로, 성능에 미치는 영향을 최소화하면서 방대한 양의 폴리곤으로 구성된 디테일한 3D 모델을 제작할 수 있다. 이 시스템은 활용해 대성당의 매우 정밀한 메시를 렌더링하는 데 쓰였으며, 가장 작은 디테일까지 정확하게 구현할 수 있었다. 팀은 대성당의 모든 디테일을 강조하기 위해 3D 모델에 옴니 라이트, 스포트 라이트, 렉트 라이트 등 500개의 라이트를 배치했다. 이 라이트는 강도와 온도, 색상이 조화를 이루도록 하는 것이 중요했다. 부르구앵은 “조작해야 하는 라이트의 수량이 이 프로젝트에서 가장 큰 과제였다. 하지만 즉석에서 바로 만든 블루프린트를 사용하고 라이트 액터에 태그를 지정하여 다른 그룹을 나누는 방식으로 매우 원활하게 작업할 수 있었다”고 설명했다. 툴로는 아트 디렉터 역할을 했고, 장 프랑수아는 대성당의 디테일한 부분에 대한 라이팅을 실제로 구현하는 데 전문성을 발휘했다. 팀은 조각상마다 두세 개의 스포트 라이트를 배치하고 그림자를 세심하게 조작하여 조각상의 형태와 입체감을 강조했다. 또한, IES(Illuminating Engineering Society)의 라이트 프로파일을 사용해 3D 라이팅이 실제 라이트처럼 각 아치와 발코니, 기타 건축 요소의 디테일과 정확하게 일치하도록 했으며, 깊이를 강조하기 위해 라이트 온도를 조정했다. 라이팅 구성을 이미지로 렌더링한 다음 모듈로 플레이어 시스템과 연결된 30대의 고광도 파나소닉(Panasonic) 비디오 프로젝터를 사용하여 노트르담 대성당에 투영했다.   ▲ 이미지 제공 : 코스모 AV   메가라이트와 루멘 활용 노트르담 프로젝트에서 팀은 사전 녹화된 영상을 대성당에 투영할 예정이었지만, 리얼타임 기술을 사용하면서 라이팅 디자인에서 많은 이점을 얻을 수 있었다. 라이팅이 실제 건물에서 어떻게 보일지 테스트하기 위해 팀은 현장에서 언리얼 엔진으로 3D 모델을 바로 업데이트하여, 대성당에서 즉시 결과를 확인하고 필요에 따라 조정할 수 있었다. 부르구앵은 언리얼 엔진으로 작업을 완성할 수 있었던 주요 이유로 나나이트와 결합된 강력한 라이팅 시스템의 성능을 꼽았다. 부르구앵은 “라이트 수가 많은 하이 폴리곤 메시에서 직관적인 편집 방식(WYSIWYG)으로 원활하게 작업할 수 있었다. 이로써 기존의 3D 모델링 소프트웨어에서처럼 렌더링 결과를 상상할 필요가 없었다”고 말했다. 또한 최근 언리얼 엔진 5.5에 출시된 강력한 신규 기능인 메가라이트에 대해서도 높이 평가했다. 메가라이트는 아티스트가 신(scene)에 다이내믹 섀도를 드리우는 수백 개의 라이트를 추가할 수 있게 해주는 실험적인 도구다. 언리얼 엔진의 다이내믹 글로벌 일루미네이션 및 리플렉션 기능인 루멘과 함께 사용하면 매우 사실적인 라이팅을 구현할 수 있다. 부르구앵은 “메가라이트는 상당히 유용한 기능 중 하나였다. 실시간으로 그림자를 유지하면서 수백 개의 라이트로 작업할 수 있었다. 루멘을 보완하는 환상적인 기능”이라고 말했다.   되찾은 노트르담의 영광 툴로, 장 프랑수아와 함께 한 부르구앵의 라이팅 작업은 파리에서 가장 유명한 기념물 중 하나인 대성당의 재개관식에서 중요한 역할을 했다. 언리얼 엔진 덕분에 팀은 복원가들의 놀라운 작업을 빛내고 노트르담 대성당의 영광스러운 모습을 선보일 수 있었다. 부르구앵은 “파리의 노트르담 대성당은 프로젝션 매핑 작업을 하는 사람들이라면 누구나 꿈꾸는 건물 중 하나다. 이 작업에 기여할 수 있32 · 어서 정말 큰 영광이었다”라고 말했다.      ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[핫윈도] 디지털 트윈 기대 속에 실질적 도입과 확산 위한 노력 필요
캐드앤그래픽스 디지털 트윈 설문조사 분석   디지털 트윈 기술에 대한 관심이 국내 제조 및 엔지니어링 업계를 중심으로 높아지고 있지만, 실제 산업 현장에서는 여전히 다양한 현실적 제약에 직면해 있는 것으로 나타났다. 캐드앤그래픽스는 국내 디지털 트윈 현황을 집대성한 ‘디지털 트윈 가이드’를 발간하고, 국내 제조 및 엔지니어링 업계 관계자를 대상으로 3월 13일부터 4월 14일까지 ‘국내 디지털 트윈 현황 설문조사’를 실시했다. 총 1212명이 참여한 이번 설문조사에서는 디지털 트윈의 이해도, 적용 분야, 도입 단계, 구축 시 어려움 등 다양한 관점에서 기술의 현주소를 조망했다. 특히 디지털 트윈을 실제로 사용 중인 기업과 종사자를 대상으로 진행한 심층 조사에서는 기술 도입 과정에서의 구체적인 어려움과 향후 투자 계획 등 실질적인 인사이트가 도출됐다. ■ 최경화 국장   설문조사 개요 및 참가자 현황 이번 설문조사는 국내 제조 엔지니어링 업계 관계자 1212명을 대상으로 진행되었다. 설문 참가자들의 배경은 다양한 산업 분야에 걸쳐 있었으며, 이는 디지털 트윈 기술이 단일 산업에 국한되지 않고 여러 분야에서 관심을 받고 있음을 시사한다. 참가자들의 직무 또한 연구개발, 설계, 생산, 관리 등 다양한 영역에 분포하고 있어, 디지털 트윈 기술이 기업 내 여러 부서와 직무에 걸쳐 중요성을 인정받고 있음을 알 수 있었다. 디지털 트윈 관련 업무 분야에서도 다양한 응답이 나타나, 이 기술의 응용 범위가 넓어지고 있음을 확인할 수 있다.   주력 산업 분야 설문 응답자들의 주력 산업 분야는 ‘건축/건설/토목’(22.7%)과 ‘전기전자/하이테크/반도체’(17.9%), ‘시각화/그래픽/디자인’(14.2%) 등이 높은 비중을 차지했으며, 자동차, 플랜트 등 다양한 산업 분야가 분포되어 있음을 알 수 있다.   그림 1. 설문 응답자 현황 - 주력 산업 분야   직무 분야 설문 응답자들의 직무 분포는 ‘엔지니어’(41.2%)가 압도적으로 높은 비율을 보였고, ‘경영진/임원’(15.9%), ‘SW 개발’(14.3%) 순으로 나타나, 기술 및 관리 직무 종사자들의 높은 관심을 반영했다.   그림 2. 설문 응답자 현황 – 직무   디지털 트윈 관련 업무 분야 설문 응답자들의 디지털 트윈 관련 업무 분야에 대해서는 CAD/3D 모델링이 가장 높게 나타났고, AI/머신러닝, CAE/시뮬레이션 순으로 나타났다.    그림 3. 설문 참가자 현황 - 디지털 트윈 관련 업무 분야   국내 디지털 트윈 도입 현황 - 뜨거운 기대감과 더딘 현실 디지털 트윈 이해 수준 기술에 대한 이해 수준은 아직 부족한 것으로 나타났다. 디지털 트윈 이해 수준에 대해서는 ‘대체로 알고 있다’(36.8%)와 ‘조금 알고 있다’(37.2%)가 비슷한 비율을 보였으며, ‘매우 잘 알고 있다’ (10.4%)는 소수에 불과했다. ‘잘 모른다’(15.6%)는 응답도 상당수를 차지했다. 이는 기술에 대한 인지도는 높지만, 깊이 있는 이해와 활용 능력은 아직 부족하다는 점을 시사한다.   그림 4. 디지털 트윈에 대한 이해 수준   디지털 트윈 발전 전망 반면, 디지털 트윈의 미래에 대한 업계의 기대는 매우 컸다. 향후 디지털 트윈 발전 전망에 대한 응답에 따르면 ‘매우 중요하게 성장할 것’(66%)과 ‘다소 성장할 것’(30.5%)이라는 답변이 전체의 압도적인 대다수를 차지했다. 또한 전체 응답자의 96.5%가 기술의 중요성과 잠재력에 대해 폭넓은 공감대를 형성하고 있음을 확인시켜 주었다.   그림 5. 디지털 트윈 향후 발전 전망   디지털 트윈 사용 기업 및 도입 현황 디지털 트윈을 실제로 사용하고 있는 기업 및 유저를 대상으로 한 심층 조사에는 총 385명이 참여했다. 이들 기업의 규모는 매출액과 직원 수를 기준으로 다양하게 분포하고 있어, 디지털 트윈 기술이 대기업뿐 아니라 중소기업에서도 점차 도입되고 있음을 알 수 있다.   디지털 트윈 사용 기업 규모 디지털 트윈 사용 기업의 매출액은 5000억원 이상이 48.8%를 차지해 가장 높은 분포를 보였으며, 1000억원 이상~500억원 미만이 13.2%로 큰 기업들이 주로 관심을 가지고 있었음을 알 수 있었다. 직원 수도 5000명 이상이 32.2%로 가장 높은 수치를 차지했으며, 1000명~5000명 미만이 17.9%, 100명~500명 미만이 11.7% 순으로 나타났다.    그림 6. 디지털 트윈 사용 기업 매출액   디지털 트윈 사용 기업 적용 분야 디지털 트윈 적용 분야는 ‘제품 설계 및 시뮬레이션’(66.8%), ‘생산/제조 운영’(43.9%), 설비 모니터링 및 유지보수(39.2%) 순으로, 제품 개발과 생산 영역에 활용이 집중되는 경향을 보였다. 제조 분야에 비해서는 사용이 적지만 도시, 에너지, 교통, 물류, 의료 등 다양한 영역에서 활용되고 있음을 확인할 수 있다. 특히 제조업 분야에서는 생산 공정 최적화, 품질 관리, 설비 예지 보전 등의 목적으로 활용되고 있을 것으로 추정된다.   그림 7. 디지털 트윈 적용 분야   디지털 트윈 적용 목적 디지털 트윈을 적용하는 주요 목적은 ‘설계 최적화’(61.0%), ‘생산성 향상’(54.5%), ‘운영 효율화’(46.2%) 등 효율성 증대 관련 항목들이 우위를 점했다.   그림 8. 디지털 트윈 적용 목적   디지털 트윈 도입 단계 아직까지 디지털 트윈에 대한 관심은 높지만 실제 사용 보다는 검토 중인 기업이 많은 것으로 나타났다. 디지털 트윈 사용 기업의 도입 단계 관련 답변을 보면, ‘도입 검토 중’(43.6%)이 가장 큰 비중을 차지했다. 이어 ‘일부 시스템 도입 완료’(18.4%), ‘PoC(파일럿) 진행 중’(12.2%), ‘전사 확산 및 활용 중’은 4.2% 순으로, 본격적인 활용 단계에 진입한 기업은 소수임을 알 수 있었다. ‘도입 계획 없음’(17.9%)이라는 응답도 적지 않았다.    그림 9. 디지털 트윈 도입 단계   다양한 상용 디지털 트윈 툴 사용… 자체 개발·검토도 다수 디지털 트윈 기술의 확산과 함께, 국내 기업들이 활용 중인 디지털 트윈 소프트웨어 및 플랫폼은 매우 다양하며, 기업별로 도입 단계나 활용 수준에서도 큰 차이를 보이는 것으로 나타났다. ‘현재 사용 중인 디지털 트윈 툴’에 대한 주관식 응답 결과를 분석해 보면, 국내 산업계는 BIM 기반 플랫폼, CAE 시뮬레이션 도구, PLM 및 협업 플랫폼, 그리고 게임 엔진 기반 시각화 도구를 중심으로 디지털 트윈 기술을 도입하고 있는 것으로 나타났다. 아래 내용은 답변 내용을 중심으로 정리한 것이다.   BIM 및 설계 중심 소프트웨어의 강세 디지털 트윈 구축의 초기 단계에서 가장 두드러지는 분야는 설계 기반 모델링(BIM) 도구다. 응답자 중 상당수가 오토데스크의 레빗(Revit), 오토캐드, 시빌 3D(Civil 3D), 나비스웍스(Navisworks) 등을 사용하고 있다고 응답했다. 벤틀리 시스템즈의 아이트윈(iTwin), 트림블의 테클라(Tekla) 및 트림블 커넥트(Trimble Connect), 아비바의 아비바 E3D(AVEVA E3D) 등도 건설·플랜트 산업에서 활용하고 있다고 답변했다.   정밀 해석 기반의 시뮬레이션 툴 확산 앤시스(Ansys), 아바쿠스(Abaqus), 하이퍼웍스(HyperWorks), LS-DYNA, 시뮬링크(Simulink), 아담스(Adams), GT-스위트(GT-Suite), 플렉스심(FlexSim) 등 해석 전문 툴의 사용도 두드러졌다. 특히 제품 설계나 공정 시뮬레이션에서 정밀한 모델링이 필요한 제조업, 자동차, 중공업 분야에서는 다물리 해석 툴 기반의 디지털 트윈 구현이 주를 이뤘다.   PLM 기반 통합 디지털 플랫폼도 주목 설계-생산-운영 전 주기를 통합 관리하기 위한 PLM 기반 플랫폼도 활발히 사용되고 있다. 다쏘시스템즈의 3D익스피리언스(3DEXPERIENCE), 카티아(CATIA), 에노비아(ENOVIA), 지멘스의 NX, 팀센터(Teamcenter), 플랜트 시뮬레이션(Plant Simulation), PTC의 크레오(Creo), 윈칠(Windchill), 씽웍스(ThingWorx) 외에도 전문 툴인 비주얼컴포넌트 등은 스마트 공정 및 운영 관리까지 연계된 디지털 트윈 구현에 활용되고 있는 것으로 보인다.   게임엔진 기반 실시간 시각화 기술 부상 유니티(Unity), 언리얼 엔진(Unreal Engine), 트윈모션(Twinmotion), 엔비디아 옴니버스(Omniverse) 등 게임엔진 기반 시각화 도구는 실시간 협업과 현장 시뮬레이션에서 각광받고 있다. 특히 언리얼엔진, 유니티와 옴니버스 등은 다른 플랫폼과의 연동성을 강화해 디자인 협업 및 공정 검증에 널리 활용되고 있다.   자체 설루션 및 커스터마이징 비율도 높아 이밖에도 국산 설루션인 이에이트, 소프트힐스, 버넥트, 한국디지털트윈연구소 설루션을 이용하고 있다는 응답도 있었다. 흥미로운 점은 응답자의 상당수가 ‘인하우스 개발’ 또는 ‘자체 플랫폼’, ‘프로젝트마다 요구사항 수렴 방식’ 등의 형태로 독자적인 디지털 트윈 시스템을 운영하고 있다는 것이다. 이는 특정 상용 설루션만으로는 각기 다른 업무 흐름이나 도메인 지식을 완벽히 반영하기 어렵기 때문으로 분석된다. 또한 ‘아직 도입 예정’ 또는 ‘검토 단계’라는 응답도 적지 않아, 디지털 트윈 도입의 확산은 진행 중인 흐름임을 알 수 있다.   넘어야 할 장벽 : 현장의 목소리로 본 핵심 과제 디지털 트윈의 확산이 더딘 배경에는 공통적으로 지적된 여러 장애물이 존재했다. 특히 높은 비용과 불확실한 ROI는 가장 큰 걸림돌로 지목됐다.   디지털 트윈 시스템 구축의 어려움 디지털 트윈 사용 기업이 꼽은 구축 시 가장 큰 어려움으로 ‘초기 투자 비용’(24.4%)과 ‘전문 인력 부족’(20.5%)이 가장 높은 비율을 차지했다. 그 뒤를 이어 ‘ROI 분석의 어려움’(16.6%), ‘경영진의 이해 부족’(15.1%) 순으로 나타났다. 주관식 답변에서는 고비용의 소프트웨어, 외산 설루션 및 3D 프로그램의 높은 라이선스 비용, 디지털 전환(DX) 도입 및 유지보수 비용 과다 등 경제적 부담에 대한 토로가 많았다. 특히 기대효과가 명확해야 한다, 비용 대비 효율이 확보되지 않으면 불가능하다, 실질적인 경영 효과로 어떻게 연결되는지 의문이라며, 투자를 정당화할 명확한 성과 측정과 검증된 성공 사례 부족을 지적했다. 전문 인력 부족 문제는 교육 시스템의 부재와 연계돼 있으며, 현장에서는 관련 교육 기회가 부족하다는 지적이 많았다. 경영진의 이해 부족도 중요한 문제로 나타났다.   그림 10. 디지털 트윈 구축 시 어려움   디지털 트윈 시스템 구축 관련 투자 계획 이러한 어려움에도 불구하고, 향후 디지털 트윈에 대한 투자 의향은 비교적 긍정적이었다. 사용 기업의 향후 투자 계획을 보여주는 그래프를 보면, ‘2년 이내’(31.4%), ‘1년 이내’(19.0%), ‘6개월 이내’(11.4%) 등 2년 내 투자 계획이 있다는 응답이 전체의 61.8%를 차지했다. 반면에 ‘도입 계획 없음’(26.2%)도 상당수 있었다.   그림 11. 향후 투자 계획   미래 투자 방향과 나아갈 길 전체 응답자가 디지털 트윈 확산을 위해 가장 필요하다고 꼽은 요소를 가중치 순으로 나타낸 그래프를 보면, ‘경영진의 의지와 디지털 트윈에 대한 이해’가 다른 항목을 큰 차이로 앞서며 압도적인 1위를 차지하고 있음을 확인할 수 있다. 또한 실제 사용 기업이 겪는 어려움에서도 ‘경영진의 이해 부족’이 중요한 요인으로 드러났다. 주관식 답변에서는 ROI 증명의 어려움과 맞물려 경영진 설득의 어려움을 토로하거나, 심지어 “실제 시험을 안 해도 된다고 생각하는 경영진이 많다”는 언급까지 나와, 리더십의 인식 개선이 시급함을 알 수 있었다. 표준화의 부재 역시 반복적으로 지적되었다. 응답자들은 데이터 표준화, 3D CAD 포맷 변환, 시스템 간 호환성 부족 등을 구체적인 문제로 언급했다.   그림 12. 디지털 트윈 시스템 구축과 확대를 위해 가장 필요한 것   구체적 정보와 성공 사례의 부족 또한 큰 장벽이다. 응답자들은 산업별 사례, 성공 및 실패 경험 등을 통한 실질적 정보 공유를 절실히 요구하고 있다. 이 밖에도 데이터 확보의 어려움, 외산 소프트웨어 의존도, 기술 복잡성, 국산 소프트웨어 개발의 필요성 등이 복합적으로 언급되며, 생태계 전반에 대한 개선이 필요함을 시사했다. 따라서 성공적인 디지털 트윈 도입과 확산을 위해서는 산적한 과제를 해결하기 위한 다각적인 노력이 필요하다. 현장의 목소리와 설문 데이터는 다음과 같은 방향을 제시하고 있다. 정부의 적극적인 역할 : 중소기업 지원 확대 , R&D 지원 및 국산 소프트웨어 육성, 산업 표준화 주도, 선도적인 인프라 투자 및 정책 지원 등 정부의 체계적이고 일관성 있는 지원 정책이 요구된다. 실질적 가치 증명 및 정보 공유 : 명확한 ROI 산정 모델 개발, 산업별 성공/실패 사례 발굴 및 투명한 공유, 기술 효용성에 대한 적극적인 홍보와 교육 강화가 필요하다. 표준화 및 기술 개발 : 데이터 형식 통일, 호환성 확보 등 산업 표준을 조속히 마련하고, 사용자 편의성을 높인 기술 및 플랫폼 개발 노력이 필요하다. 인력 양성 및 생태계 조성 : 실무 중심의 교육 프로그램 개발발 및 전문가 양성 시스템 구축, 산학연관 협력 시스템 강화가 필요하다.   맺음말 : 잠재력 현실화 위한 협력과 실질적 노력 시급 이번 설문조사는 디지털 트윈에 대한 국내 산업계의 높은 관심과 함께, 도입을 가로막는 다양한 현실적 장애 요인을 통계와 목소리로 생생하게 보여준 것이라고 할 수 있다. 이 같은 결과는 국내 산업계에서 디지털 트윈 도입이 활발히 이루어지고 있으나, 여전히 도입 도구의 표준화, 조직 내 전사적 활용, 실제 업무 흐름과의 통합 등에서 과제가 많다는 점을 보여준다. 향후에는 상용 툴과 자체 개발 플랫폼 간의 융합 전략, 그리고 데이터 연동성과 유지관리 측면에서의 체계적인 접근이 더욱 중요해질 것으로 보인다. 또한 디지털 트윈이 제조업 혁신의 핵심 동력으로 자리매김하기 위해서는 산업계, 정부, 학계가 함께 협력해 실질적인 해결책을 모색하고, 지속 가능한 생태계를 조성하려는 노력이 절실하다고 할 것이다.     ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[온에어] 공기업 BIM 적용 지침에 따른 설계·시공 프로세스 변화와 대응 전략
캐드앤그래픽스 CNG TV 지식방송 지상 중계   지난 3월 31일 CNG TV는 ‘공기업 BIM 적용 지침에 따른 설계 및 시공 프로세스 변화와 대응 전략’을 주제로 웨비나를 개최했다. 이번 웨비나는 공기업의 건축 BIM(건설 정보 모델링) 적용 지침에 따른 설계 및 시공 프로세스의 변화와 이에 대한 실질적인 대응 전략을 다뤘으며, 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   ▲ 디지털 지식연구소 조형식 대표, 성균관대학교 진상윤 교수   공기업 건축 BIM 적용 지침의 변화와 실무 적용 사례 LH와 GH의 건축 BIM 적용 지침 개발을 총괄한 성균관대학교 진상윤 교수는 이 지침이 설계 및 시공 프로세스에 어떤 변화를 가져오는지 설명했다. 이 지침은 공기업이 각 기관의 특성에 맞춰 BIM 적용 지침을 제정하도록 유도하고 있으며, LH, GH 및 기타 공사가 이를 기반으로 자체 BIM 지침을 수립한 것이 특징이다. 진 교수는 이 지침을 통해 설계 및 시공의 초기 단계부터 BIM을 적극 활용하고, 기존의 ‘전환 설계’ 방식이 아닌 실질적인 BIM 설계 프로세스를 유도하고자 했다고 설명했다. 또한, 발주자가 BIM을 통해 실질적인 관리가 가능한 체계를 구축하고, 도면 대신 BIM 기반의 성과물을 생산하는 프로세스를 개발 중이라고 밝혔다. 그는 BIM을 활용한 설계가 국제 경쟁력 확보와 산업 선진화를 목표로 하고 있다면서, 공동주택 설계의 BIM 프로세스를 소개하는 비전 영상도 함께 공개했다. 주요 내용으로는 ▲기존 BIM 적용의 한계 극복 ▲실질적인 BIM 설계 프로세스 유도 ▲발주자의 지속 가능한 BIM 운영 체계 구축 ▲시공 BIM 프로세스 개선 ▲유지관리 단계까지 고려한 준공 BIM 확보 등이 제시됐다. 진 교수는 “BIM은 단순한 기술 도입이 아니라 언어 자체가 바뀌는 개념으로 접근해야 하며, ▲인식 개선 ▲프로세스 개선 ▲대가 체계 개선 ▲표현 언어 변화 ▲생태계 전환이라는 다섯 가지 관점에서 변화가 필요하다”고 강조했다.   ▲ LH와 GH의 BIM 적용 현황   단위 세대 모델링과 BIM 데이터 구축 단위 세대 모델링은 중심선을 그리드로 설정하고 벽 및 바닥을 모델링한 뒤 창호나 문을 배치하는 방식으로 진행된다. 모델이 변경되면 면적 산정도 자동으로 반영되며, 사용자는 전용 면적, 공용 면적, 발코니 면적 등 세부 면적 정보를 구분하여 입력하고 효율적으로 관리할 수 있다. 공동주택의 경우 반복되는 객체가 많아 프로그램 성능 저하가 우려되지만, 효율적인 파일 관리 방안을 마련하면 안정적인 운영이 가능하다고 밝혔다. 또한 구조 정합성 검토는 구조 부재 정보를 기반으로 진행되며, 실내 재료 마감표를 구성하여 높은 정합성을 가진 도면을 추출할 수 있는 점도 장점으로 꼽혔다.   현상 설계 공모 단계에서의 BIM 적용 변화 과거에는 현상 설계 공모 단계에서 BIM 활용에 대한 반대 의견이 있었으나, 최근에는 BIM 역량을 갖춘 업체의 참여를 유도하는 방향으로 변화하고 있다. 실제로 고양 창릉 지구의 기본 설계 공모에서 현상 설계 단계부터 BIM 적용이 요구되기 시작했으며, 이는 건축 산업의 디지털 전환을 가속화하려는 의도로 풀이된다. 진 교수는 “현상 설계 공모에서 BIM을 활용한 3D 모델과 정보를 구축하고 이를 바탕으로 설계 설명서를 제작하는 것이 요구되고 있으며, 이를 위한 정확한 설계 검증 시스템도 마련되고 있다”고 말했다. 또한 “BIM은 설계자의 부담을 줄이고, 설계 데이터와 요구 사항을 지속적으로 확인하며 작업할 수 있게 해주는 도구로 기능한다”고 설명했다. 아울러 “BIM을 사용하지 않을 경우 감점 조치가 시행되고 있으며, 설계뿐 아니라 관리까지 BIM을 활용하도록 요구되면서 BIM 거버넌스의 중요성이 더욱 강조되고 있다”고 덧붙였다. 한편, 공기업 BIM 적용 지침에서는 원본 데이터에서 정의된 뷰 명칭을 도면 각 페이지에 각주로 명시해야 한다. 이는 BIM을 통해 구축한 실체에 해당 명칭을 추가하는 과정으로, 중대한 위반 사항과 사전 검토 항목은 BIM 시스템을 통해 검토해야 하며, 불법 건축 등 법규 위반 여부도 BIM 데이터를 통해 확인이 가능하다. 과거에는 현상 설계에서 별도로 가상 모델을 제출해야 했지만, 현재는 BIM을 통해 이를 손쉽게 구현할 수 있다. 아직 BIM을 적용한 현상 설계 사례는 많지 않지만, 지침에 따라 가상 모델 제출을 선택적으로 요구할 수 있는 유연성도 확보된 상황이다.   ▲ LH가 추구하는 설계 BIM 프로세스   지속 가능한 BIM 거버넌스 체제 필요성 지속 가능한 BIM 거버넌스 체계는 조직 내 경영진 변화와 무관하게 유지되어야 하며, 실무자는 최소 4년 이상 담당함으로써 충분한 이해와 경험을 축적해야 한다. BIM 적용 과정에서 발생할 수 있는 시행착오는 실무자의 심리적 부담을 고려해 제도적으로 포용할 필요가 있다. 이를 위해 선순환적인 BIM 수행 체계를 마련하고, 이를 기반으로 한 교육 및 훈련 프로그램을 체계적으로 운영해야 성공적인  BIM 도입이 가능하다. 또한 설계 및 시공자의 편의를 고려한 지침은 최소한의 요구사항을 명시해 사업 특성에 맞는 유연한 적용을 가능하게 하며, 필요 시 감독관과 협의를 거쳐 조정할 수 있다. BIM 도면은 기존의 2D CAD 도면이 가진 한계를 극복하고, 3D의 특성을 살려 설계 이해도를 높이는 방향으로 발전해야 한다. BIM은 다양한 디지털 기술의 기반이 되는 핵심 요소이며, 기업의 지속 가능한 발전을 위한 필수 기술로 자리 잡고 있다. 국내에서 BIM 사용 시 BCF 포맷을 지원하는 대표 소프트웨어로는 나비스웍스, 레빗, 아키캐드 등이 있으며, 국산 소프트웨어의 발전도 요구되고 있다.   BIM의 중요성과 국내 소프트웨어 현황 진 교수는 “한국 건설 산업에서 BIM의 활성화를 위해 실무자 중심의 프로세스를 구축해야 하며, 현재는 외주 업체에 대한 의존도가 높아 시장 성장이 제한적”이라며, “BIM 적용 시 전문가 간 분업을 통해 효율적인 업무 분담이 이루어져야 하고, 설계자와 엔지니어 간 명확한 역할 구분이 필요하다”고 강조했다. 향후 BIM의 발전 방향으로는 AI 기술과의 융합이 이루어져 보다 자동화된 건축 관리 시대가 도래할 가능성이 있으며, BIM은 디지털 기술 전환의 기반으로서 핵심 역할을 할 것으로 전망된다. 진 교수는 “국내 BIM 소프트웨어가 활성화되지 못하는 이유는 시장 규모가 작기 때문이며, 실무자가 아닌 외주 업체가 주로 사용하는 구조로 인해 사용률이 낮다”고 지적했다. 그리고 “건설업계 종사자가 약 100만 명에 달하지만, 이 중 실질적으로 BIM을 사용하는 비율은 낮아 시장 확대가 필요하다”고 덧붙였다. 앞으로 외주 업체는 BIM 컨설팅 서비스를 통해 부가가치를 창출하고, 이를 통해 산업 전반의 발전에 기여할 수 있는 기회를 마련해야 한다. 실무자 중심의 BIM 프로세스가 정착된다면, 국산 소프트웨어의 판매 증가와 함께 시장의 선순환 구조 형성도 기대할 수 있다.   ▲ 기존 대비 BIM 설계 예시       ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
마이크로소프트, ‘2025 업무동향지표’ 통해 AI-인간 협업 시대 예고
마이크로소프트가 연례 보고서인 ‘2025 Work Trend Index(업무동향지표)’를 발표하면서, AI가 재편하는 업무 환경과 프론티어 기업의 등장을 조명하는 한편 AI 시대의 변화에 대응할 로드맵을 제시했다. AI는 단순한 기술을 넘어 사고하고 추론하며 복잡한 문제를 해결하는 동반자로 진화하고 있다. 이에 마이크로소프트는 ‘2025 업무동향지표’를 통해 AI가 조직 경영과 비즈니스에 미치는 영향에 대한 주요 트렌드를 공개했다. 이번 보고서는 한국을 포함한 31개국 3만 1000 명의 근로자 대상 설문조사 결과와 함께, 마이크로소프트 365에서 수집된 수 조 건의 생산성 신호, 링크드인의 노동·채용 트렌드, 그리고 AI 스타트업, 학계 전문가, 경제학자 등과의 협업을 통해 도출됐다.     이번 보고서는 ‘프론티어 기업(Frontier Firm)’이라는 새로운 기업 유형이 등장하고 있으며, 향후 2-5년 안에 대부분의 조직이 이 방향으로 전환을 시작할 것으로 전망했다. 프론티어 기업은 인간과 AI 에이전트가 함께 일하는 하이브리드 팀을 중심으로 유연하게 운영되며, 빠르게 성장하고 성과를 만들어내는 것이 특징이다. 기업 리더의 81%는 향후 12~18개월 내 자사 AI 전략에 AI 에이전트가 광범위하게 통합될 것으로 기대하고 있으며, 실제로 AI 도입 속도도 빠르게 가속화되고 있다. 전체 리더 중 24%는 자사에 이미 전사 차원의 AI 도입이 이뤄졌다고 응답했으며, 시험 운영(pilot) 단계에 머무르고 있다고 답한 리더는 12%에 불과했다. 프론티어 기업은 인간과 AI의 협업 수준에 따라 세 단계로 진화한다. 1단계에서는 AI가 반복적인 업무를 보조해 인간의 효율을 높인다. 2단계에서는 에이전트가 팀의 디지털 동료로 합류해, 사람의 지시에 따라 구체적인 업무를 수행한다. 마지막 3단계에서는 인간이 방향을 제시하면, 에이전트가 전체 업무 흐름을 주도해 업무를 실행하고 인간은 필요할 때만 개입한다. 또한, 보고서는 AI의 급속한 발전으로, 인간의 시간·에너지·비용에 의존하던 지능이 이제는 언제든지 사용할 수 있는 ‘언제든지 사용할 수 있는 지능(Intelligence on tap)’으로 변화하고 있다고 분석했다. 합리적 사고, 계획, 행동이 가능한 AI와 에이전트의 등장으로 인해 이제 기업은 필요에 따라 팀과 개인의 역량을 확장할 수 있다. 실제로 글로벌 리더의 82%(한국 77%)는 2025년을 전략과 운영상의 주요 사항들을 재고해야 할 전환점으로 보고 있으며, 82%의 리더(한국 77%)는 향후 12~18개월 내에 디지털 노동력을 활용해 인력의 역량을 확대할 수 있을 것으로 기대하고 있다. 이 같은 변화의 배경에는 비즈니스 수요와 인간의 역량 간의 간극, 즉 역량 격차(Capacity Gap)가 있다. 리더의 53%(한국 65%)는 지금보다 더 높은 생산성이 필요하다고 답했지만, 리더를 포함한 근로자 80%(한국 81%)는 업무에 집중할 시간이나 에너지가 부족하다고 느꼈다. 마이크로소프트 365 사용자 행동 데이터에 따르면, 직원들은 회의, 이메일, 알림 등으로 하루 평균 275번 업무 방해를 받고 있으며, 10건의 회의 중 6건은 별다른 예고 없이 갑작스럽게 열리는 것으로 나타났다. 이 가운데, 일부 기업은 AI를 기반으로 조직 경영 전략을 새롭게 설계하고 있으며, 마이크로소프트는 이들을 ‘프론티어 기업’으로 정의했다. 31개국 3만 1000명 가운데 프론티어 기업에 근무하는 844명의 직원 71%는 자사가 빠르게 성장하고 있다고 답했으며, 이는 글로벌 평균(37%)의 약 두 배에 해당한다. 또 이들 중 55%(글로벌 20%)는 더 많은 업무를 감당할 여력이 있다고 응답했으며, 93%(글로벌 77%)는 향후 커리어 전망에 자신감을 보였다.     산업과 직무의 진화에 따른 다면적인 변화도 예고됐다. 리더의 45%(한국 44%)는 향후 12~18개월 안에 디지털 노동력을 통해 팀 역량을 확대하는 것을 최우선 과제로 꼽았다. 한편 링크드인에 따르면 유망 스타트업의 고용 증가율은 전년 대비 20.6%로, 빅테크(10.6%)의 약 두 배에 육박했다. 이어서, 보고서는 전통적인 조직 구조를 보완할 새로운 모델로 워크 차트(Work Chart)를 제시했다. 기존 조직이 재무, 마케팅, 엔지니어링 등 기능 중심으로 팀을 구성해왔다면, 워크 차트는 부서가 아닌 달성해야 할 목표를 기준으로 팀을 유연하게 구성하는 방식이다. 이 과정에서 AI 에이전트는 팀원으로서 분석, 지원, 제안 등 다양한 역할을 수행하며 인간의 역량을 확장한다. AI 에이전트의 역할이 모든 업무 영역에서 동일한 속도로 발전하지는 않을 것으로 예상됐다. 향후 일부 업무는 에이전트가 대부분을 수행하고, 인간은 고위험·고정밀 업무를 감독하는 방식으로 역할이 조정될 것으로 내다봤다. 판단, 공감, 사고력이 요구되는 업무는 인간의 개입이 필요하다는 분석이다. 인간과 에이전트 간 역할 분담을 측정할 수 있는 운영 지표인 인간-에이전트 비율(Human-agent ratio)의 필요성도 제시했다. 하이브리드 팀의 생산성을 극대화하기 위해서는 에이전트의 수뿐만 아니라, 이들을 효과적으로 조율하고 관리할 수 있는 인간의 수 역시 함께 고려해야 한다는 설명이다.  실제로 리더의 46%(한국 48%)는 자사에서 에이전트를 활용해 업무 절차나 프로세스를 완전히 자동화하고 있다고 답했다. AI 투자와 관련해서는, 향후 12~18개월 내 고객 서비스, 마케팅, 제품 개발 분야에서 확대가 빠르게 이뤄질 것으로 예상하는 리더가 많았다. AI에 대한 인식 차이도 주목된다. 직원의 52%(한국 52%)는 AI를 명령형 도구로 여기고 단순 지시 수행에 활용하고 있었고, 46%(한국 45%)는 조력자로 받아들여 아이디어를 구상하거나 창의적 사고를 확장하는 데 사용하는 것으로 나타났다. 이에 따라, 마이크로소프트는 조직이 향후 디지털 노동력 관리를 전담하는 지능 자원(intelligence resources) 부서나, 인간과 디지털 노동력의 균형을 조율하는 자원 최고 책임자(Chief Resources Officer)와 같은 새로운 리더십 역할 도입도 검토할 수 있다고 제언했다. 이러한 흐름 속에서, AI는 인간을 대체하기보다 협업을 통해 가치를 높이는 도구로 인식되고 있다. AI를 활용한 개인의 성과는 AI 없이 팀을 구성한 경우보다 높게 나타났으며, 직원들이 AI를 선호하는 이유로 ▲24시간 이용 가능성(42%)(한국 27%) ▲일정한 속도와 품질(30%)(한국 33%) ▲무제한 아이디어 제공(28%)(한국 25%)이 꼽혔다. 보고서는 AI 에이전트의 활용이 본격화되며, 에이전트 보스(Agent Boss) 시대가 도래할 것으로 전망했다. 이는 모든 근로자가 에이전트를 만들고 위임하고 관리하며, 에이전트 기반 스타트업의 CEO와 같은 사고방식을 갖춰야 한다는 의미다. 28%의 관리자는 인간과 AI로 구성된 하이브리드 팀을 이끌 담당자를 채용할 계획이며, 32%는 에이전트 설계·개발·최적화를 위해 12~18개월 내 AI 에이전트 전문가를 채용할 의향이 있다고 밝혔다. AI 전략 수립과 실행에서 리더의 역할도 더욱 강조되고 있다. 에이전트에 대한 친숙도, 사용 빈도, 신뢰 수준, 시간 절감 효과, 관리 역할, 사고 파트너로서 활용, 경력 기여 가능성 등 7가지 항목으로 에이전트 보스 마인드셋을 조사한 결과, 모든 지표에서 리더가 직원보다 높은 수치를 기록했다. 특히 리더들은 향후 5년 이내에 팀의 업무 범위에 ▲ AI를 활용한 비즈니스 프로세스 재설계(38%)(한국 35%) ▲복잡한 업무 자동화를 위한 멀티 에이전트 시스템 구축(42%)(한국 39%) ▲에이전트 훈련(41%)(한국 34%) ▲에이전트 관리(36%)(한국 38%) 등이 포함될 것으로 내다봤다. 에이전트에 익숙하다고 답한 리더는 67%(한국 70%)였지만 직원은 40%(한국 32%)에 그쳤고, 리더의 약 3분의 1이 AI를 통해 하루 1시간 이상을 절약한다고 응답했으나, 직원은 이보다 낮았다. AI가 커리어에 도움이 될 것이라고 본 비율도 리더는 79%, 직원은 67%로 조사됐다. 또한 51%의 관리자(한국 39%)는 향후 5년 안에, 직원의 AI 교육과 역량 강화가 자신의 업무 범위에 포함될 것으로 내다봤다. AI의 확산과 함께 조직 전반의 직무 변화가 가속화될 것으로도 전망했다. 실제로 현재 링크드인을 통해 채용된 직원 중 10% 이상은 2000년에는 존재하지 않았던 직무를 맡고 있으며, 링크드인은 2030년까지 대부분의 직무에서 요구되는 기술의 70%가 바뀔 것으로 예상했다. 한편, 83%의 리더는 AI가 신입 직원들이 더 빠르게 전략적이고 복잡한 업무에 적응하도록 도와줄 것이라고 내다봤다. 보고서는 직원들이 AI 기술을 학습하고 실무 경험을 쌓을 기회를 확보해야 하며, 기업은 이를 위한 교육과 도구를 적극 제공해야 한다고 제언했다. 직원의 52%, 리더의 57%는 자신이 속한 산업의 직업 안정성이 보장되지 않는다고 여기고 있으며, 81%의 직원이 지난 1년간 이직하지 않은 것으로 나타났다. 링크드인은 2025년 가장 주목받는 역량으로 AI 리터러시를 꼽았으며, AI 역량과 더불어 갈등 해결, 적응력, 프로세스 자동화, 혁신적 사고 등 기계가 대체할 수 없는 인간의 강점 또한 더욱 중요해질 것으로 전망했다. 마이크로소프트는 AI 시대에 유연하게 대응하기 위해 지금이 기업의 결정적 행동 시점이라고 강조하며 세 가지 실행 로드맵을 제시했다. 마이크로소프트는 ▲AI 에이전트를 디지털 직원으로 채용해 명확한 역할을 정의하고, 온보딩·책임 배분·성과 측정 등 실제 팀원처럼 관리할 것을 권고했으며 ▲고객 응대나 고위험 판단 등 인간의 개입이 필요한 영역과 자동화가 가능한 업무를 구분해, 인간과 AI의 협업 구조를 정립해야 한다고 제안하면서 ▲AI 도입을 기술 과제가 아닌 조직 혁신 과제로 보고, 시범 운영에 그치지 않고 전사적으로 빠르게 확산할 필요가 있다고 강조했다. 마이크로소프트의 자레드 스파타로(Jared Spataro) AI 기업 부문 부사장은 “AI는 조직의 경영 전략은 물론, 우리가 인식하는 지식 노동의 개념을 바꾸고 있다”며, “2025년은 프론티어 기업이 탄생한 해로, 앞으로 몇 년 안에는 AI를 통해 대부분의 산업과 조직에서 직원의 역할 경계가 새롭게 정의될 것”이라고 말했다.
작성일 : 2025-04-28
AWS, 아마존 Q 디벨로퍼 한국어 지원 확장
아마존웹서비스(AWS)는 아마존 Q 디벨로퍼(Amazon Q Developer)의 언어 지원 확장을 발표했다. 이를 통해 국내 개발자들은 한국어를 활용하여 아마존 Q 디벨로퍼 내에서 아키텍처 논의, 문서 작성, 인터페이스 설계, 애플리케이션 구축 등 다양한 개발 업무를 수행할 수 있게 됐다. 아마존 Q 디벨로퍼는 개발자가 사용하는 언어로 코드를 이해하고 문서를 작성하며, 인터페이스를 설계할 수 있도록 돕는 생성형 AI 기반 어시스턴트이다. 또한 코드에 대한 실시간 피드백을 제공하여 단순한 위험 요소 식별을 넘어 문제의 원인을 명확히 설명하고 해결 방안을 제시함으로써 반복적인 개발 작업을 신속하게 수행할 수 있도록 돕는다. 이를 통해 개발자는 보다 안전하고 신뢰할 수 있는 코드를 효율적으로 구현할 수 있으며, 다양한 개발 업무에서 생산성과 품질을 동시에 향상시킬 수 있다. 이번 한국어 지원 확장을 통해 아마존 Q 디벨로퍼는 개발자들이 한국어를 포함한 다양한 언어로 복잡한 기술 개념에 대해 보다 원활하게 자신이 선호하는 언어로 대화할 수 있도록 지원한다. 특히 이번 언어 지원 확장은 개발자들이 반복적이고 수동적인 작업에 소비하는 시간을 줄이고, 보다 창의적인 문제 해결에 집중할 수 있는 환경을 제공한다. AI 에이전트와 자연어 인터페이스가 결합되며 보다 직관적인 개발 경험이 가능해짐에 따라, 개발자들은 대규모 기술 현대화와 같이 기존에는 실행이 어려웠던 작업에도 적극적으로 대응할 수 있게 된다. 이는 개발자가 문제를 인식하고 해결하는 방식에 근본적인 변화를 가져오고 있으며, 복잡한 업무를 보다 효율적이고 전략적으로 수행할 수 있도록 돕는다. 예를 들어, 영어 등 다른 언어로 작성된 소스코드나 주석을 이해해야 하는 상황에서 아마존 Q 디벨로퍼가 유용하게 쓰일 수 있다. 개발자들은 모국어가 아닌 영어로 작성된 코드나 주석에 대해 한국어로 아마존 Q 디벨로퍼에게 질문하고 설명을 요청할 수 있으며, 아마존 Q 디벨로퍼는 이를 한국어로 명확하게 설명 가능하다. 이러한 기능은 영어나 다른 언어로 된 코드를 이해하는 데 있어 언어 장벽을 낮추고, 글로벌 개발 환경에서의 코드 이해도를 효과적으로 높이는 데 기여한다. 국내 기업은 이번 언어 지원 확장을 통해 해외 기업과의 협업에서 커뮤니케이션 효율을 높이고, 업무 생산성을 실질적으로 향상시킬 수 있다. 또한 다양한 언어를 사용하는 글로벌 팀 간 협업을 보다 포용적이고 효과적으로 만들고 글로벌 개발 환경을 강화할 수 있다. 확장된 언어 기능은 통합 개발 환경(IDE)과 커맨드라인 인터페이스(CLI)에서 즉시 이용 가능하며, 향후 AWS 매니지먼트 콘솔(AWS Management Console)에서도 지원될 예정이다. 또한 프리(Free) 및 프로(Pro) 요금제 사용자 모두에게 확장된 언어가 제공된다.
작성일 : 2025-04-14
에이수스, 라이프 스타일 맞춤형 AI 노트북 ‘비보북 S16’ 출시
에이수스가 최신 퀄컴 스냅드래곤 및 AMD 라이젠 프로세서를 탑재해 이전 세대 대비 향상된 AI 경험을 제공하는 라이프 스타일 맞춤형 AI 노트북 비보북 S16(Vivobook S16)을 출시한다고 밝혔다. 비보북 S16은 16인치의 화면에 1.59cm의 두께, 경량 구조와 미니멀한 디자인을 통합한 차세대 AI 노트북이다. 프로세서로 퀄컴 스냅드래곤 및 AMD 라이젠 프로세서를 각각 탑재한 두 가지 모델이 준비됐으며, 두 모델 모두 마이크로소프트의 전용 ‘코파일럿 키(Copilot Key)’가 장착돼 인터넷이 없는 환경에서도 빠르고 편리하게 생성형 AI 기능을 사용할 수 있다. 최신 퀄컴 스냅드래곤 X 프로세서로 구동되는 비보북 S16은 최대 45 TOPS(초당 45조회 연산) NPU AI 성능을 제공해 까다로운 워크로드에도 최적의 생산성을 제공한다. 함께 탑재된 통합형 퀄컴 아드레노 GPU는 몰입감 넘치는 그래픽을 구현해 크리에이티브 작업도 무리 없이 진행 가능하다. 제품에 내장된 70Wh 대용량 배터리는 한 번 충전 시 최대 32시간 동안 지속돼 이동 및 외출에도 끊김 없는 배터리 수명을 제공한다. 16인치의 넓은 화면에는 2.5K 해상도 IPS 패널과 144Hz 16:10 비율의 디스플레이가 장착돼 생동감 넘치는 비주얼을 구현한다. 이와 함께 최대 400 니트의 밝기와 sRGB 100% 색 재현력을 지원해 창작 작업에서도 생생한 시각 경험을 제공한다.     최대 AMD 라이젠 7 260 프로세서를 탑재한 비보북 S16은 업무, 학업은 물론 엔터테인먼트 등 다양한 작업에서 높은 속도와 반응성을 제공한다. 최대 19시간의 배터리 수명으로 오랜 작업에도 무리 없이 사용 가능하며, 49분만에 60%까지 충전되는 고속 충전 기술이 적용돼 높은 배터리 성능을 자랑한다. 이와 함께 16:10 비율의 FHD 16인치 디스플레이는 144Hz IPS 패널을 장착해 부드러운 움직임과 역동적인 비주얼을 제공한다. 돌비 애트모스 오디오 기술은 선명한 음질을 보장해 몰입감 넘치는 사운드를 지원하며, 다양한 작업에 향상된 멀티미디어 경험을 제공한다. 여기에 두 모델 모두 다양한 편의 기능을 지원해 업무 생산성을 한층 높였다. USB 3.2 Gen 1 Type-C 포트 2개, USB 3.2 Gen 1 Type-A 포트 2개, HDMI 2.1 포트, 3.5mm 오디오 콤보 잭 등의 다양한 입출력 포트를 갖춰 이동 중에도 원활한 연결이 가능하다. 또, 생체 인식 로그인을 지원하는 FHD 적외선(IR) 카메라와 윈도우 패스키를 탑재해 철저한 보안 환경을 갖췄으며, 카메라가 필요하지 않을 때 물리적 웹캠 실드를 사용해 사용자의 프라이버시를 보호할 수 있다. 뿐만 아니라, AI 기반의 양방향 노이즈 캔슬링 기능을 통해 배경 소음을 제거, 보다 선명한 음질로 대화할 수 있다. 신제품은 공식 스토어, 네이버 브랜드스토어, 쿠팡, 11번가, G마켓, 옥션 등의 온라인 판매처에서 구매 가능하며, 공식 소비자 가격은 100만원 대부터 시작한다.
작성일 : 2025-04-14
캔바, 비주얼 스위트 2.0 출시 및 다양한 크리에이티브 제품군 선보여
캔바(Canva)가 AI 시대에 팀이 창작/소통/협업하는 방식을 새롭게 정의하는 ‘비주얼 스위트 2.0(Visual Suite 2.0)’을 선보였다. 창의성과 생산성의 간극을 메우기 위해 설계된 이번 신제품군은 AI 기반 디자인, 원활한 콘텐츠 제작, 강력한 개인화(personalization) 등에 중점을 두었다. 캔바는 미국 에서 열린 제4회 ‘캔바 크리에이트(Canva Create)’ 이벤트에서 비주얼 스위트 2.0을 공개했다. 캔바는 “이번 신제품군은 2억 3000만 명 이상의 월간 활성 사용자 수를 달성하며 빠르게 성장하고 있는 캔바 커뮤니티가 이전보다 더욱 창의적인 방식으로 디자인할 수 있도록 지원한다”면서, “비주얼 스프레드시트부터 데이터 시각화, 대화형 디자인, 대규모 맞춤형 콘텐츠 제작 및 인터랙티브한 경험을 제공하는 혁신적인 방식에 이르기까지, 전 세계 팀들의 일상적인 콘텐츠 생성부터 복잡한 업무를 지원하며 비주얼 커뮤니케이션 분야의 선두 주자로서 입지를 굳힐 것”이라고 전했다.     캔바의 비주얼 스위트 2.0은 대담한 디자인 방식부터 가장 사랑받는 도구의 혁신적 업그레이드까지 콘텐츠, 데이터, 디자인의 세계를 하나의 매끄러운 경험으로 통합하며 창의성과 생산성의 새로운 차원을 선보이고자 했다. 이번에 출시된 제품들은 전반적인 캠페인 기획, 복잡한 데이터의 시각화, 대규모 브랜드 콘텐츠의 신속한 제작 등에 있어 업무의 방식과 창의성, 협업의 미래를 재정의한다. 비주얼 스위트 인 원 디자인(Visual Suite in One Design)은 문서와 프레젠테이션, 웹사이트까지 모든 것을 하나의 디자인과 통합된 형식으로 제작할 수 있는 기술이다. 이를 통해 개별 도구, 분산된 작업 흐름, 연결되지 않은 파일의 필요성이 사라지며, 기획과 브리핑부터 디자인, 납품까지 전체 캠페인을 하나의 협업 공간에서 매끄럽게 처리할 수 있다. 캔바 시트(Canva Sheets)는 시각적이고 강력하며, 모든 작업과 연결되도록 재구상된 스프레드시트이다.
 캔바 시트는 데이터를 텍스트 및 시각 자료와 매끄럽게 통합해 시각적이고 지능적이며 강력한 경험을 제공한다. 매직 스튜디오를 기반으로 한 캔바 시트는 매직 인사이트(Magic Insights)와 같은 기능을 통해 데이터셋을 스캔하여 주요 패턴과 핵심 요점을 파악하며, 데이터 커넥터(Data Connectors)를 사용해 허브스팟(HubSpot), 스태티스타(Statista), 구글 애널리틱스(Google Analytics) 등에서 데이터를 불러와 사용자가 손쉽게 데이터 시각화 작업을 할 수 있게 한다.  매직 스튜디오 확장형(Magic Studio at scale)은 향상된 속도와 규모로 개인화되고 브랜드에 맞춘 콘텐츠를 제작하도록 돕는다. 캔바 시트에 통합된 이 기능은 스프레드시트를 강력한 콘텐츠 엔진으로 변환하고, 팀이 몇 초 만에 대량의 콘텐츠를 생성할 수 있도록 지원한다. 다중 시장(multi-market) 마케팅 캠페인, 영업 활동 및 내부 커뮤니케이션에 사용되는 템플릿에 다이내믹한 데이터가 즉시 채워져, 수작업을 줄이고 생산 속도를 높이며 모든 접점에서 일관성을 유지할 수 있다. 매직 차트(Magic Charts)는 복잡한 데이터를 강력하고 인터랙티브한 비주얼 스토리로 즉시 변환
한다. 이를 통해 누구나 가공되지 않은 수치(raw numbers)를 몇 초 만에 동적이고 브랜드에 맞춘 시각 자료로 변환할 수 있게 한다. 스크롤 가능한 보고서, 애니메이션, 인포그래픽 등을 만들 수 있는 AI 도구는 데이터와 디자인 간 간극을 메워 모든 팀이 인사이트를 명확하고 창의적으로 전달할 수 있도록 지원한다.     캔바 AI(Canva AI)는 음성 인식이 가능한 대화형 창작 파트너이다. 캔바의 모든 생성형 AI 도구를 하나의 원활한 워크플로로 통합해 누구나 아이디어에서 실행까지 몇 초 만에 도달할 수 있게 한다. 텍스트, 슬라이드, 이미지 생성부터 사진 편집 및 디자인 크기 조정에 이르는 모든 작업이 프롬프트나 음성만으로 가능하다. 현재 대화형 디자인 생성은 영어로 지원된다. 캔바 코드(Canva Code)는 인터랙티브 콘텐츠를 디자인하는 과정의 기술적 장벽을 허물고, 간단한 프롬프트만으로 누구나 디자인에 상호 작용 가능한 요소를 더할 수 있게 지원한다. 캔바에서는 계산기부터 플래시 카드, 설문(form)까지 만들 수 있어 정적인 콘텐츠를 별도의 코딩이나 외부 도구 없이도 역동적이고 몰입감 있는 경험으로 전환할 수 있다. 랜딩 페이지, 수업 자료, 프레젠테이션 등 다양한 용도에 상호 작용 가능한 디자인을 몇 마디 단어로 쉽게 제작할 수 있다. 캔바 사진 편집기(Canva Photo Editor)는 스튜디오 품질의 이미지 제작 과정을 간편하게 만든다. 비주얼 스위트의 일부로 통합된 캔바 사진 편집기는 효율성과 편의성을 위해 더욱 강력한 도구로 진화했다. 여기에는 선택된 요소를 정밀하게 수정할 수 있는 AI 기반 포인트 앤 클릭 편집 기능(Point and Click Editing), 조명과 레이아웃을 고려한 AI 배경 생성, 손쉬운 객체 제거 및 교체 기능이 포함된다. 한편, 캔바는 2022년 비주얼 스위트 출시 이후 글로벌 성장세가 더욱 가속화되고 있으며 1억 4500만 명 이상의 신규 사용자를 확보했다고 밝혔다. 현재 1초마다 376개 이상의 디자인이 제작되며, 2013년 캔바가 출시된 이래 총 350억 개의 디자인이 만들어졌다. 캔바의 연간 매출은 30% 이상 증가하며 30억 달러 이상의 연간 수익을 달성했다. 캔바의 멜라니 퍼킨스(Melanie Perkins) 공동 창업자 및 CEO는 “10여년 전 캔바 창립 이래 최대 규모의 제품 출시이자, 창의성과 생산성이 만나는 비주얼 스위트 2.0을 발표하게 되어 기쁘다”면서, “매년 2억 3000만 명에 이르는 캔바 커뮤니티는 수백만 가지의 아이디어를 공유하고 있는데, 그 중 지속적으로 공유되는 것 중 하나는 창의성과 생산성을 하나의 원활한 흐름으로 통합하고 싶다는 것이었다. 재구성된 업무 필수 요소부터 자신만의 디자인 파트너와 함께 창작할 수 있는 완전히 새로운 방식에 이르기까지, 누구나 자신의 아이디어를 쉽게 구현할 수 있도록 지속적으로 지원할 수 있길 기대한다”고 설명했다.
작성일 : 2025-04-11