• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "이미지"에 대한 통합 검색 내용이 4,333개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
캔바, 비주얼 스위트 2.0 출시 및 다양한 크리에이티브 제품군 선보여
캔바(Canva)가 AI 시대에 팀이 창작/소통/협업하는 방식을 새롭게 정의하는 ‘비주얼 스위트 2.0(Visual Suite 2.0)’을 선보였다. 창의성과 생산성의 간극을 메우기 위해 설계된 이번 신제품군은 AI 기반 디자인, 원활한 콘텐츠 제작, 강력한 개인화(personalization) 등에 중점을 두었다. 캔바는 미국 에서 열린 제4회 ‘캔바 크리에이트(Canva Create)’ 이벤트에서 비주얼 스위트 2.0을 공개했다. 캔바는 “이번 신제품군은 2억 3000만 명 이상의 월간 활성 사용자 수를 달성하며 빠르게 성장하고 있는 캔바 커뮤니티가 이전보다 더욱 창의적인 방식으로 디자인할 수 있도록 지원한다”면서, “비주얼 스프레드시트부터 데이터 시각화, 대화형 디자인, 대규모 맞춤형 콘텐츠 제작 및 인터랙티브한 경험을 제공하는 혁신적인 방식에 이르기까지, 전 세계 팀들의 일상적인 콘텐츠 생성부터 복잡한 업무를 지원하며 비주얼 커뮤니케이션 분야의 선두 주자로서 입지를 굳힐 것”이라고 전했다.     캔바의 비주얼 스위트 2.0은 대담한 디자인 방식부터 가장 사랑받는 도구의 혁신적 업그레이드까지 콘텐츠, 데이터, 디자인의 세계를 하나의 매끄러운 경험으로 통합하며 창의성과 생산성의 새로운 차원을 선보이고자 했다. 이번에 출시된 제품들은 전반적인 캠페인 기획, 복잡한 데이터의 시각화, 대규모 브랜드 콘텐츠의 신속한 제작 등에 있어 업무의 방식과 창의성, 협업의 미래를 재정의한다. 비주얼 스위트 인 원 디자인(Visual Suite in One Design)은 문서와 프레젠테이션, 웹사이트까지 모든 것을 하나의 디자인과 통합된 형식으로 제작할 수 있는 기술이다. 이를 통해 개별 도구, 분산된 작업 흐름, 연결되지 않은 파일의 필요성이 사라지며, 기획과 브리핑부터 디자인, 납품까지 전체 캠페인을 하나의 협업 공간에서 매끄럽게 처리할 수 있다. 캔바 시트(Canva Sheets)는 시각적이고 강력하며, 모든 작업과 연결되도록 재구상된 스프레드시트이다.
 캔바 시트는 데이터를 텍스트 및 시각 자료와 매끄럽게 통합해 시각적이고 지능적이며 강력한 경험을 제공한다. 매직 스튜디오를 기반으로 한 캔바 시트는 매직 인사이트(Magic Insights)와 같은 기능을 통해 데이터셋을 스캔하여 주요 패턴과 핵심 요점을 파악하며, 데이터 커넥터(Data Connectors)를 사용해 허브스팟(HubSpot), 스태티스타(Statista), 구글 애널리틱스(Google Analytics) 등에서 데이터를 불러와 사용자가 손쉽게 데이터 시각화 작업을 할 수 있게 한다.  매직 스튜디오 확장형(Magic Studio at scale)은 향상된 속도와 규모로 개인화되고 브랜드에 맞춘 콘텐츠를 제작하도록 돕는다. 캔바 시트에 통합된 이 기능은 스프레드시트를 강력한 콘텐츠 엔진으로 변환하고, 팀이 몇 초 만에 대량의 콘텐츠를 생성할 수 있도록 지원한다. 다중 시장(multi-market) 마케팅 캠페인, 영업 활동 및 내부 커뮤니케이션에 사용되는 템플릿에 다이내믹한 데이터가 즉시 채워져, 수작업을 줄이고 생산 속도를 높이며 모든 접점에서 일관성을 유지할 수 있다. 매직 차트(Magic Charts)는 복잡한 데이터를 강력하고 인터랙티브한 비주얼 스토리로 즉시 변환
한다. 이를 통해 누구나 가공되지 않은 수치(raw numbers)를 몇 초 만에 동적이고 브랜드에 맞춘 시각 자료로 변환할 수 있게 한다. 스크롤 가능한 보고서, 애니메이션, 인포그래픽 등을 만들 수 있는 AI 도구는 데이터와 디자인 간 간극을 메워 모든 팀이 인사이트를 명확하고 창의적으로 전달할 수 있도록 지원한다.     캔바 AI(Canva AI)는 음성 인식이 가능한 대화형 창작 파트너이다. 캔바의 모든 생성형 AI 도구를 하나의 원활한 워크플로로 통합해 누구나 아이디어에서 실행까지 몇 초 만에 도달할 수 있게 한다. 텍스트, 슬라이드, 이미지 생성부터 사진 편집 및 디자인 크기 조정에 이르는 모든 작업이 프롬프트나 음성만으로 가능하다. 현재 대화형 디자인 생성은 영어로 지원된다. 캔바 코드(Canva Code)는 인터랙티브 콘텐츠를 디자인하는 과정의 기술적 장벽을 허물고, 간단한 프롬프트만으로 누구나 디자인에 상호 작용 가능한 요소를 더할 수 있게 지원한다. 캔바에서는 계산기부터 플래시 카드, 설문(form)까지 만들 수 있어 정적인 콘텐츠를 별도의 코딩이나 외부 도구 없이도 역동적이고 몰입감 있는 경험으로 전환할 수 있다. 랜딩 페이지, 수업 자료, 프레젠테이션 등 다양한 용도에 상호 작용 가능한 디자인을 몇 마디 단어로 쉽게 제작할 수 있다. 캔바 사진 편집기(Canva Photo Editor)는 스튜디오 품질의 이미지 제작 과정을 간편하게 만든다. 비주얼 스위트의 일부로 통합된 캔바 사진 편집기는 효율성과 편의성을 위해 더욱 강력한 도구로 진화했다. 여기에는 선택된 요소를 정밀하게 수정할 수 있는 AI 기반 포인트 앤 클릭 편집 기능(Point and Click Editing), 조명과 레이아웃을 고려한 AI 배경 생성, 손쉬운 객체 제거 및 교체 기능이 포함된다. 한편, 캔바는 2022년 비주얼 스위트 출시 이후 글로벌 성장세가 더욱 가속화되고 있으며 1억 4500만 명 이상의 신규 사용자를 확보했다고 밝혔다. 현재 1초마다 376개 이상의 디자인이 제작되며, 2013년 캔바가 출시된 이래 총 350억 개의 디자인이 만들어졌다. 캔바의 연간 매출은 30% 이상 증가하며 30억 달러 이상의 연간 수익을 달성했다. 캔바의 멜라니 퍼킨스(Melanie Perkins) 공동 창업자 및 CEO는 “10여년 전 캔바 창립 이래 최대 규모의 제품 출시이자, 창의성과 생산성이 만나는 비주얼 스위트 2.0을 발표하게 되어 기쁘다”면서, “매년 2억 3000만 명에 이르는 캔바 커뮤니티는 수백만 가지의 아이디어를 공유하고 있는데, 그 중 지속적으로 공유되는 것 중 하나는 창의성과 생산성을 하나의 원활한 흐름으로 통합하고 싶다는 것이었다. 재구성된 업무 필수 요소부터 자신만의 디자인 파트너와 함께 창작할 수 있는 완전히 새로운 방식에 이르기까지, 누구나 자신의 아이디어를 쉽게 구현할 수 있도록 지속적으로 지원할 수 있길 기대한다”고 설명했다.
작성일 : 2025-04-11
IBM, 엔터프라이즈급 AI 기술 탑재한 IBM z17 메인프레임 공개
IBM은 하드웨어, 소프트웨어, 시스템 운영 전반에 걸쳐 AI 기술을 탑재한 차세대 메인프레임 IBM z17을 공개했다. IBM 텔럼 II 프로세서(IBM Telum Processor)를 기반으로 하는 IBM z17은 거래 기반 AI(transactional AI) 기능을 넘어 새로운 워크로드를 지원할 수 있도록 시스템 기능을 확장했다. IBM z17은 이전 제품인 z16 대비 하루 50% 더 많은 AI 추론 작업을 처리할 수 있는 등 기업이 혁신을 추진하고 더 많은 일을 할 수 있도록 지원한다. IBM z17은 대출 리스크 완화, 챗봇 서비스 관리, 의료 이미지 분석 지원, 상거래 범죄 방지 등 250개 이상의 광범위한 AI 활용 사례로 산업 전반에 걸쳐 비즈니스 가치를 창출하도록 설계되었다. IBM z17은 미국 특허청에 출원한 300개 이상의 특허를 포함한 5년간의 설계 및 개발의 결과물이다. 100여 개 이상의 고객사가 직접 제시한 의견을 반영한 것은 물론, IBM 리서치 및 소프트웨어 팀과의 긴밀한 협업을 통해 설계된 이 새로운 시스템은 다중 모델 AI 기능, 데이터 보호를 위한 새로운 보안 기능, 시스템 사용성 및 관리 개선을 위한 AI 툴을 도입했다.     z17에 탑재된 AI 추론 기능은 향상된 주파수, 컴퓨팅 용량, 캐시 40% 증가, 하루에 4500억 건 이상의 추론 작업과 1ms의 응답 시간을 지원하는 IBM 텔럼 II 프로세서에 내장된 2세대 온칩 AI 가속기에 의해 구동된다. 2025년 4분기에 PCIe 카드를 통해 출시될 예정인 IBM 스파이어 액셀러레이터(IBM Spyre Accelerator)는 텔럼 II 프로세서를 보완하는 추가적인 AI 컴퓨팅 성능을 제공한다. 두 제품은 다중 모델 방식의 AI를 지원하기 위한 최적화된 환경을 조성하는데 기여한다. 스파이어 액셀러레이터는 시스템에 포함된 엔터프라이즈 데이터를 활용해 어시스턴트를 실행하는 등 메인프레임에 생성형 AI 기능을 제공하도록 특별히 설계됐다. IBM z17은 2025년 6월 18일, IBM 스파이어 액셀러레이터는 2025년 4분기에 출시될 예정이다. z17은 개발자와 IT 운영자의 기술과 효율성을 강화하기 위해  IBM 왓슨x 코드 어시스턴트 포 Z(IBM watsonx Code Assistant for Z)와 IBM 왓슨x 어시스턴트 포 Z(IBM watsonx Assistant for Z)를 포함한 AI 어시스턴트와 AI 에이전트를 활용할 수 있게 설계되었다. 한편, IBM 왓슨x 어시스턴트 포 Z는 실시간 시스템 데이터를 사용해 최초로 AI 채팅 기반 사고 감지 및 해결 기능을 제공하는 Z 오퍼레이션 유나이트(Operations Unite)와 통합될 예정이다. 한국IBM의 류정훈 Z/리눅스원 사업총괄 상무는 “IBM 메인프레임은 전 세계 금융 거래의 70%를 처리하고 있다”면서, “최근 기업들이 AI 활용에 큰 관심을 보이는 만큼, AI 성능을 크게 향상시킨 z17을 통해 보다 많은 업무를 효율적이고 안전하게 처리할 수 있도록 지원하겠다”고 말했다.
작성일 : 2025-04-10
어도비 프리미어 프로, AI로 푸티지 생성, 편집, 검색 속도 향상
어도비가 AI를 활용해 영상 및 오디오 클립을 즉시 생성하고 길이를 확장할 수 있는 프리미어 프로(Premiere Pro)의 생성형 확장(Generative Extend)과 테라바이트급 푸티지에서 특정 클립을 몇 초 만에 빠르게 찾아내는 AI 구동 미디어 인텔리전스(Media Intelligence)를 출시했다. 상업적으로 안전하게 사용할 수 있는 파이어플라이 비디오 모델로 구동되는 생성형 확장을 통해 편집자는 4K 및 가로, 세로형 영상, 오디오 클립과 함께 길이를 조절할 수 있어, 푸티지 내 부족한 부분을 채우는 방식을 혁신적으로 개선할 수 있다. 또한 애프터 이펙트(After Effects)는 향상된 성능과 3D 도구를 제공하며, 프레임닷아이오(Frame.io)는 저장, 대본, 다양한 문서 형식을 지원하도록 업그레이드됐다. 이번에 공개된 생성형 확장과 미디어 인텔리전스는 어도비 크리에이티브 커뮤니티에서 높은 기대를 모은 영상 역량으로, 수년간의 연구와 베타 고객의 피드백을 거쳐 정식 출시됐다. 또한 프리미어 프로에 다국어 캡션 생성을 자동화하는 AI 구동 캡션 번역(Caption Translation) 기능도 새롭게 추가되어, 영상 전문가들이 전 세계 시청자들과 더 손쉽게 소통할 수 있도록 지원한다. 뿐만 아니라, 카메라로 촬영한 RAW 영상 및 로그(LOG) 푸티지를 프리미어로 가져오는 즉시 해당 클립을 HDR 또는 SDR로 자동 변환해, 색 보정 작업의 정확도를 높이는 프리미어 색상 관리(Premiere Color Management)도 정식 출시됐다. 프리미어 프로의 전반적인 성능 향상과 더불어, 이러한 신규 기능들은 편집 작업을 더욱 빠르고 효율적으로 만들어준다.     4K 및 세로형 영상을 지원하는 생성형 확장 정식 출시로, 영상 편집 시 종종 발생하는 짧은 클립으로 인한 편집 문제를 쉽게 해결할 수 있다. 전문 편집 툴인 생성형 확장 기능은 클립의 길이를 늘려 푸티지의 영상 또는 오디오 공백을 채우고 장면 전환을 매끄럽게 하며 샷을 길게 유지해 완벽한 타이밍의 편집을 가능케한다. 클릭 및 드래그만으로 사실적인 영상과 오디오를 확장할 수 있어, 품질 저하 없이 타임라인을 유연하게 조정할 수 있다. 또한 세로형 영상도 지원해, 편집자는 별도의 프레임 재조정 없이 소셜미디어에 최적화된 콘텐츠를 쉽게 제작하고 내보낼 수 있다. 생성형 확장은 상업적으로 안전한 파이어플라이 비디오 모델로 구동된다. AI 생성 콘텐츠에 대한 투명성을 높이고자, 생성형 확장으로 제작된 콘텐츠 결과물에는 디지털 미디어의 '영양 성분 표시'와 같은 역할을 하는 콘텐츠 자격증명(Content Credentials)이 첨부된다. 프리미어 프로 및 애프터 이펙트 업그레이드를 통해 영화 제작자는 몇 초 내로 테라바이트 크기의 푸티지를 검색하고 시각 효과 및 모션 그래픽 워크플로를 간소화할 수 있게 됐다. 프리미어 프로의 AI 구동 미디어 인텔리전스 기능은 편집자가 프로젝트 푸티지를 다루는 방식을 근본적으로 바꾸고 시간을 절약한다. 번거로운 수동 검색을 대신해 미디어 인텔리전스는 개체, 위치, 카메라 각도, 촬영 날짜, 카메라 유형 등 메타데이터를 포함한 클립 콘텐츠를 자동 인식해 편집자가 필요할 때 원하는 장면을 찾을 수 있도록 돕는다.  프리미어 프로의 AI 구동 캡션 번역(Caption Translation)은 몇 초 만에 캡션을 27개 언어로 번역할 수 있는 기능으로, 수동 번역으로 인해 속도가 느려지고 워크플로가 중단되거나 비용이 추가되는 상황을 개선한다. 또한 프리미어 프로는 새로운 컬러 시스템을 제공해, 기존 대비 더 높은 정확도와 일관된 색상을 구현하고 거의 모든 카메라의 로그 영상을 HDR및 SDR 콘텐츠로 자동 변환한다. 이를 통해 편집자는 푸티지 편집 작업을 빠르게 시작하고 완벽한 피부 톤, 보다 생생한 색상, 향상된 다이내믹 레인지(Dynamic Range)로 어느 때보다 쉽게 멋진 영상을 제작할 수 있다. 애프터 이펙트는 고성능 미리보기 재생(High-Performance Preview Playback)을 통해 모든 컴퓨터에서 전체 컴포지션을 어느 때보다 빠르게 재생할 수 있게 됐고, 애니메이션 환경 조명(Animated Environment Light) 등 확장된 3D 툴로 보다 빠르고 사실적인 3D 합성을 지원한다. 애프터 이펙트의 HDR 모니터링(HDR Monitoring) 기능은 HDR 콘텐츠를 정확하게 재생하고 작업함으로써 더욱 밝고 생동감 있는 모션 디자인 작업을 할 수 있다. 크리에이티브 팀에 따라 조정할 수 있는 프레임닷아이오 V4의 확장된 스토리지는 다양한 클라우드 플랫폼에 파일을 저장해, 워크플로 분절 없이 방대한 양의 미디어를 한곳에서 협업할 수 있도록 지원한다. 많은 크리에이티브 팀이 대규모 콘텐츠 제작과 빠르게 증가하는 수요에 대응하는 데 어려움을 겪고 있는 가운데, 프레임닷아이오 V4는 스크립트, 촬영지 사진, 원본 미디어 등 모든 것을 단일 플랫폼에서 저장, 관리, 협업 및 배포할 수 있도록 돕는다. 프레임닷아이오에는 스크립트, 브리핑 문서, 예산, 제안서, 장면 세부 묘사, 스토리보드 및 기타 제작 자료에 대한 협업을 지원하는 확장된 텍스트 문서 검토 툴(Expanded text document review tools), 영상 및 오디오 파일을 빠르게 텍스트로 변환할 수 있는 대본 생성(Transcription generation, 베타), 편집 중인 콘텐츠를 보호할 수 있도록 영상, 이미지 및 문서에 적용 가능한 맞춤형 텍스트 워터마크, 대규모 팀의 사용자 그룹 관리자가 워크스페이스 및 프로젝트 전반에서 대량 사용자 접근 권한을 자동화할 수 있는 접근 허용 그룹(Access Groups, 베타) 등의 기능이 제공된다. 이 밖에도 어도비는 고성능 미리보기 재생 엔진, 강력한 신규 3D 모션 디자인 툴, HDR 모니터링 등 애프터 이펙트의 신규 기능도 공개했다. 또한 프레임닷아이오 V4 업그레이드에는 팀 단위로 사용 가능한 확장 스토리지가 포함돼, 워크플로 단절 없이 편집 중인 작업물과 완성된 애셋을 자유롭게 공유하고, 관리, 정리할 수 있도록 지원한다. 어도비의 애슐리 스틸(Ashley Still) 디지털 미디어 부문 총괄 겸 수석 부사장은 “4K에서 가능한 생성형 확장 기능과 AI 구동 미디어 인텔리전스를 활용해, 프리미어 프로 이용자들이 어떤 상상력을 자극하는 다채로운 영상을 만들어낼지 기대된다”면서, “파이어플라이의 강력한 성능과 어도비의 첨단 AI 역량을 통해 영상 편집의 새 지평을 열고 있으며, 이용자들이 가장 중요한 일, 즉 생동감 있고 매력적인 스토리텔링에 온전히 집중할 수 있도록 돕고 있다”고 말했다.
작성일 : 2025-04-04
기록에서 시청하는 문화를 이끄는 생성형 AI의 미래
전문 분야를 넘나들며 상상을 생동감 있게 디자인하기   최근 생성형 AI(generative AI)가 빠르게 발전하면서, 생성형 AI 툴을 배우면 새로운 서비스와 기능이 금방 등장하고 있다. 이에 여러 생성형 AI 툴을 어떻게 공부하고 활용해야 할지 고민이 늘어나고 있는 시점이다. 이러한 시점에 생성형 AI를 활용하여 사람의 상상을 구체화하는 관점을 바꿔보면 어떨까 생각한다. 이는 생성형 AI가 상상을 기록하는 글과 스케치가 생동감 있는 영상으로 이어주고, 전공 분야를 넘나들며 크레이이티브를 구현할 수 있는 가능성을 제시하고 있기 때문이다.    ■ 장순규 계명대학교 미술대학 시각디자인과 조교수로 UX 디자인과 생성형 AI, 그리고 지역 개선을 위한 도시 브랜드 경험 디자인 프로젝트 연구를 수행하고 있다.   기록 방법의 변화와 생성형 AI의 등장 사람은 까마득히 먼 과거부터 생각과 정보를 기록해왔다. 스페인의 알타미라 동굴 벽화와 프랑스의 라스코 동굴 벽화는 기원전 1만 8000년~1만 5000년 경의 벽화다. 이 벽화는 구석기 시대에 100여 마리의 동물을 사냥하는 모습을 세밀한 묘사와 다양한 색으로 생동감 있게 표현한 그림이다. 이에 예술성을 인정받아 유네스코 세계문화유산으로 등재되었다. 이처럼 인간은 과거부터 어떠한 사실, 정보, 생각을 남기기 위한 문화를 가지고 있었다. 이후 기원전 3000년 전 수메르의 쐐기 문자를 비롯한 문화 별 문자가 등장했다. 문자를 통해 인간은 보다 명확하게 정보를 기록하고 남길 수 있게 되었다.   그림 1. 이미지 출처 : 플리커   시간이 흘러 인간은 도구를 발명하며 기록하는 방법을 다양하게 발전시켜 왔다. 종이와 인쇄술, 그림을 그리는 물감, 사실 그대로를 담으며 동적 시각물을 기록까지 하는 카메라. 현대 사회를 살아가는 우리는 더 이상 종이와 연필을 필요로 하지 않고, 무거운 카메라를 들고 촬영하지 않아도 된다. 이는 언제 어디서든 쉽게 활용할 수 있는 컴퓨터와 스마트폰을 통해 쉽게 기록할 수 있기 때문이다. 이처럼 기록하는 방법이 달라지는 것은 기술의 발전과 밀접하다고 할 수 있다. 하지만 이러한 기록 방법도 한계가 있다. 이는 사용자가 글을 작성하며 이미지를 직접 스케치하거나, 사진을 촬영하고, 편집이나 합성하는 수고가 있기 때문이다. 이러한 수고도 이제 변화할 시점에 놓여있다. 이는 생성형 AI의 등장 때문이다.    디자인 업무의 경계가 모호해진다 생성형 AI는 인간의 글로써 요구하는 프롬프트를 기반으로 학습된 데이터에서 새로운 데이터를 창출하는 인공지능 기술이다. 이 기술이 등장하면서, 자신의 상상과 생각을 작성하고 직접 스케치하며 기억하려는 문화는 사람이 기록하면 생성형 AI가 이미지와 영상으로 변환시켜 주는 문화로 이어지게 될 것이다. 이처럼 생성형 AI는 우리의 기록 문화를 새롭게 변화시킬 도구이다. 이에 우리의 문화를 바꿀 도구로서 디자이너의 경험담을 제시하고자 한다.  생성형 AI가 디자인 업무에 큰 영향을 미칠 것이라는 이야기가 많이 오가고 있다. 틈만 나면 새로운 생성형 AI 서비스가 등장하고 있으나, 디자인 업무에서 사람과 기존 디자인 툴을 생성형 AI가 완벽하게 대체하지는 못하는 실정이다. 여러 연구에서 생성형 AI는 기존 디자인 업무와 아이디어화(ideation) 단계에 효율적이라는 결과가 나타나고 있다.  이를 종합하면 콘셉트 디자인 과정에서 생성형 AI가 기존의 업무 방식보다 효율적이라 할 수 있다. 이는 글로 작성하고, 디자인 스케치를 하며, 콘셉트로 가안의 디자인 이미지를 만드는 과정의 시간을 효율적으로 단축할 수 있기 때문이다.  이 과정에서 생성형 AI는 스케치부터 2D, 3D까지 다양한 이미지를 짧은 시간에 생성하며, 이미지를 기반으로 짧은 영상까지 제작할 수 있다. 글과 목업 이미지로 상상을 불러일으키며 소통하는 콘셉트 단계의 방식이, 직접 디자인과 고객의 상황을 영상을 보며 진짜같이 느낄 수 있는 소통 방식으로 변화하게 된 것이다. 이에 더해, 이제 디자인 전문 교육을 받지 않은 사람도 누구나 상상과 창의력을 완성도 높은 디자인 이미지로 구현할 수 있으니, 디자인 업의 경계가 모호해지게 될 것이다. 이 때문에 어느 누구나 자유롭게 상상을 사실처럼 콘셉트를 보여줄 수 있게 되었다. 비전문가도 디자인을 할 수 있고, 전문가도 자신의 전공을 넘어 여러 디자인 분야를 넘나들 수 있는 것이다. 이처럼 분야를 넘나드는 실험이 모호할 수 있다.   생성형 AI 기반의 디자인 실험 사례 몇 가지 프로젝트 사례를 소개하고자 한다. 이 프로젝트는 미드저니, 런웨이, 루마, 클링과 같이 이미지, 영상 생성형 AI를 기반으로 구성한 디자인 실험 이미지이다.    그림 2. 생성형 AI 휴먼 활용의 실험 사례 1 – 환경 디자인 분야 접근     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
AI 영상 제작 생태계의 현재와 미래
AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (1)   이번 호에서는 AI 영상 제작 생태계의 현재 상황을 분석하고, 기술 발전에 따른 미래 변화를 예측하며, 여러 분야에 활용할 수 있는 생성형 AI 영상 제작 기술을 살펴보고자 한다.   ■ 연재순서 제1회 AI 영상 제작 생태계의 현재와 미래 제2회 AI 기반 크리에이티브 워크플로 혁신 제3회 소셜 미디어 최적화 AI 영상 제작 전략 제4회 AI 특수효과 및 후반작업 마스터하기 제5회 AI 기반 몰입형 사운드 디자인   ■ 최석영 AI프로덕션 감성놀이터의 대표이며, 국제고양이AI필름페스티벌 총감독이다. AI 칼럼니스트로도 활동하고 있다.    그림 1. 오픈소스 AI, ComfyUI를 활용한 생성형 비디오 Wan2.1    AI 영상 제작의 패러다임 전환 인공지능 기술의 급속한 발전은 영상 제작 산업에 근본적인 변화를 가져오고 있다. 전통적으로 영상 콘텐츠 제작은 전문적인 기술, 고가의 장비, 그리고 상당한 시간과 인력을 필요로 했다. 그러나 AI 기술의 등장으로 이러한 장벽이 크게 낮아지며, 영상 제작의 민주화가 빠르게 진행되고 있다. 이제는 프리미어보다는 AI 편집 프로그램인 캡컷(CapCut)으로 영상을 편집하고, 애프터이펙트보다 피카 AI(Pika AI)로 고급 이펙트 영상을 제작하는 경우가 늘고 있다.   그림 2. 캡컷 서비스 이미지(capcut.com)   그림 3. 피카 AI 서비스 이미지(pika.ai)   AI 영상 제작 기술의 현재 생성형 AI 비디오 기술   그림 4. 오픈AI 소라의 영상 생성 제작 이미지(sora.com)   최근 급속도로 발전한 생성형 AI 기술은 영상 제작 방식을 혁신적으로 변화시키고 있다. 텍스트 프롬프트만으로 완전히 새로운 비디오를 생성하는 기술이 실현되어 창작의 새로운 패러다임을 형성하고 있다.   그림 5. 비디오 생성 기술이 뛰어난 구글의 비오 2(Veo 2, https:// deepmind.google/technologies/veo/veo-2)   주요 기술 및 모델 텍스트-비디오(Text-to-Video) 생성 : 오픈AI의 소라(Sora), 구글의 루미에르(Lumiere) 등이 텍스트 설명만으로 사실적인 비디오를 생성하는 기술을 선보이고 있다. 소라는 최대 60초 길이의 복잡한 내러티브 장면을 생성할 수 있는 능력을 갖추었으며, 물리적 정확성과 시간적 일관성 측면에서 괄목할 만한 성과를 보여주고 있다. 이미지-비디오(Image-to-Video) 변환 : 런웨이(Runway)의 젠-3(Gen-3) 등은 정적 이미지를 동적 비디오로 확장하는 기술을 제공한다. 이 기술은 단일 이미지에 내재된 정보를 바탕으로 자연스러운 움직임과 시간적 흐름을 생성한다. 비디오 확장 및 편집 : 캡컷 등의 플랫폼은 기존 비디오 클립을 AI로 확장하거나 스타일을 변환하는 서비스를 제공하고 있다. 이러한 도구는 비디오의 해상도 향상, 프레임 보간, 스타일 변환 등 다양한 작업을 자동화한다.    AI 기반 후보정 및 편집 기술   그림 6. AI 기반 DI(Digital Intermediate) 프로그램. 무료 기능도 탁월하다.    AI는 영상의 촬영 이후 단계에서도 혁신을 가져오고 있다. 이는 편집의 효율을 높이고 전문가 수준의 결과물을 더 쉽게 얻을 수 있게 한다.   주요 기술 자동 색 보정 및 그레이딩 : 블랙매직 디자인(Blackmagic Design)의 다빈치 리졸브 18(DaVinci Resolve 18) 등에 탑재된 AI 기능은 영상의 색감과 톤을 자동으로 최적화한다. 객체 인식 및 자동 트래킹 : AI 기반 시스템은 비디오 내 객체를 식별하고 추적하여 효과 적용이나 편집 작업을 자동화한다. 오디오 처리 및 개선 : 배경 소음 제거, 음성 명확화, 자동 믹싱 등 AI 기반 오디오 처리 기술이 비디오 제작의 음향 품질을 크게 향상시키고 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
정적 이미지와 동적 이미지
시점 – 사물이나 현상을 바라보는 눈 (4)   지난 호에서는 ‘관찰의 시점과 관점’이라는 주제로 사물을 바라볼 때 바라보는 위치, 방향, 각도에 따라서 우리 눈에 비치는 사물의 모습이 어떻게 달라지는지를 시점(視點)과 시각(視角)의 차이로 설명해 보았다. 보이는 것 자체는 아무런 의미나 의도가 없지만 보는 이의 관점(觀點)의 차이에서 다양한 해석이 나타날 뿐임을 이야기하였다. 이번 호에서는 ‘정적 이미지와 동적 이미지’의 차이를 살펴볼 예정이다. 정적 이미지와 동적 이미지에서 이미지 센서의 입장에서 바라본 ‘관찰의 시점과 관점’에 관한 몇 가지 사례를 들어가며 구체적으로 생각해 보도록 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   정적 이미지와 동적 이미지 시간이 지나더라도 변화하지 않는다면 정물이다. 시간의 흐름에 따라서 모양이 변화하는 것은 정물이 아니다. 촬영된 이미지는 모두 촬영된 순간의 촬영 조건에서 기록된 정적 이미지이다. 시간에 따라서 변화하는 어떤 사물의 이미지를 촬영하면 언제 어떤 모습을 하고 있을 때 촬영했는지가 중요하다. 빠르게 변화하는 사물을 변화에 비해서 느린 속도로 촬영하게 되면 변화 전과 변화 후의 모습이 중첩되어 보인다. 사물이 변화하더라도 그 변화 속도가 촬영 시간 내에서 거의 변화가 없다면 정물처럼 촬영될 것이다. 촬영 대상의 성질을 고려해서 촬영 조건을 선택해야 한다. 여기에서 말하는 변화는 사물 자체의 변화에 한정되지 않는다. 사물과 촬영 기기의 상대적인 위치, 각도, 조명 조건, 촬영 조건의 변화를 포함한다.   그림 1. 고드름이 생기는 속도는 늦고 녹는 속도는 빠르게 느껴진다.   변화의 속도가 느린 것 지난 겨울은 유난히 눈도 많이 내렸고 강추위도 여러 번 찾아왔다. 눈 내린 지붕에서 햇볕으로 녹은 눈이 물방울이 되어 처마로 떨어지며 차가운 공기로 얼음이 되어 고드름이 형성된다. 고드름 또한 기온이 올라가면 조금씩 녹으면서 고드름 끝에서 물방울이 떨어진다.(그림 1) 고드름의 형성과 소멸 과정은 비교적 천천히 진행된다. 물론 기온이 많이 올라가면 눈이 녹더라도 고드름은 형성되지 않는다. 이미 고드름이 만들어진 경우에도 기온이 올라가면 고드름이 녹는 속도도 빨라져, 고드름 끝에서 떨어지는 물방울의 숫자도 속도도 늘어난다. 그 결과 눈과 고드름은 사라진다. 물이 고체–액체–기체로 변화하면서 물의 순환이 이루어지는 것이다. 고드름은 겨울철에나 볼 수 있는 현상이지만 불과 몇 달 만에 반복되는 과정이다. 이것에 비해서 석회암 동굴에서 볼 수 있는 종유석, 석순, 석주는 석회암이 지하수에 녹아 조금씩 동굴에 스며들어 동굴 천장에서 떨어지면서 생겨나는 매우 속도가 느린 반응이다. 종유석은 동굴의 천장부터 아래 방향으로 자라는 것이고, 석순은 위에서 떨어지는 물방울에 포함된 석회 성분이 석출되어 동굴 바닥에서 위로 자라는 것이다. 종유석과 석순은 서로 마주 보고 자란다. 종유석과 석순이 서로 닿게 되면 석주가 만들어진다.(그림 2)   그림 2. 석회암 동굴에서 오랜 시간에 걸쳐 생성되는 종유석, 석순, 석주   종유석, 석순, 석주는 지하수에 녹아있던 석회 성분이 고체 상태로 석출되면서 수백 년, 수천 년 이상의 오랜 기간에 걸쳐 형성되는 것이다. 이렇게 서서히 일어나는 변화라면 거의 정적 이미지라고 보아도 무방하다. 오늘 촬영하거나 내일 촬영하거나 그 모양이 크게 변화하지 않기 때문이다. 다만 고드름 끝에 달린 물방울처럼 종유석 끝에 달린 석회 성분을 포함한 당장이라도 떨어질 듯한 지하수 방울을 촬영하는 경우라면 다른 이야기가 될 수도 있다.   변화의 속도가 빠른 것 이번에는 변화의 속도가 고드름이나 종유석보다 조금 빠른 것을 살펴보자. 잔잔한 수면에 작은 물방울이 떨어지는 경우를 관찰해보자. 물방울이 떨어지는 속도는 눈 깜짝할 사이에 일어나는 일이어서, 어떤 현상이 생기는지 육안으로는 자세하게 관찰할 수 없다. 고속으로 사진을 촬영할 수 있는 장비의 힘을 빌어야 비로소 어떤 현상이 일어났는지를 알 수 있다. 작은 물방울이 잔잔한 수면에 떨어진 후에 나타나는 물방울과 수면의 변화를 시계열로 정리하면 <그림 3>과 같다.    그림 3. 고속 촬영으로 포착한 ‘물방울과 수면의 힘겨루기’     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
디지털 전환으로 플랜트/조선 산업 경쟁력을 찾다
이미지 제공 : 팀솔루션   글로벌 경쟁 심화에 따른 수주 경쟁, 고부가가치화를 위한 기술 확보 필요성, 숙련된 기술 인력의 부족, 환율과 원자재 가격 상승 등은 플랜트 및 조선 산업의 경쟁력을 떨어뜨릴 수 있는 요인으로 꼽힌다. 이런 환경적 어려움을 극복하고 산업의 글로벌 경쟁력을 높일 수 있는 돌파구로서 디지털 전환에 대한 관심은 꾸준히 높아지고 있다. 3D 설계와 공정 자동화 등 이전부터 언급되어 온 기술뿐 아니라 디지털 트윈이나 인공지능(AI)까지 보다 폭 넓은 디지털 기술을 활용하고, 전통적인 산업의 프로세스를 근본적으로 혁신해야 한다는 목소리가 커지고 있다. 이번 호에서는 지난 2월 14일 열린 ‘플랜트 조선 컨퍼런스 2025’의 발표 내용을 중심으로, 디지털 트윈, 인공지능 등 기술 현황과 추진 사례를 통해 플랜트/조선 산업의 디지털 전환을 위한 실마리를 찾아보고자 한다.   EPC 엔지니어링의 혁신을 위한 AI 기술 / 김민규 효율적 작업 환경과 미래 인력 운용 설루션으로서의 디지털 트윈 / 송희삼 산업현장의 성공적인 DX를 위한 인사이트 공유 / 박혜준 디지털 전환 생산 혁신의 마지막 퍼즐, 성과제 / 장용진   ■ 총 13 페이지   ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
[칼럼] AI의 거대한 파도, 엔비디아가 만드는 미래
트렌드에서 얻은 것 No. 22    AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” – 젠슨 황   AI의 거대한 파도, 엔비디아가 만드는 미래 엔비디아는 2024년과 2025년 GTC(GPU Technology Conference)에서 AI 기술을 통해 산업 전반에 걸친 변화를 이끌어가고 있다. 젠슨 황은 기조연설에서 기술 혁신이 사회적, 경제적 구조를 재편하는 ‘변화의 파도’라고 강조하며, 엔비디아가 그 중심에서 미래를 설계하고 있음을 확신시켰다.  엔비디아는 두 해 동안 AI 혁신을 가속화하며 다양한 제품과 플랫폼을 선보였다. 2024년에는 GB200 AI 플랫폼과 블랙웰(Blackwell) DGX B200 GPU를 통해 성능 향상에 초점을 맞췄다면, 2025년에는 블랙웰 울트라(Blackwell Ultra) 기반의 NVL72 등 차세대 하드웨어와 지속 가능성을 강조하며 더 큰 비전을 제시했다.   표 1. 2024년과 2025년 엔비디아의 주요 발표 비교   인공지능 혁명의 변곡점에서 인류는 늘 기술의 발전과 함께 새로운 시대를 맞이해 왔다. 산업혁명이 증기기관과 전기를 통해 생산 방식을 혁신했던 것처럼, 디지털 혁명은 인터넷과 스마트폰을 통해 세상을 연결했다. 그리고 지금, 우리는 또 하나의 거대한 변곡점에 서 있다. 바로 AI 혁명이다. 2025년 3월, 엔비디아의 GTC에서 젠슨 황 CEO는 기조연설을 통해 AI가 변화의 중요한 시점에 도달했음을 선언했다. 그는 AI가 단순한 도구를 넘어 ‘스스로 사고하고 결정하는 존재’로 발전하고 있으며, 이 거대한 변화가 기업, 산업, 그리고 인간의 삶 전반에 걸쳐 영향을 미칠 것이라고 강조했다. 이번 GTC 2025에서 가장 주목받은 키워드는 에이전틱 AI(agentic AI)와 추론 AI(reasoning AI)였다. 기존의 AI가 데이터를 분석하고 패턴을 찾는 데 주력했다면, 이제 AI는 자율적으로 목표를 설정하고 스스로 문제를 해결하는 방향으로 나아가고 있다. 이러한 변화는 단순한 업그레이드가 아니라, AI 산업 전반의 패러다임을 뒤흔드는 파도와 같다. 이러한 흐름 속에서 엔비디아는 블랙웰 GPU라는 차세대 칩을 공개하며, 인공지능 모델의 효율성을 비약적으로 향상시키는 새로운 하드웨어 시대를 열었다. 또한 옴니버스 클라우드 API(Omniverse Cloud API), AI 팩토리(AI Factories) 등의 개념을 통해 AI가 단순한 연구 도구가 아니라, 실제 산업을 자동화하고 혁신하는 핵심 인프라로 자리 잡아가고 있음을 보여주었다. 그렇다면 우리는 이러한 변화의 바람 속에서 어떤 선택을 해야 할까? AI 혁명의 파도를 넘는 기업과 뒤처지는 기업의 차이는 무엇일까? 엔비디아의 발표를 중심으로 AI 산업이 어디로 흘러가고 있는지, 그리고 그 변화 속에서 우리는 무엇을 준비해야 하는지를 하나씩 짚어보자. “AI가 단순한 연구 프로젝트에서 벗어나, 본격적인 산업 혁신의 중심으로 자리 잡는 것” – 젠슨 황   블랙웰, AI의 새로운 엔진 기술 혁신의 역사는 더 빠르고 더 강력하며 더 효율적인 도구를 만들려는 인간의 끝 없는 도전과 함께 발전해 왔다. AI 산업도 예외가 아니다. 과거에는 단순한 이미지 분석과 음성 인식이 AI의 주요 활용 분야였다면, 이제는 스스로 학습하고 결정을 내리며 복잡한 문제를 해결하는 AI가 요구되고 있다. 하지만 이런 고도화된 AI 모델을 운용하려면 엄청난 연산 능력이 필요하며, 이를 뒷받침할 강력한 하드웨어가 필수이다. GTC 2025에서 젠슨 황이 가장 먼저 소개한 것은 블랙웰 GPU였다. 그는 “AI의 미래를 가속하는 가장 강력한 엔진”이라며, 블랙웰이 기존 호퍼(Hopper) 아키텍처를 넘어선 새로운 시대의 핵심 기술이라고 강조했다. 그렇다면 블랙웰 GPU는 무엇이 다를까? 블랙웰 GPU는 기존 호퍼 아키텍처 대비 연산 성능이 2배 이상 향상되었으며, 특히 대규모 AI 모델을 실행할 때의 전력 효율이 4배 증가했다. 이는 곧 더 적은 에너지로 더 강력한 AI 모델을 훈련하고 실행할 수 있다는 의미다. 젠슨 황은 연설에서 “블랙웰은 단순한 속도 개선이 아니라, AI 연구자들이 더 크고 복잡한 모델을 현실적으로 활용할 수 있도록 지원하는 플랫폼”이라고 설명했다. 이제 AI 연구자는 엄청난 비용을 감수하지 않고도 보다 정교한 생성형 AI, 실시간 데이터 처리, 고도화된 시뮬레이션 등을 구현할 수 있게 되었다. 엔비디아는 블랙웰 GPU와 함께 옴니버스 클라우드 API를 발표했다. 이는 단순한 클라우드 컴퓨팅 설루션이 아니라, AI 모델 개발 및 실행을 위한 강력한 협업 플랫폼이다. 옴니버스 클라우드 API는 데이터센터, AI 연구소, 기업의 IT 인프라를 하나의 거대한 AI 네트워크로 연결하여, 개발자들이 실시간으로 협업하고 AI 모델을 학습할 수 있도록 지원한다. 이는 특히 자율주행, 산업 자동화, 로보틱스 같은 분야에서 AI의 혁신 속도를 극적으로 끌어올릴 것으로 기대된다. 젠슨 황은 “AI 개발은 더 이상 한 기업이나 연구소만의 일이 아니다. 옴니버스 클라우드 API를 통해 전 세계의 AI 개발자가 하나로 연결될 것”이라며, AI 연구의 새로운 생태계를 제시했다. 또 한 가지 주목할 점은 AI 팩토리(인공지능 공장) 개념이다. 젠슨 황은 AI를 ‘새로운 산업 혁명의 동력’으로 표현하며, AI 팩토리가 데이터를 가공하고 AI 모델을 대량으로 생산하는 핵심 인프라가 될 것이라고 설명했다. 이 개념을 이해하려면 기존 제조업과 비교해보면 쉽다. 과거에는 자동차나 전자제품을 생산하는 공장이 경제의 중심이었지만, 미래에는 AI를 학습하고, 최적화하고, 배포하는 ‘AI 공장’이 가장 중요한 인프라가 될 것이다. 젠슨 황은 AI 팩토리가 AI 기반 자율주행, 로봇, 데이터 분석, 금융 모델링 등 다양한 산업에서 필수 역할을 하게 될 것이라고 강조했다. 블랙웰 GPU, 옴니버스 클라우드 API, AI 팩토리는 단순한 기술 발전이 아니다. 이들은 AI가 단순한 연구 프로젝트에서 벗어나 본격적인 산업 혁신의 중심으로 자리 잡는 것을 의미한다. 과거에도 GPU의 성능 향상이 AI 산업에 변화를 가져온 적이 있다. 2012년 알렉스넷(AlexNet)이 GPU 가속을 이용해 딥러닝의 가능성을 처음 보여줬고, 2017년 트랜스포머(transformer) 모델이 등장하며 자연어 처리 AI가 급격히 발전했다. 그리고 2025년에는 블랙웰이 AI의 자율성과 창의성을 한 단계 끌어올리는 전환점이 될 것이다. 젠슨 황이 기조연설에서 블랙웰을 소개하며 한 말이 특히 인상적이었다. “AI는 이제 단순한 도구가 아니라 스스로 사고하고 결정하는 존재로 나아가고 있다.” 이 말은 곧, 우리가 맞이할 AI의 미래가 이전과는 전혀 다른 차원이라는 것을 시사한다. 그리고 그 변화를 가속하는 엔진이 바로 블랙웰이다. “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다.” – 젠슨 황   엔비디아가 던진 화두, 에이전틱 AI와 추론 AI AI 기술의 발전은 단순히 연산 능력을 향상시키는 것에 그치지 않는다. 더 중요한 것은 AI의 ‘사고 방식’이 바뀌고 있다는 점이다. 지금까지의 AI는 데이터를 학습하고 패턴을 인식하는 역할을 해왔다. 하지만 이제 AI는 스스로 목표를 설정하고, 상황에 맞게 판단하며, 능동적으로 문제를 해결하는 방향으로 진화하고 있다. GTC 2025에서 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 바로 이러한 변화의 핵심 개념이다. 그는 이 두 가지 개념이 AI를 단순한 도구에서 ‘자율적 지능’으로 변화시키는 결정적 요소라고 설명했다. 그렇다면 에이전틱 AI와 추론 AI는 무엇이며, 어떤 변화를 가져올까? 에이전틱 AI의 핵심은 AI가 인간의 지시 없이도 능동적으로 목표를 설정하고, 실행할 수 있도록 만드는 것이다. 기존의 AI는 주어진 데이터와 명령에 따라 최적의 결과를 도출하는 ‘수동적’ 존재였다. 하지만 에이전틱 AI는 스스로 목표를 설정하고, 문제를 해결하는 ‘능동적’ 존재로 변하고 있다. 젠슨 황은 에이전틱 AI를 활용하면 인간이 직접 개입하지 않아도 AI가 알아서 문제를 해결하는 시대가 열린다고 강조했다. 추론 AI는 한 단계 더 나아가, AI가 단순한 패턴 인식을 넘어 논리적 사고를 수행할 수 있도록 만드는 기술이다. 기존 AI 모델은 데이터를 학습하고 특정 패턴을 기반으로 예측을 수행했지만, 그 과정에서 왜 이런 결론이 나왔는지 설명하지 못하는 경우가 많았다. 그러나 추론 AI는 AI가 논리적인 판단을 수행하고, 의사결정의 과정을 설명할 수 있도록 하는 것을 목표로 한다. 젠슨 황은 “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다”며, 추론 AI가 향후 AI 발전의 핵심이 될 것이라고 강조했다. 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 개별적인 개념이 아니라, 서로 결합될 때 가장 강력한 시너지를 발휘한다. 에이전틱 AI는 AI가 스스로 목표를 설정하고, 문제를 해결할 수 있도록 한다. 추론 AI는 AI가 단순한 계산이 아니라, 논리적 사고를 통해 최적의 결정을 내릴 수 있도록 한다. 이 두 가지가 결합되면, AI는 단순한 보조 도구를 넘어서 ‘진정한 지능(Artificial General Intelligence : AGI)’에 가까워질 것이다. 이러한 AI의 발전은 산업 전반에 걸쳐 거대한 변화의 파도를 일으킬 것이며, 기업들은 단순한 AI 도입을 넘어서 AI를 기업 전략의 중심으로 삼아야 하는 시점에 이르렀다. “AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다.” – 젠슨 황   AI 팩토리, AI 혁명을 생산하는 공장 이제 AI는 단순한 소프트웨어가 아니라 하나의 ‘산업’으로 성장하고 있다. GTC 2025에서 젠슨 황이 강조한 개념 중 하나가 바로 AI 팩토리(인공지능 공장)이다. 그는 AI 팩토리를 가리켜 ‘미래 산업의 심장’이라고 표현했다. 그렇다면 AI 팩토리란 무엇이며, 왜 중요할까? 이 개념이 가져올 변화는 무엇일까? 기존의 데이터센터는 단순한 컴퓨팅 인프라였다. 하지만 AI 팩토리는 데이터를 학습하고, AI 모델을 훈련하며, 새로운 AI 설루션을 ‘생산’하는 역할을 한다. 즉, AI가 AI를 만들어내는 공장이다. 젠슨 황은 AI 팩토리를 자동차 산업에 비유하며 설명했다. “과거에는 사람이 손으로 자동차를 조립했지만, 지금은 로봇이 자동차를 생산한다. AI도 마찬가지다. 미래에는 사람이 AI를 개발하는 것이 아니라, AI 팩토리에서 AI가 스스로 AI를 만들어내게 될 것이다.” 즉, AI 팩토리는 단순한 데이터 센터가 아니라 AI 혁명을 대량 생산하는 공장이 된다. 젠슨 황은 GTC 2025에서 "AI 팩토리를 구동하는 핵심 연산 장치는 블랙웰 GPU가 될 것"이라고 강조했다. AI 팩토리에서 생산되는 것은 반도체나 기계가 아니라 AI 자체다. 이 공장에서 에이전틱 AI, 추론 AI, 자율주행 AI, 생성형 AI 등이 대량으로 생산된다. 즉, AI 팩토리는 단순한 데이터 센터를 넘어 새로운 AI 산업의 허브가 된다. AI 팩토리가 등장하면 기업과 산업이 근본적으로 변화한다. 특히, 데이터를 기반으로 하는 모든 산업이 AI 팩토리를 도입할 가능56 · 성이 높다. 결국 AI 팩토리는 단순한 연구소가 아니라, 실제 AI 모델을 ‘대량 생산’하여 산업에 공급하는 핵심 인프라가 된다. 젠슨 황은 AI 팩토리의 등장이 단순한 기술 발전이 아니라 경제 패러다임의 변화라고 강조했다. 이제 기업은 단순히 AI를 도입하는 것을 넘어, AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다. “AI를 도입하지 않는 기업은 도태될 것이다.” – 젠슨 황   AI의 도입, AI가 기업을 재설계한다 AI 혁명은 더 이상 선택이 아니다. GTC 2025에서 젠슨 황이 강조한 메시지는 명확했다. "AI를 도입하지 않는 기업은 도태될 것이다." 이제 AI는 기업 운영의 한 요소가 아니라 기업의 핵심 전략, 구조, 성장 엔진 자체로 변화하고 있다. 기업은 어떻게 AI를 도입하고 있으며, AI 도입이 비즈니스에 미치는 영향은 무엇일까? 과거 AI 도입은 단순한 자동화 도구 활용이었다. 그러나 이제 AI 도입(AI adoption)은 기업의 핵심 역량을 AI 중심으로 전환하는 과정이다. AI 도입은 이제 단순한 기술의 도입이 아니라, 기업의 전략과 문화 자체를 AI 중심으로 변화시키는 과정이다. AI 도입이 빠르게 진행될 수록, 기업들은 직접 AI를 개발하는 것이 아니라 필요한 AI 서비스를 구독하는 방식으로 활용하는 시대가 열리고 있다. AI 도입이 가속화되면서 기업들은 완전히 새로운 방식으로 운영되고 있다. 특히, 의사결정 구조, 업무 방식, 조직 문화가 AI 중심으로 변화하고 있다. 이제 AI는 단순한 도구가 아니다. AI 도입이 진행될 수록, 기업의 핵심 전략과 비즈니스 모델 자체가 AI 중심으로 변화하고 있다. 결국, AI 도입을 성공적으로 수행하는 기업만이 미래 시장에서 생존하고 성장할 수 있을 것이다.    표 2. 기존 기업 vs. AI 중심 기업의 차이점   AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” – 젠슨 황   네트워킹, AI 시대의 연결과 협업 AI가 기업의 핵심 전략이 되고 산업 전체가 AI 기반으로 재편되는 과정에서, 네트워킹(networking)의 중요성이 더욱 강조되고 있다. 과거 기업은 독립적으로 성장하는 전략을 취했지만, 이제 AI 시대에서는 기업 간 협력, 데이터 공유, AI 연구 협업이 필수이다. GTC 2025에서 젠슨 황은 이렇게 말했다. “AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” 그렇다면 AI 시대의 네트워킹은 어떻게 이루어지고 있으며, 어떤 기업이 AI 협업을 통해 새로운 가치를 창출하고 있을까? AI 네트워킹의 의미는 ‘AI는 연결을 필요로 한다’로 해석된다. AI 혁명이 가속화될 수록 기업들은 서로 연결될 필요가 있다.  즉, AI 네트워킹이란 기업들이 AI를 더 빠르고, 더 효율적으로, 더 윤리적으로 활용하기 위해 서로 협력하는 과정을 의미한다. AI 네트워킹을 실현하는 방식은 다양하지만, 현재 가장 중요한 세 가지 협력 모델을 살펴보자. AI 팜(AI farms)을 통해 개별 기업이 AI 인프라를 구축하는 부담을 줄이고, 더 빠르게 AI를 도입할 수 있다. AI 얼라이언스(AI alliance)를 통해 기업들은 경쟁이 아닌 협력을 기반으로 AI 혁신을 가속화하고 있다. 즉, AI 데이터 공유는 이제 개인정보 보호를 유지하면서도 기업들이 협력할 수 있는 새로운 방식으로 발전하고 있다. AI 네트워킹이 활성화됨에 따라, 기업들은 완전히 새로운 방식으로 연결되고 협력하고 있다. AI 시대에는 한 산업 내에서 경쟁하는 것이 아니라, 다양한 산업과 연결되는 것이 핵심 전략이 된다. 결과적으로, AI 네트워킹을 활용하는 기업들은 새로운 기회를 창출하고, 더 빠르게 AI 중심으로 전환하고 있다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다.” – 젠슨 황   AI 시대의 미래, 우리는 어디로 가는가 AI 혁명은 이제 단순한 기술 발전을 넘어 산업, 사회, 인간의 삶 자체를 근본적으로 변화시키고 있다. GTC 2025에서 젠슨 황은 말했다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다. ”그렇다면 AI의 미래는 어디로 향하고 있으며, 우리는 AI와 함께 어떤 세상을 만들어가야 할까? 에이전틱 AI와 추론 AI의 발전이다. 즉, AI가 단순한 ‘도구’가 아니라, 인간과 협력하는 ‘실제적인 파트너’가 되는 시대가 다가오고 있다. 기존의 AI는 패턴을 학습하는 방식이었다. 그러나 추론 AI는 스스로 논리적으로 사고하고 추론하는 능력을 갖춘다. 즉, AI가 더 이상 단순한 자동화 도구가 아니라, 지능적인 사고를 할 수 있는 존재로 변화하고 있다. AI가 점점 더 지능적으로 발전하면서, 우리는 ‘AI와의 관계를 어떻게 설정할 것인가’라는 근본적인 질문을 마주하게 되었다. 이제 AI는 단순한 도구를 넘어, 인간과 협력하여 새로운 가치를 창출하는 존재로 변화하고 있다. AI가 고도화될 수록 우리는 AI의 윤리적 문제와 사회적 책임에 대한 고민을 깊게 해야 한다. 결과적으로, 각국이 AI 규제와 발전 전략을 다르게 설정하면서 AI 패권 경쟁이 더욱 치열해지고 있다. AI는 단순한 기술이 아니라, 인류가 새로운 방식으로 사고하고 일하고 살아가는 방식을 바꾸는 거대한 전환점이 되고 있다. “AI는 이제 단순한 도구가 아니라, 스스로 사고하고 결정하는 존재로 나아가고 있다.” – 젠슨 황   변화의 바람을 넘어, AI와 함께 새로운 항해를 시작하다 AI 혁명은 거대한 바람이 아니라, 이제는 우리가 타고 항해해야 할 파도다. 과거에는 변화가 두려운 것이었다. 그러나, AI와 함께라면 우리는 변화 속에서도 새로운 기회를 창출할 수 있다. 엔비디아 GTC 2025에서 젠슨 황이 던진 질문을 기억하자. “AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” 이제 우리는 AI와 함께 새로운 항해를 시작할 준비를 해야 한다.   그림 1. 엔비디아 기업 성장 맵(GTC 2024, 2025, Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-04-02
[칼럼] 이제는 인공지능과 디지털 트윈의 만남이 필요하다
디지털 지식전문가 조형식의 지식마당   지난 2월호 칼럼에서 필자는 현재 인공지능의 약점으로 현실의 물리적 특성에 대한 이해도가 떨어진다고 짚었다. 그래서 물리적 AI(physical AI)가 필요하다고 이야기한 적이 있다. 물리적 AI란 현실의 물리적 현상을 이해하는 인공지능을 의미한다. 최근의 발전된 대규모 언어 모델(LLM)과 지속적으로 발전하고 있는 인공지능 멀티모달이 우리를 놀라게 하고 있다. 그러나 인공지능 기술(AI technology)과 디지털 트윈 기술(digital twin technology)이 넘어야 할 큰 산이 있다. 인간들은 현실의 물리적 현상에 대해서 경험치가 풍부하다. 하지만 이 두 기술은 현실 세계에 대한 물리적 경험치가 많이 부족하다. 그래서 어떤 대답이나 결정이 현실 세계와 동떨어져서 사람들을 실망시키거나 놀라게 한다. 그래서 사전학습(pretraining)을 하기도 한다. 그러므로 물리적 AI와 물리적 디지털 트윈(physical digital twin)의 기술 결합이 필요하다. 최근에는 인공지능 분야에서 세계 기반 모델(world foundation model)에 관한 연구가 주목 받고 있다. 세계 기반 모델은 대규모 멀티모달 AI 모델로, 텍스트, 이미지, 음성, 영상, 코드 및 시뮬레이션 데이터를 학습한 모델로, 현실의 물리적인 특성은 물론 사회적과 경험적, 문화적 특성을 이해할 수 있는 인공지능 모델이라고 할 수 있다. 이 기반 모델(foundation model)은 인공지능 분야에서 최근 관심을 받고 있는 개념으로, 다양한 물리적 환경과 현실 세계의 데이터를 기반으로 학습하여 세계를 이해하고 예측하는 대규모 AI 모델을 의미한다. 이 모델은 현실 세계의 물리 법칙, 사회적 상호작용, 환경적 요소 등을 통합적으로 이해하고 시뮬레이션할 수 있도록 설계된다. 물리적 디지털 트윈은 디지털 트윈을 세계 기반 모델로 학습시킨 디지털 트윈이라고 할 수 있다. 현재 디지털 디지털 트윈의 의사결정이 빅데이터나 기계 학습 수준이라면 이것은 딥러닝이라고 할 수 있다. 딥러닝은 전이학습(transfer learning)이나 추론(reasoning)이 가능하다. 현재의 디지털 트윈 개발 환경은 몇 년 전의 챗GPT같은 인공지능 기반 모델이 나오기 전과 비슷하다. 산업 분야 별로 표준화도 없고, 각각의 필요에 따라서 매번 개발해야 하고, 다시 재사용하는 부분도 상대적으로 적어서 개발 비용이 사용자의 기대감에 비해서 매우 비싸고, 저렴한 것은 범용성이 거의 없는 편이다. 그리고 디지털 트윈 내부의 의사결정 법칙을 만들거나 인공지능에 필요한 빅 데이터와 학습 데이터 비용이 많이 필요하다.   그림 1. 물리적 인공지능과 물리적 디지털 트윈의 결합(출처 : 챗GPT로 생성)   제품 개발과 생산과 유지보수 분야에서 디지털 트윈과 AI의 결합은 많은 장점이 있다. 디지털 트윈과 AI를 결합하면 각 기술의 장점을 극대화할 수 있다. 향상된 예측 및 분석 : AI는 디지털 트윈이 수집한 데이터를 분석하여 더 정확한 예측을 제공할 수 있다. 예를 들어, AI는 장비의 장애를 예측하거나, 성능 저하를 조기에 감지하는 데 사용될 수 있다. 자동화된 의사결정 : AI는 디지털 트윈 데이터를 기반으로 더 효율적이고 자동화된 의사결정을 가능하게 한다. 이를 통해 프로세스를 최적화하고 운영 효율성을 향상시킬 수 있다. 연속적인 학습 및 개선 : 디지털 트윈은 지속적으로 데이터를 수집하고, AI는 이 데이터로부터 지속적으로 학습하며, 시스템의 성능을 개선한다. 사용자 맞춤형 경험 : AI는 디지털 트윈을 통해 수집된 사용자 데이터를 분석하여 맞춤형 사용자 경험을 제공할 수 있다. 만약에 이것이 가능하다면 제품 개발에 필요한 수많은 도면과 CAD 파일과 CAE 작업이 혁신적으로 줄 수 있을 것이다. 물리적 디지털 트윈과 물리적 AI의 추론과 시뮬레이션으로 대체할 수 있다. 그리고 다양한 시나리오가 적용된 결과물은 동영상으로 생성해서 볼 수 있다. 물리적 인공지능과 물리적 디지털 트윈의 기술 통합은 제조 산업 분야에 엄청난 게임 체인저가 될 수 있다. 요즘 각광을 받고 있는 딥시크(DeepSeek)처럼 일반 PC에서 사용할 수 있는 오픈소스의 AI에 물리적인 특성을 이해하는 디지털 멀티모달 AI 모델과 디지털 트윈이 중소기업과 개인 엔지니어가 사용할 수 있는 수준이 된다면, 진정한 인공지능 중심의 5차 산업혁명이 올 수 있다. 이것은 모든 엔지니어에게 새로운 경험이 될 수 있다.    ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-04-02