• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "유체"에 대한 통합 검색 내용이 1,130개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
엔비디아, 2025년 AI 핵심 인사이트 공유… "건설/엔지니어링/디자인 혁신에 AI 활용 확대 전망"
엔비디아가 2025년 AI가 가져올 각 산업 분야의 혁신에 대해 전망했다. 엔비디아의 전문가들은 멀티모달 모델이 업계의 혁신과 효율성을 가속화할 것이라고 예측했다. 생성형 AI는 올해 조직의 모든 분야에서 큰 주목을 받았다. 이에 따라 산업 전반에서 이를 활용해 혁신과 창의성을 증진하고, 고객 서비스를 개선하며, 제품 개발을 변화시키고, 의사소통을 강화하는 방법에 대한 논의가 활발히 이루어졌다. IDC에 따르면, 전 세계 기업은 내년에 AI 설루션에 3070억 달러를 지출할 것으로 예상된다. 또한, 이는 2028년까지 연평균 29.0%의 성장률로 6320억 달러까지 증가할 것으로 보인다. IDC는 AI가 2030년까지 전 세계 누적 경제에 19조 9000억 달러의 영향을 미칠 것이며, 2030년 전 세계 GDP의 3.5%를 견인할 것이라고 예측했다. 그러나 AI의 빠른 발전에도 불구하고 일부 기업과 스타트업은 여전히 실험과 사일로화된 프로젝트에 집착하며 AI 도입에 느리게 대응하고 있다. 이는 AI의 혜택이 기업, 사용 사례, 투자 수준에 따라 다르기 때문이다. 하지만 신중한 접근 방식은 낙관적인 태도로 전환되고 있다. 포레스터 리서치(Forrester Research)의 2024 AI 현황 설문조사에 참여한 응답자의 3분의 2는 조직의 AI 이니셔티브가 성공하려면 투자 수익률이 50% 미만이어야 한다고 답했다. 다음으로 주목할 만한 것은 에이전틱 AI이다. 이는 자율적이거나 ‘추론’하는 형태의 AI로, 다양한 언어 모델, 정교한 검색 증강 생성(RAG) 스택, 고급 데이터 아키텍처를 사용해야 한다.     엔비디아는 2025년 주목할 만한 AI 트렌드로 ▲효율적인 추론 설루션에 대한 수요도 증가 ▲양자 컴퓨팅의 오류 수정 및 양자 하드웨어 성능 향상 ▲AI의 창의성과 다양성 강화 ▲산업 인프라와 도시 계획의 재검토 ▲AI 에이전트의 효율을 극대화하는 AI 오케스트레이터의 증가 ▲기업의 데이터를 탐색 방식을 바꾸는 AI 쿼리 엔진 ▲기업에게 고성능 추론을 필수로 만드는 에이전틱 AI ▲데이터를 인텔리전스로 처리하기 위한 AI 팩토리 확장 등을 꼽았다. 엔비디아는 에이전틱AI(agentic AI)의 시대가 열리면서, 여러 모델로 구성된 복잡한 시스템에서 거의 즉각적인 응답에 대한 수요가 증가할 것으로 전망했다. 이에 따라 고성능 추론은 고성능 훈련 인프라만큼이나 중요해질 전망이다. 그리고 IT 리더는 실시간 의사 결정을 위한 성능을 제공하기 위해, 에이전틱 AI의 수요에 맞추어 확장 가능하고 특수 목적에 맞게 구축되고 최적화된 가속 컴퓨팅 인프라를 필요로 할 것이다. AI를 통한 건설, 엔지니어링, 디자인 혁신도 보다 활발히 진행될 전망이다. 엔비디아는 건설, 엔지니어링, 디자인 산업에 맞춤화된 생성형 AI 모델이 증가할 것이며, 이는 효율성을 높이고 혁신을 가속화할 것이라고 보았다. 건설 분야에서는 에이전틱 AI가 현장 센서와 카메라에서 수집한 방대한 양의 건설 데이터를 해석해 더 효율적인 프로젝트 일정과 예산 관리로 이어지는 인사이트를 제공한다. AI는 24시간 현실 캡처 데이터(라이다, 사진 측량, 레디언스 필드)를 평가하고 품질, 안전, 규정 준수에 대한 중요한 인사이트를 도출해 오류와 작업장 부상을 줄일 수 있다. 엔지니어의 경우, 물리 정보 신경망에 기반한 예측 물리학은 홍수 예측, 구조 엔지니어링, 건물 내 개별 방이나 층에 맞춘 공기 흐름 설루션을 위한 전산유체역학(CFD)을 가속화해 설계 반복을 단축한다. 디자인 분야에서는 RAG(검색증강생성)를 통해 건물 디자인과 시공을 위한 정보 모델링이 현지 건축법을 준수하는지 확인할 수 있다. 이는 디자인 초기 단계에서 규정을 준수할 수 있도록 한다. 확산 AI 모델은 건축가와 디자이너가 키워드 프롬프트와 대략적인 스케치를 결합해 고객 프레젠테이션을 위한 풍부하고 상세한 개념 이미지를 생성할 수 있게 해 개념 설계와 부지 계획을 가속화한다. 이로써 연구와 디자인에 집중할 수 있는 시간을 확보할 수 있다. 엔비디아는 거의 모든 산업에서 AI를 사용해 사람들의 생활과 여가를 즐기는 방식을 향상시키고 개선할 준비를 하고 있다고 보고 있다. 농업 분야에서는 AI를 사용해 식품 공급망을 최적화하고 식량 공급을 개선할 것이다. 예를 들어, AI는 개별 농장의 다양한 작물에서 발생하는 온실가스 배출량을 예측하는 데 사용될 수 있다. 이러한 분석은 공급망에서 온실가스를 줄이는데 도움이 되는 설계 전략을 수립하는 데 도움이 된다. 한편, 교육 분야의 AI 에이전트는 개인의 모국어로 말하고 특정 과목의 교육 수준에 따라 질문하거나 답변하는 등 학습 경험을 개인화할 수 있다. 엔비디아는 국가와 산업계에서 AI가 경제의 다양한 측면을 자동화해 세계 인구가 감소하는 가운데서도 현재의 생활 수준을 유지하는 방법을 모색하기 시작할 것으로 보았다. 이러한 노력은 지속 가능성과 기후 변화에도 도움이 될 수 있다. 예를 들어, 농업 산업은 밭을 관리하고 해충과 잡초를 기계적으로 제거할 수 있는 자율 로봇에 투자하기 시작할 것이다. 이는 살충제와 제초제의 필요성을 줄여 지구를 더 건강하게 유지하고, 다른 의미 있는 기여를 위한 인적 자본을 확보할 수 있다. 도시 계획 사무소에서 자율주행차를 고려하고 교통 관리를 개선하기 위한 새로운 사고 방식을 기대할 수도 있다. 장기적으로는 AI가 전 세계의 시급한 과제인 탄소 배출량 감축과 탄소 저장을 위한 설루션을 찾는 데에 도움을 줄 수 있을 것으로 보인다. 기업의 AI 팩토리(AI factory)는 원시 데이터를 비즈니스 인텔리전스로 변환한다. 2025년에는 기업이 이러한 AI 팩토리를 확장해 방대한 양의 과거, 합성 데이터를 활용할 것이다. 이를 통해 소비자 행동과 공급망 최적화부터 금융 시장의 움직임, 공장과 물류창고의 디지털 트윈에 이르기까지 모든 것에 대한 예측과 시뮬레이션을 생성할 것이다. AI 팩토리는 초기 채택자들이 미래 시나리오에 대응하는데 그치지 않고 이를 예측하고 구체화하는 데 도움이 되는 핵심 경쟁 우위로 자리 잡을 것이다.
작성일 : 2024-12-11
CAD 프로그램 내부에서 유동 해석 직접 진행하기
SimericsMP for NX CAD의 해석 과정 소개   시메릭스MP(SimericsMP)는 FVM 기반의 유동 해석 프로그램이다. 직교형(cartesian) 격자를 이용하여 정확하고 빠른 격자 생성 시간, MGI(mismatched grid interface)를 이용한 인터페이스 면 처리, 그리드 디포메이션(grid deformation)을 통한 형상 변화 등의 특징을 가지고 있다. 그리고 널리 사용되는 CAD 프로그램에 애드인(add in)되어 있어, CFD를 많이 접하지 않은 초보자부터 유동 해석을 전문으로 하는 엔지니어까지 넓은 범위를 만족시킬 수 있는 유동 해석 프로그램이다.    ■ 자료 제공 : 케이더블유티솔루션, www.kwtsolution.com   시메릭스MP의 특징은 빠른 격자 생성과 손쉬운 경계 조건 대입으로 정리할 수 있다.   빠른 격자 생성 <그림 1>은 자동차 전체와 엔진 내부의 격자 형태를 보여주고 있다. 자동차 전체 내부 격자를 생성하는 시간은 일반 PC에서 1시간 30분 정도로 짧은 시간에 가능하다. 이렇게 짧은 시간에 격자 생성이 가능한 이유는, 격자의 밀집을 위한 조건 설정이 간단하고 바이너리 트리(binary tree) 형식의 격자이기 때문에 직교형 격자를 빠르게 만든다. 그리고 격자를 만든 후 벽면 부분을 잘라내기 때문에 격자의 틈, 고체의 형상에 상관 없이 격자를 빠르게 만들 수 있다.    그림 1. 시메릭스MP를 이용한 자동차 내부 격자 생성   쉬운 NX 애드인 세팅 과정  Simerics MP 애드인을 설치하면 NX 메뉴에 SimericsMP가 나타나게 된다. 이 메뉴를 사용하여 유동 해석이 가능하다. 해석 과정은 다음과 같다.    CAD 불러오기    그림 2    <그림 2>에서 보면, CAD를 불러온 후 메뉴의 ‘SimericsMP’를 선택하면 왼쪽에 SimericsMP 메뉴가 나타나게 된다. 이 메뉴를 통해 물리 모델, 경계 조건 등 해석 조건을 세팅할 수 있다.   시뮬레이션 도메인 선정    그림 3   <그림 3>처럼 ‘Select SIM Domains’를 선택하면 CAD 면이 나타나고 볼륨 메시(Volume mesh)에 필요한 면을 선택해 준다.   유동 영역 및 격자 설정   그림 4    <그림 4>의 메뉴에서 유동 공간을 선정하면 선정된 공간에 대해서 유동 해석을 위한 격자를 생성해야 한다. 유동 공간이 만들어지면 왼쪽 창에 고체와 유체 공간이 분리되어 표시된다. ‘Generate Mesh’를 선택하면 격자를 생성할 수 있는 창(Mesh Generation)이 나타난다. 격자 생성 모드는 노멀 모드(normal mode)와 어드밴스드 모드(advanced mode)로 나누어진다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-12-05
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅱ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (16)   터보 기계는 흐르는 유체와 회전하는 요소 사이에서 에너지 전달이 일어나는 기계에 초점을 맞춘 기계공학의 한 분야이다. 이러한 장치는 많은 산업 분야에서 중추적인 역할을 한다.이번 호에서는 지오메트리 준비를 위한 팁과 메시의 생성/변형/세분화에 대한 내용을 소개한다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   효과적인 지오메트리 준비를 위한 팁 지오메트리 생성 후에는 안정적인 터보 기계 시뮬레이션을 달성하기 위해 효과적인 모델 준비가 필수이다. 이 프로세스를 관리하는 데 도움이 되는 팁을 다음과 같이 소개한다.  지오메트리 정리 및 수리 : CAD 모델에서 틈새, 겹침 또는 중복된 가장자리를 복구한다. 양질의 메시를 생성하려면 깨끗하고 빈틈없는 지오메트리가 필요하다.  메시 최적화 : 날카로운 모서리나 모서리에 필렛을 추가하고 지오메트리를 분할하여 로컬 메시를 세분화할 수 있도록 한다.  가능한 경우 단순화 : 연구 중인 유동 물리학에 필수적이지 않은 작은 피처와 디테일을 제거한다.  매개변수화 : 설계 연구를 위해 치수를 쉽게 변경할 수 있도록 지오메트리를 매개변수화한다. 이러한 팁을 따르면 엔지니어는 터보 기계 형상이 최고 수준의 표준에 맞게 준비되었다고 확신할 수 있다.   메시 생성 지오메트리 생성 및 준비 외에도 전처리에는 복잡한 형상을 위한 메시 생성이 포함되며, 이는 종종 터보 기계 CFD 워크플로의 병목 현상이 된다. 터보 기계 구성 요소의 복잡성과 작동의 동적 특성으로 인해, 정확한 시뮬레이션 결과를 얻기 위해서는 정밀하고 잘 구성된 메시가 필요하다. 자동화 및 템플릿 기반 접근 방식을 활용하면 이 단계의 효율성을 높이고 전반적인 생산성을 높일 수 있다.   메시 생성의 기본 사항 메시 생성은 계산 영역을 셀 또는 요소라고 하는 작은 영역으로 세분화하여 그 위에 지배 방정식을 푸는 프로세스이다. 잘 구성된 그리드는 필수적인 흐름 특징과 물리적 현상을 포착하는 정확하고 효율적인 터보 기계 시뮬레이션을 보장한다. [참고] 피델리티 오토메시를 통한 향상된 터보 기계 메싱 피델리티 오토메시(Fidelity Automesh) 소프트웨어 패키지는 회전 기계 메싱을 위한 툴로, 피델리티 오토그리드를 통한 자동화된 멀티블록 구조형 메싱과 피델리티 헥스프레스를 통한 비정형 메싱 기능을 제공한다. 모든 유형의 터보 기계 애플리케이션을 위한 템플릿을 갖춘 이 설루션은 메시 프로세스를 간소화하여 복잡한 지오메트리를 손쉽게 처리하고 고품질 메시를 빠른 시간 내에 제공한다. 피델리티 오토메시로 시뮬레이션 워크플로를 가속화하여 설계 혁신과 최적화에 집중할 수 있다.   그림 1. (a) 풍력 터빈의 구조화된 메시, (b) 로터 블레이드 팁의 하이브리드 메시   메시 유형 터보 기계 시뮬레이션에 사용되는 주요 메시 유형과 기법은 다음과 같다.  Structured : 일정한 간격의 그리드 포인트로 구성된 구조화된 메시(그림 1-a)는 일관된 패턴을 사용하며, 종종 격자형 구조와 유사하다. 예측 가능한 흐름 패턴이 있는 영역에서는 고품질 해상도를 제공하지만, 복잡한 지오메트리에서는 구현하기가 어려울 수 있다.  멀티블록 : 계산 도메인은 구조화된 격자로 개별적으로 메시 처리된 여러 개의 간단한 블록으로 나뉜다. 이 방법을 사용하면 복잡한 도형에 대해 국소적인 세분화가 용이하고 그리드를 쉽게 생성할 수 있다.  Unstructured : 이러한 메시는 불규칙한 패턴으로 구성되며 2D에서는 삼각형, 3D에서는 사면체로 구성되는 경우가 많다. 복잡한 형상에 적합한 비정형 메시는 복잡한 모델에 쉽게 적용할 수 있지만, 중요한 흐름 영역에서 해상도가 저하되는 경우가 있다.  Hybrid : 구조화된 메시와 구조화되지 않은 메시의 장점을 결합한 하이브리드 메시(그림 1-b)는 경계 레이어와 같이 더 높은 해상도가 필요한 영역에는 구조화된 그리드를 사용하고, 복잡한 기하학적 영역에는 구조화되지 않은 그리드를 사용한다.  Conformal : 이 기술은 지오메트리의 여러 부분에 걸쳐 메시가 연속되도록 하여 인접한 메시 블록 사이의 간격과 중첩을 제거한다. 컴프레서나 터빈의 블레이드와 같이 간격이 좁은 구성 요소 사이의 흐름을 정확하게 캡처하는 데에 필수이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-12-05
[포커스] CAE 컨퍼런스 2024 발표 내용 정리
‘AI와 CAE 융합을 통한 차세대 제조 혁신 전략’을 주제로 한 ‘CAE 컨퍼런스 2024’가 지난 11월 8일 수원컨벤션센터에서 진행됐다. 스마트공장구축 및 생산자동화전(SMATEC 2024) 전시회와 함께 치러진 이번 행사에서는 제품 개발 과정에서 필수로 여겨지는 CAE 기술의 발전과 함께, 제조산업에서 AI(인공지능)의 방향성을 짚는 기회가 마련됐다. ■ 정수진 편집장      ■ 같이 보기 : [포커스] CAE 컨퍼런스 2024, 제조 혁신을 위한 CAE와 AI의 융합 전략 소개   이번 ‘CAE 컨퍼런스 2024’에서는 최신 CAE 기술 및 인공지능 기술의 흐름, 산업에서의 적용 사례 등이 소개됐다. 나니아랩스의 강남우 대표는 ‘로코드 AI 플랫폼을 이용한 설계 생성/예측/최적화 방법 및 사례’ 발표를 통해, 제조 도메인 전문가가 설계안을 효과적으로 생성하고 예측하며 최적화하는 데에 도움을 줄 수 있는 로코드(low-code) AI 플랫폼인 AslanX에 대해 설명했다. AslanX는 사용자 친화적인 인터페이스를 제공하여 비전문가도 쉽게 활용할 수 있다는 점을 특징으로 내세운다. 실제 사례를 통해 AslanX의 유용성을 소개한 강남우 대표는 “로코드 AI 플랫폼은 복잡한 설계 과정을 간소화하여 제조업체가 빠르게 효율적인 설계안을 생산할 수 있도록 지원하고, 데이터 기반 예측 기능을 통해 기업이 설계 효율을 높이면서 잠재적인 위험 요소를 미리 발견해 더 나은 의사결정을 내릴 수 있도록 돕는다”고 전했다.   ▲ 나니아랩스 강남우 대표   HP의 김태화 P3D 매니저는 ‘HP 3D 프린팅 자동화 설루션이 주도하는 산업의 디지털 트랜스포메이션’이라는 주제 발표를 통해 “과거 3D 프린팅 기술은 주로 시제품 제작에 쓰였지만, 지금은 최종 부품 생산에도 점점 더 많이 활용되고 있으며 앞으로 그 비중이 더욱 커질 것”이라고 전망했다. 김태화 매니저는 이러한 변화에 대응하기 위해 HP의 젯 퓨전 5600(Jet Fusion 5600) 3D 프린터와 자동화 시스템을 소개했다. 젯 퓨전 5600은 생산 속도와 품질을 동시에 향상시키고, 고객 맞춤형 파라미터 조정 기능을 통해 다양한 요구를 충족시킬 수 있도록 설계되었다. 김태화 매니저는 “젯 퓨전 3D 프린터를 중심으로 한 자동화 시스템은 비용 절감과 생산성 향상을 지원하며, 고객 요구에 맞는 맞춤형 제조 환경을 제공한다”고 전했다.   ▲ HP 김태화 P3D 매니저   피도텍의 최병열 연구위원은 ‘최적설계 대중화를 위한 AADO 기술’을 소개했다. 최적설계의 개념을 ‘최소한의 자원으로 최대의 결과를 도출하는 과정’으로 설명한 최병열 연구위원은 최적 설계 기술의 필요성이 늘면서 많은 기업이 최적화 도구에 대한 필요성을 느끼고 있지만, 접근성을 높이는 것이 해결 과제라고 짚었다. 최병열 연구위원은 “기존 최적설계 기술의 복잡한 접근 방식을 간소화해 모든 엔지니어가 접근할 수 있도록 할 방법을 고민했다”면서, “그 결과 탄생한 AADO(AI Aided Design Optimization)는 AI와 데이터 분석, 비주얼라이제이션 기술을 결합해 최적 설계 도구의 혁신 방안을 제시하고, 이를 통해 엔지니어가 더 효율적으로 설계 문제를 해결할 수 있도록 돕는다”고 전했다.   ▲ 피도텍 최병열 연구위원   케이더블유티솔루션의 변성준 이사는 ‘CAD와 CFD 융합을 통한 제품 설계 혁신’ 발표에서 “CFD(전산 유체 역학)가 제품 설계 과정에서 필수 요소로 자리잡고 있으며, CAD와 CFD의 통합은 설계 시간 절약과 데이터 분석의 정확성을 높여 기업 경쟁력에 기여한다”고 설명했다. 변성준 이사가 소개한 SimericsMP for NX는 NX CAD에 통합된 유한 체적법(FVM) 기반의 CFD 소프트웨어로, CAD 환경에서 직접 CFD 해석을 빠르고 효율적으로 수행할 수 있도록 돕는다. 변성준 이사는 “SimericsMP for NX는 격자 생성 시간을 줄이고 정확도를 높이면서, 복잡한 형상에서 해석의 일관성을 유지하는 것이 특징”이라고 소개했다.   ▲ 케이더블유티솔루션 변성준 이사   LG전자의 박우철 책임연구원은 ‘가전 개발에서 CAE와 AI 활용’에 대해 발표를 진행했다. LG전자는 제품 개발 프로세스에서 동역학 해석과 진동 해석을 통해 제품의 품질을 확보하고, 극한 시나리오에 품질을 검증하는 등에 CAE를 활용하고 있다. “머신러닝은 이점과 함께 실행 과정의 복잡성도 갖고 있다”고 짚은 박우철 책임연구원은 “AI의 적용 가능성을 높이기 위해 설계와 생산 과정에서 신뢰성 있는 데이터를 확보하고, 해석 결과의 일관성을 확보할 방법을 고민해야 한다”고 전했다. 또한 AI를 도입하는 과정에서 초기 투자 비용, 데이터 확장성, 전문 인력의 확보 등을 고려할 필요가 있다고 덧붙였다.   ▲ LG전자 박우철 책임연구원   지멘스 디지털 인더스트리 소프트웨어의 이종학 프로는 ‘제품 개발과 검증의 가속화를 위한 심센터 AI 설루션’에 대해 발표했다. 이종학 프로는 “AI 기술을 활용한 자동화 설루션은 제품 설계와 실험 과정에서 시간을 단축하고 효율성을 높일 수 있다”고 전했다. 지멘스의 시뮬레이션 포트폴리오인 심센터(Simcenter) 내에 탑재된 AI 기능을 소개한 이종학 프로는 “반복적인 작업의 자동화를 구현하기 위해서는 제품 개발 프로세스의 단계에서 사용할 데이터의 수집 및 흐름을 체계적으로 구성해야 한다. 또한 AI 모델을 활용해 최적의 디자인을 찾는 과정에서 최적화 알고리즘을 적용해 반복 작업을 효율적으로 관리하고, 그 결과에서 유의미한 인사이트를 도출하는 과정이 중요하다”고 전했다.   ▲ 지멘스 디지털 인더스트리 소프트웨어 이종학 프로   현대자동차의 김용대 글로벌R&D마스터는 ‘모빌리티 아키텍처 단계 타이어 시스템의 버추얼 개발 프레임워크’에 대해 소개했다. 전기차 타이어의 경우, 배터리와 차량의 무게가 늘어남에 따라 스트레스 및 성능에 있어 새로운 요구사항이 발생한다. 이에 대응해 타이어의 재설계가 필요한데, 김용대 마스터는 “초기 개발 단계에서 가상 모델을 기반으로 하는 새로운 방식이 필요하며, 이를 통해 실물 타이어에 의존하는 전통적인 접근에서 벗어나는 것도 고민해야 한다”고 말했다. 김용대 마스터는 “다양한 미래 모빌리티 환경에 적응하기 위해 시스템 엔지니어링 관점을 통합할 필요성이 있다”면서, “데이터 기반 의사결정을 통해 협력사와의 관계를 더욱 견고히 하고, 통합된 시스템으로 전환해 타이어 및 완성차 개발의 완성도를 높여야 할 것”이라고 덧붙였다.   ▲ 현대자동차 김용대 글로벌R&D마스터   현대모비스의 정원태 책임연구원은 ‘NVH 해석 분야에서의 고전적 방법론과 디지털 기술 융합 사례’ 발표를 통해 “기술의 발전이 CAE의 변화와 새로운 접근 방식을 요구하고 있다”면서, 데이터 중심의 AI 및 머신러닝의 활용 가능성과 함께 도전 과제를 극복하기 위한 방법론을 소개했다. 전기차의 복합 시스템 모델링 방법과 자유도 문제 해결, 모달 모델을 통한 복잡한 시스템의 간소화, 머신러닝 기법을 활용한 모터의 품질 예측 등 사례를 소개한 정원태 책임연구원은 “고전적 방법론과 AI, 머신러닝 기술의 결합은 더 빠르고 정확한 모델링을 가능케 하며, 디지털 트윈 기술은 복잡한 엔지니어링 문제를 해결하는 데에 도움을 준다”면서, 모델링과 데이터에 대한 깊은 이해를 바탕으로 효과적인 문제 해결을 위해 꾸준히 고민할 것을 당부했다.   ▲ 현대모비스 정원태 책임연구원
작성일 : 2024-12-04
[칼럼] 스마트에서 혁신으로
디지털 지식전문가 조형식의 지식마당   이번 달 컬럼은 SAT 이노베이션 매니지먼트를 소개하기로 정했다. 각 SAT에는 세 가지의 방향성이 있고, 각 방향성은 세 가지 그룹을 가진다. 첫 번째인 S 그룹은 스마트(smart), 체계적인(systematic)이다. 이것은 체계적 접근을 의미한다. 그리고 소프트웨어 정의(software-defined)가 있다. 두 번째 A 그룹은 인공지능(artificial intelligence), 증강현실(augmented reality), 자동화(automation)이다. 마지막 T 그룹은 기술(technology), 트렌드(trends) 그리고 변환(transformation)이고, 세 개의 그룹은 혁신경영(innovation management)으로 관리된다.   그림 1. SAT 그룹과 혁신 관리   <그림 1>은 세 개의 그룹과 각 그룹의 세 가지 키워드를 보여준다. 이것은 혁신경영으로 통합되며, 각 키워드는 디지털 스레드(digital thread)로 연결된다. 이것을 가지고 2025년에는 자세하게 통합시켜 보려고 한다.    SAT 이노베이션 매니지먼트 S Group 스마트(Smart) 체계적인(Systematic) 소프트웨어 정의(Software-Defined) A Group 인공지능(Artificial Intelligence, AI) 증강현실(Augmented Reality, AR) 자동화(Automation) T Group 기술(Technology) 트렌드(Trends) 변환(Transformation) 혁신경영(Innovation Management) 스마트(smart)라는 용어는 스마트 공장이나 스마트 건설 분야에서 기술을 활용해 더 효율적이고, 자동화되고, 데이터 중심적인 운영을 의미한다. 예를 들어, 스마트 공장(smart factory)에서는 IoT 센서와 인공지능을 활용해 생산 과정을 모니터링하고 최적화할 수 있다. 스마트건설(smart construction)도 건축 현장에 사용되는 기술과 데이터를 통해 건설 과정을 효율적으로 관리하고 개선한다. 이런 ‘스마트’한 접근 방식은 효율성(efficiency)을 높이고 비용을 절감하며 품질을 향상시키는 데에 도움이 된다. 스마트의 특징은 몇 가지로 요약할 수 있다. 먼저 연결성(connectivity)이다. IoT 기기와 센서로 모든 요소가 네트워크로 연결된다. 그 다음은 데이터 수집 및 분석이다. 이 연결성을 통해 실시간 데이터가 수집되고, 인공지능과 같은 기술로 분석되어 더 나은 결정을 내릴 수 있다. 자동화(automation)도 중요한 특징이다, 이를 통해 사람의 개입 없이도 많은 프로세스가 자동으로 실행된다. 마지막으로, 유연성과 적응성이다. 스마트 시스템은 환경 변화나 새로운 데이터를 바탕으로 빠르게 대응하고 최적화한다. 그러나 스마트의 궁극적인 목표는 우리가 추구하는 가치를 실현하는 데에 있다. 효율성, 생산성, 안전성, 지속 가능성 등 다양한 가치가 스마트 기술을 통해 충족될 때, 진정한 스마트함이 완성된다. 결국, 기술 자체가 목적이 아니라 우리가 원하는 결과를 얻는 것이 스마트의 진정한 의미라고 할 수 있다. 스마트 시스템(smart system)을 구축하거나 도입할 때에는 체계적인 접근이 중요하다. 먼저 명확한 목적과 목표를 설정해야 하며, 현재 프로세스와 기술을 파악하고, 필요한 개선점을 찾아야 한다. 그런 다음 단계별로 구현 계획을 세우고, 성과를 모니터링하며 지속적으로 개선해야 한다. 이러한 체계적 접근은 스마트 시스템이 실제로 기대하는 효과를 발휘하도록 보장해 준다. 최적화가 현존 시스템의 효율성을 극대화하는 데에 초점을 두는 반면, 혁신(innovation)은 완전히 새로운 아이디어나 방법을 추구하는 것이다. 하지만 스마트 시스템에서의 최적화는 혁신의 중요한 부분이 될 수 있다. 왜냐면, 데이터를 분석하고 자동화하는 과정에서 새로운 통찰력과 가능성이 발견되기 때문이다. 따라서 스마트 시스템의 최적화는 혁신과 상반되는 것이 아니라, 오히려 혁신을 위한 발판이 된다. 그러나 스마트에서 가장 핵심 가치 중에 하나인 최적화는 혁신을 방해할 수도 있다. 혁신의 방해 요소 중에 하나가 정설(orthodoxy)이다. 이것은 그 분야에서 모든 사람이 의심하지 않고 믿는 신념적 지식이다. 이것은 혁신의 방해가 될 수도 있다. 예를 들어서 항공우주 분야에서 혁신적 사업가인 라이트 형제와 일론 머스크는 기존의 정설을 깨고 새로운 발상을 하였다. 라이트 형제는 공기보다 무거운 금속인 알루미늄을 최초로 사용해서 인류 최초의 비행에 성공하였고, 일론 머스크는 기존의 정설인 더 강력한 로켓 엔진을 연구하는 대신에 혁신적인 로켓 재사용으로 발사 비용을 획기적으로 낮추었다. 그러나 모든 기업에게 이러한 혁신적 접근이 필요한 것은 아니다. 혁신의 특성은 불확실성(uncertainty)과 리스크(risk)이다. 혁신 관리는 이런 위험 요소를 관리를 통해서 최대한 줄여나가는 것이다. 소프트웨어 정의(software-defined) 또는 소프트웨어 중심 접근 역시 혁신적인 방법론이다. 이것은 미래를 향하는 트렌드(trends)라고 할 수 있다. 소프트웨어 정의 시스템(software-defined system)은 하드웨어의 고정된 기능을 소프트웨어를 통해 유연하게 제어하고 관리하는 시스템을 의미한다. 예를 들어, 스마트폰이나 스마트 TV처럼 다양한 기능을 소프트웨어 업데이트로 추가하거나 변경할 수 있는 시스템이 이에 해당한다. 이런 시스템은 하드웨어의 수명을 늘리고, 사용자의 요구에 빠르게 대응할 수 있다. 그리고 이것은 우리의 물리적 세계의 물리적 실체(entity)를 디지털 세상의 디지털 실체로 가상화(virtualization)할 것이다. 최근에 유행하는 디지털 트윈(digital twin)은 소프트웨어 정의 시스템이 통합해서 본격적으로 디지털 가상화의 방향으로 발전될 것으로 보이고, 수년 후에는 메타버스의 개념과 다시 만날 것이다.   그림 2. 소프트웨어 정의와 가상화의 예시   소프트웨어 정의된 모든 것은 기존의 제한된 하드웨어에 종속되지 않고 소프트웨어로서 모든 기술을 획기적으로 변화시킨다. 가상화와 소프트웨어 정의의 시작은 네트워크였지만, 이제는 자동차와 이 세상의 모든 하드웨어를 가상화하려고 한다. 현재 가장 큰 관심사 중에 하나는 자동차의 가상화이다. 가상화의 최고 기업은 애플이고, 가상화의 선구자는 스티브 잡스이다. 아이폰, 아이팟, 애플 뮤직, 애플 스토어, 애플 워치 등은 가상화의 산물이다. 우리는 오랫동안 하드웨어 중심의 생각에서 새로운 소프트웨어 중심의 패러다임을 가지게 될 것이다. 그렇다고 우리가 물리적 세계를 무시할 수는 없다. 우리의 삶과 신체가 물리적이기 때문이다. 역설적이지만, 우리의 모든 생각이 추상적이면서도 결국 물리적인 뇌에 근간을 두고 있다는 것이다. 그러므로 디지털 기술이 점점 발전할 수록 스마트의 핵심은 디지털이나 최적화나 자동화가 아닌 물리적이고, 불확실성과 리스크를 관리하는 혁신 관리가 더 중요해질 것이다.   그림 3. 소프트웨어 정의   인공지능은 이미 모든 디지털 전환(digital transformation)과 우리의 일상에 막대한 영향을 미치고 있다. 최근 챗GPT의 가능성은 이전의 인공지능의 역할보다 흥미롭다. 이제는 개인의 인공지능을 사용하는 역량에 따라서 결과의 차이가 클 수 있다.  증강현실(augmented reality)에서는 가상현실과 달리 현실세계와 가상현실(virtual reality)을 모두 동시에 보여주기 때문에 우리는 아주 직관적으로 접근할 수 있다. 그러나 이 기술은 앞으로 지속적으로 발전할 것으로 예상된다. 자동화(automation) 역시 수 십 년 동안 지속되고 있지만, 자동화를 단순하게 최적화(optimization)의 개념으로 적용해서 노동자를 줄인다면, 기업이나 국가는 장기적으로는 소비를 죽이는 결과를 가져 올 수 있다. 이것에 대해서 한 세기 전에 조지프 슘페터가 주장하였다. 그는 “시장의 비즈니스 모델을 모방해서 최적화는 사람은 사업가(businessman)이고, 혁신으로 새로운 비즈니스 모델을 시작하는 사람은 기업가(entrepreneur)”라고 했다. 마지막 T 그룹은 기술(technology), 트렌드(trends), 변환(transformation)이다. 현재 진행되고 있으나 통합적으로 관리되지 못하고 있다. 이 세 가지의 특징은 과거보다는 미래 진행이라는 것이다. 어떻게 보면 4차 산업혁명의 진행형이기도 하고 새로운 형태이기도 하다. 이것을 과거의 경험과 지식으로 관리하기에는 불확실성과 리스크가 존재한다. 이런 것들은 기존의 관리보다는 혁신 경영이 더 적합할 수 있다.   그림 4. 기술, 트렌드, 변환   결론적으로 현재는 뷰카(VUCA), 즉 변동적이고 복잡하며 불확실하고 모호한 사회 환경을 말한다. 변동성(volatility), 불확실성(uncertainty), 복잡성(complexity), 모호성(ambiguity)이 복합된 환경에서 점진적인 개선이나 최적화보다는 혁신적인 생각을 보다 비중 있게 해야 한다. 미래 산업은 항상 안주하지 않고 안 가본 길을 가야 한다. 강한 자보다는 새로운 환경의 게임 체인저가 돼야 한다. 기존의 브랜드보다는 새로운 카테고리를 만들어야 한다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’,  ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-12-04
앤시스, “엔비디아 GH200으로 CFD 시뮬레이션 속도 110배 향상”
앤시스가 엔비디아의 GH200 그레이스 호퍼 슈퍼칩(Grace Hopper Superchips)을 적용한 대규모의 전산유체역학(CFD) 시뮬레이션 결과를 소개하면서, “CFD 시뮬레이션 속도를 기존 대비 110배 높이고, 전체 실행 기간을 4주에서 6시간으로 단축하는 등 성과를 거두었다”고 전했다.  대규모 CFD 시뮬레이션은 다중물리 상호작용, 복잡한 기하학적 설계 및 실제 데이터를 반영한 고해상도 결과물을 필요로 하기 때문에 작업 과정이 복잡하며 많은 시간을 필요로 한다. 전통적인 CPU 기반 시뮬레이션의 경우 최소 며칠에서 몇 주까지 소요되며 모델 정밀도를 높일수록 추가적인 처리 시간과 연산 자원이 요구되는 것이 특징이다. 앤시스는 “GPU 기술을 도입한 앤시스 플루언트는 대규모 모델에서도 적은 자원으로 높은 예측 정확도를 유지하며 핵심적인 인사이트를 도출할 수 있다”고 밝혔다. 앤시스는 엔비디아와의 협력을 통해 텍사스 첨단 컴퓨팅 센터(TACC)의 고성능 컴퓨팅(HPC) 역량을 활용, 24억 셀 규모의 자동차 외부 공기역학 시뮬레이션을 수행했다. 작업 과정에서 예측 정확도를 유지하면서 시뮬레이션 속도를 단축했으며, 전체 시뮬레이션 속도를 떨어뜨리지 않으면서 매개변수를 추가해 정확도를 개선할 수 있도록 했다.     엔비디아의 퀀텀-2 인피니트밴드(Quantum-2 InfiniBand)를 통해 멀티 노드 확장된 320개의 GH200 그레이스 호퍼 슈퍼칩은 2048개의 CPU 코어를 사용할 때보다 110배 빠른 속도를 제공하며, 약 22만 5390개의 CPU 코어에 맞먹는 성능을 구현한다. 또한, 일반적인 GPU 환경에서 실행한 벤치마크 결과에 따르면 32개의 GPU를 사용할 경우 엔비디아의 GH200 그레이스 호퍼 슈퍼칩 한 대가 약 1408개의 CPU 코어와 동일한 성능을 제공하는 것으로 나타났다. 한편, 앤시스는 엔비디아의 가속 라이브러리, AI 프레임워크, 옴니버스 테크놀로지를 통합한 레퍼런스 워크플로인 ‘옴니버스 블루프린트(Omniverse Blueprin)’를 최초로 도입한 바 있다. 이를 통해 앤시스의 애플리케이션은 실시간으로 상호작용 가능한 물리 시각화 기능을 구현, 사용자가 복잡한 물리적 현상을 직관적으로 이해하고 즉각적으로 조정할 수 있는 환경을 제공하고 있다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스는 고객들에게 더욱 높은 수준의 시뮬레이션 정밀도와 인사이트를 제공할 수 있도록 역량 강화에 총력을 기울이고 있다”면서, “제품의 시장 출시 속도가 중요해진 만큼, 최신 GPU 기술로의 업그레이드가 개발 과정 전반에서 에너지 소비를 크게 줄여 고객들에게 비용 절감과 자원 효율화라는 두 가지 혜택을 동시에 제공하는 것에 주안점을 두고 있다”라고 말했다. 엔비디아의 팀 코스타(Tim Costa) HPC 및 양자 컴퓨팅 부문 이사는 “엔비디아의 GH200 그레이스 호퍼 슈퍼칩은 고객들이 시뮬레이션 모델의 한계를 넘어설 수 있도록 돕는다”면서, “엔비디아 HPC와 앤시스 설루션의 결합은 사용자들에게 자동차, 항공우주, 제조 등의 산업 전반에서 복잡한 엔지니어링 문제를 해결하고 출시 기간을 단축하는 강력한 시뮬레이션 툴을 제공하게 될 것”이라고 말했다.
작성일 : 2024-11-25
엔비디아, CAE에 실시간 디지털 트윈의 활용 돕는 ‘옴니버스 블루프린트’ 공개
엔비디아가 ‘슈퍼컴퓨팅 2024(SC24)’ 콘퍼런스에서 ‘엔비디아 옴니버스 블루프린트(NVIDIA Omniverse Blueprint)’를 발표했다. 이는 소프트웨어 개발업체가 항공우주, 자동차, 제조, 에너지, 기타 산업의 컴퓨터 지원 엔지니어링(CAE) 고객들이 실시간 상호작용이 가능한 디지털 트윈을 제작할 수 있도록 지원한다. 알테어, 앤시스, 케이던스, 지멘스와 같은 소프트웨어 개발업체는 실시간 CAE 디지털 트윈을 위한 엔비디아 옴니버스 블루프린트를 사용해 고객이 개발 비용과 에너지 사용량을 절감하면서 시장 출시 기간을 단축할 수 있도록 지원한다. 엔비디아는 이 블루프린트가 1200배 빠른 시뮬레이션과 실시간 시각화를 달성하기 위한 엔비디아 가속 라이브러리, 물리-AI 프레임워크, 대화형 물리 기반 렌더링을 포함하는 레퍼런스 워크플로라고 설명했다. 블루프린트의 첫 번째 적용 분야 중 하나는 전산유체역학(CFD) 시뮬레이션이다. 이는 자동차, 비행기, 선박 등 여러 제품의 설계를 가상으로 탐색하고 테스트하며 개선하는데 있어 중요한 단계이다. 기존의 엔지니어링 워크플로는 물리 시뮬레이션부터 시각화와 설계 최적화에 이르기까지 완료하는 데 몇 주 또는 몇 달이 걸릴 수 있다. 실시간 물리 디지털 트윈을 구축하려면 실시간 물리 솔버(solver) 성능과 대규모 데이터 세트의 실시간 시각화라는 2가지 기본 기능이 필요하다. 옴니버스 블루프린트는 이러한 기능을 달성하기 위해 엔비디아 쿠다-X(CUDA-X) 라이브러리를 활용해 솔버 성능을 가속화한다. 또한, 엔비디아 모듈러스(Modulus) 물리-AI 프레임워크를 사용해 플로 필드를 생성하기 위한 모델을 훈련하고 배포한다. 마지막으로, 엔비디아 옴니버스 애플리케이션 프로그래밍 인터페이스를 통해 3D 데이터 상호운용성과 실시간 RTX 지원 시각화를 제공한다.      앤시스는 옴니버스 블루프린트를 채택해 유체 시뮬레이션 소프트웨어인 앤시스 플루언트(Ansys Fluent)에 적용해 전산 유체 역학 시뮬레이션을 가속화했다. 앤시스는 텍사스 첨단 컴퓨팅센터에서 320개의 엔비디아 GH200 그레이스 호퍼 슈퍼칩(Grace Hopper Superchip)으로 플루언트를 실행했다. 2,048개의 x86 CPU 코어에서는 거의 한 달이 걸리던 25억 셀의 자동차 시뮬레이션을 6시간 만에 완료했다. 이를 통해 밤새 고충실도 CFD 분석을 수행할 수 있는 실현 가능성을 향상시키고 새로운 업계 벤치마크를 수립했다. 루미너리 클라우드 또한 블루프린트를 채택하고 있다. 엔비디아 모듈러스를 기반으로 구축된 이 회사의 새로운 시뮬레이션 AI 모델은 GPU 가속 CFD 솔버에서 생성된 훈련 데이터를 기반으로 기류장과 자동차 형상 간의 관계를 학습한다. 이 모델은 솔버 자체보다 훨씬 빠른 속도로 시뮬레이션을 실행해 옴니버스 API를 사용해 시각화된 실시간 공기 역학 흐름 시뮬레이션을 가능하게 한다. 엔비디아와 루미너리 클라우드는 SC24에서 가상 풍동을 시연했다. 이는 터널 내부에서 차량 모델을 변경하더라도 실시간으로 상호작용하는 속도로 유체 역학을 시뮬레이션하고 시각화할 수 있다. 엔비디아는 알테어, 비욘드 매스, 케이던스, 헥사곤, 뉴럴 컨셉, 지멘스, 심스케일, 트레인 테크놀로지스 등이 자체 애플리케이션에 옴니버스 블루프린트 도입을 검토하고 있다고 밝혔다. 옴니버스 블루프린트는 아마존 웹 서비스(AWS), 구글 클라우드, 마이크로소프트 애저를 비롯한 주요 클라우드 플랫폼에서 실행할 수 있다. 엔비디아 DGX 클라우드(DGX Cloud)에서도 사용할 수 있다.  리스케일은 엔비디아 옴니버스 블루프린트를 사용해 단 몇 번의 클릭만으로 맞춤형 AI 모델을 훈련하고 배포할 수 있도록 지원한다. 리스케일 플랫폼은 전체 애플리케이션-하드웨어 스택을 자동화하며, 모든 클라우드 서비스 제공업체에서 실행될 수 있다. 조직은 어떤 시뮬레이션 솔버를 사용해도 훈련 데이터를 생성하고, AI 모델을 준비, 훈련, 배포하며, 추론 예측을 실행하고, 모델을 시각화하고 최적화할 수 있다. 엔비디아의 젠슨 황(Jensen Huang) CEO는 “우리는 모든 사물이 디지털 트윈을 가질 수 있도록 옴니버스를 구축했다. 옴니버스 블루프린트는 엔비디아 옴니버스와 AI 기술을 연결하는 레퍼런스 파이프라인이다. 이는 선도적인 CAE 소프트웨어 개발자가 설계, 제조부터 운영에 이르기까지 세계 최대 산업을 위해 산업 디지털화를 혁신할 획기적인 디지털 트윈 워크플로를 구축할 수 있도록 지원한다”고 말했다.
작성일 : 2024-11-19
[세이플랜트 교육안내] 발전소 운전 및 효율 향상을 위한 디지털트윈 시뮬레이션 교육 과정 - 2024년 12월 11일(수) ~ 13일(금)
세이플랜트에서는 발전플랜트의 제어가능 효율손실, 최적운전, 문제발견 능력을 향상할 수 있도록 실습 위주의 교육을 실시하고 있습니다.   본 과정은 발전 전용 Simulator인 PEPSE를 사용하여 Heat Balance Diagram과 장치 (예, 가스/스팀 터빈, 보일러, 급수가열기, 열교환기, 밸브, 펌프, 혼합기, 분리기 등)들로 발전플랜트를 모사하고, 효율에 영향을 주는 변수를 이해하며 통합 플랜트에 대한 성능 평가 및 효율 개선을 위한 설계 능력을 향상할 수 있습니다.   또한 실제 공정을 모사한 OTS (Operator Training Simulator)를 통해 발전플랜트 공정 운전 및 운전 과정을 이해하고, 이를 바탕으로 설계 능력을 향상할 수 있는 교육을 실시합니다.   교육 목적 시뮬레이터를 통한 발전소 운전 원리 학습 발전플랜트의 모사 과정을 통하여 효율과 Trouble 관련 인자에 대한 전문성 향상 교육 내용 PEPSE 사용법과 주요 기능 활용사례 성능감시와 열평형 분석 개요 열역학, 유체역학, 열전달 기초 발전플랜트 Simulation 모델 구축 운전조건 조정에 따른 최적 열효율 계산 발전소 출력 증강에 대한 타당성 분석 Simulation 모델의 활용 사례 PEPSE의 활용 발전소 열평형분석, 최적 효율 관리 초기 설계/재설계, 개조 공급사 Claim/설계 평가 인수 / 주기적 성능 테스트 일일 운전 평가 고장 원인 진단, 미래 성능 예측 제어 가능 변수 확인 (최적화 Study) 효율 영향 인자 평가 (민감도 Study) Heat Rate와 부하의 편차, 열소비율 결정 실습 장비 PEPSE(Performance Evaluation of Power System Efficiencies) OTS (Operator Training Simulator) 교육일정(3일 과정) 2024년 12월 11일(수) ~ 13일(금) 상세 내용 - 웹사이트 참고 교육장소 세이플랜트 교육센터 (서울 문정동) 교육신청 박재석 대리 (010-3587-6896) , jspark@sayplant.com 교육비 : 880,000원 (부가세 포함) 교육 신청 후 추후 연락(카드 결제 X, 전자세금계산서 발행)  
작성일 : 2024-11-19
2023년 기계·로봇연구정보센터 연감
2023년 기계·로봇연구정보센터 연감 [1] 분야별 연구동향 1) ICRA 2023 논문을 통해 본 로봇분야 연구동향 1 2) Journal of Fluids Engineering 논문을 통해 본 유체공학 분야 최근 연구동향 26    [2] 기계·로봇 연구동향 1) 키리가미 구조를 이용한 스트레처블 에너지 하베스터 / 송지현 교수(단국대 기계공학과) 48 2) 대한민국 우주발사체 개발의 메카 나로우주센터의 추진기관 시험설비 / 김채형 박사(한국항공우주연구원)    57 3) 3D 프린팅 기술을 사용한 우주 발사체 개발 동향 / 김채형 박사(한국항공우주연구원)    62 4) 기계 상호작용에 따른 신경계 질환 후 운동제어(근육 간 협응)의 차이 / 박정호 박사(한국과학기술원)    68 5) 롤투롤 (Roll-to-Roll) 연속생산제조시스템 정밀 웹 이송 및 디지털 트윈 핵심기술개발 / 김재영 박사(한국기계연구원)    76 6) 운동 기능 향상을 위한 근육 간 협응 기반 훈련 및 관련 기계 기술 / 박정호 박사(한국과학기술원)    81 7) 로봇을 이용한 뇌성마비 환자의 재활 연구 / 강지연 교수(GIST융합기술원)    89 8) 임상 검진의 신뢰도 향상을 위한 기계 및 인공지능 기술의 활용 / 박정호 박사(한국과학기술원)    94 9) 재사용 우주 발사체 개발 동향 / 김채형 박사(한국항공우주연구원)    101 10) 빛에서 찾는 감아차기 슛, 광스핀홀 효과의 기초와 연구 동향 / 김민경 교수(GIST 기계공학부)    106 11) 소프트 로봇의 웨어러블에서의 적용 / 정화영 박사 (KAIST 기계공학과 생체기계연구실)    113 12) 반도체 패턴 웨이퍼 전면적 계측검사를 위한 분광 타원계측기술의 패러다임 변화 / 황국현박사(전북대학교)    120 13) 종이접기 트랜스포머블 휠 프로젝트 / 이대영 교수(KAIST 항공우주공학과)    130 14) 랜드마크를 활용한 차량 위치 추정 / 김주희 교수(창원대학교 로봇제어계측공학전공)    135 15) 스마트미터링을 이용한 지역난방 온수 사용량 분석 / 임태수 교수(한국폴리텍대학 기계시스템과)    143 16) 열화학 열저장의 개념 및 TCM 반복 실험을 위한 장치 설계 / 임태수 교수(한국폴리텍대학 기계시스템과)    150 17) 소형 발사체 시장 변화와 개발 동향 / 김채형 박사(한국항공우주연구원)    156 18) 발사체 상단 엔진 개발 동향 / 김채형 박사(한국항공우주연구원) 162    [3] M-Terview 1) 원자력 안전안보 연계를 위한 원전 통합 관리 연구 / 임만성 교수(KAIST 원자력 및 양자공학과) 168 2) 투명 마찰전기 나노발전기와 태양광 발전소자와의 집적 / 조대현 교수(경상국립대학교 메카트로닉스공학부)    176 3) 정적응축 축소기저요소법을 사용한 신속 정확한 대규모 구조 해석 / 이경훈 교수(부산대학교 항공우주공학과)    180 4) 자기장 구동 및 초음파 통합시스템 / 박석호 교수(DGIST 로봇 및 기계전자공학과)    185 5) 폐기물 열적변환기술을 통한 재활용 기술 연구 / 남형석 교수(경북대학교 기계공학부)    192 6) 국제 4족 로봇 자율보행 경진대회 우승, 보행로봇의 자율이동 기술 연구 / 명현 교수(KAIST 전기 및 전자공학부)    198 7) 미래 기술을 향한 도전, 가스터빈/스텔스 원천기술 국산화에 기여 / 조형희 교수(연세대학교 기계공학부)    205 8) 제어공학을 통해 보는 새로운 메커니즘의 개발과 모션의 구현 / 오세훈 교수(DGIST 로봇 및 기계전자공학과)    214 9) 다양한 환경에서의 로봇의 매니퓰레이션 및 모션 제어 연구 / 황면중 교수(서울시립대 기계정보공학과) 220    [4] 스페셜 인터뷰​   1) 유연 압전 물질 기반의 생체신호측정 센서 제작 및 특성 평가 / 이건재 교수(KAIST 신소재공학과) 229 2) 차세대 디스플레이 및 반도체용 전자 소자, Oxide TFT / 박상희 교수(KAIST 신소재공학과) 239    [5] 신진연구자 인터뷰 1) 열전 효율과 신축성 동시 향상을 위한 소재 및 소자 연구 / 장두준 박사 (KIST 소프트융합소재연구센터) 243 2) 소프트 다공성 물질 연구 / 정소현 교수 (서울대학교 미래인재 교육연구단)    250 3) 마이크로/나노 소재 조립을 위한 본딩 및 디본딩 공정 연구 / 강수민 박사(한국기계연구원)    255 4) 융복합적인 신뢰성 평가 연구 / 이용석 교수(명지대 기계공학과/반도체공학과)    261 5) 수소에너지 기기용 박막 전극의 기계적 신뢰성 / 표재범 교수(공주대 기계자동차공학부)    267 6) 미세유체를 이용한 자유롭게 변형하는 모핑 시스템 / 하종현 교수(아주대 기계공학과)    272 7) 웨어러블 열적 전자 피부 연구 / 이진우 교수(동국대 기계로봇에너지공학과)    277 8) 수술로봇 및 정밀조작 연구 / 황민호 교수(DGIST 로봇및기계전자공학과)    282 9) 족형 로봇의 자율 운용을 위한 기초 연구 / 이인호 교수(부산대 전자공학과)     286 10) 금속 3D 프린팅 기술의 공정 모니터링 및 제어 연구 / 정지훈 박사(Northwestern University 기계공학과)    291 11) 재생에너지 기반의 새로운 에너지 시스템 연구 개발 / 최원재 교수(이화여자대 휴먼기계바이오공학부)    295 12) 인간중심 인터랙티브 기술 연구 / 윤상호 교수(KAIST 문화기술대학원)    300 13) 극한 열전달 냉각기술 및 열메타물질 / 이남규 교수(연세대학교 기계공학부)    304 14) 유연하고 자율적인 제조를 위한 스마트 팩토리 / 윤희택 교수(KAIST 기계공학과)    312 15) 고해상도 실시간 3D 복원기술을 위한 스캐닝 시스템 개발 연구 / 현재상 교수(연세대학교 기계공학부)    316 16) 항공용/발전용 가스터빈 고온부품 열설계 원천기술 연구 / 방민호(인천대학교 기계공학과) 321    [6] 2023 학술행사 참관기 1) 하노버메세 (Hannover Messe) 2023 산업박람회 참가기 328 2) International Symposium on Special Topics in Chemical Propulsion-13 (ISICP-13) 참관기    334 3) HPC 2023 (14th IEA Heat Pump Conference 2023) 학술대회 참관기 340    [7] 생활 속의 공학이야기 1) 적층형 3차원 메타 물질 제작 345 2) 3차원 메타 물질 제작을 위한 공정 기술 중 정렬 마크 디자인    345 3) 3차원 메타 물질 제작을 위한 공정 기술 중 스테이지 정렬 오차 보정    346 4) 3차원 나노공정법을 이용한 메타 물질 제작    348 5) 커피 잔을 들고 걸을 때 커피를 쏟는 이유    349 6) 스트레처블 디바이스(Stretchable devices)의 기술동향    352 7) 융복합적 연구의 신축성 디바이스(Stretchable devices)    359 8) 스트레처블 디바이스(Stretchable devices)에 담긴 기계공학    364 9) 오레오 크림을 반으로 나누는 방법 371     
작성일 : 2024-11-05
터보 기계 시뮬레이션을 위한 엔지니어 가이드 I
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (15)   터보 기계는 흐르는 유체와 회전하는 요소 사이에서 에너지 전달이 일어나는 기계에 초점을 맞춘 기계공학의 한 분야이다. 이러한 장치는 많은 산업 분야에서 중추적인 역할을 한다.  이번 호에서는 성능 최적화, 안전성 보장, 효율성 향상을 위한 정확한 시뮬레이션의 중요성을 강조하면서 터보 기계 시뮬레이션의 복잡성에 대해 살펴본다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   오늘날의 기술 중심 세계에서는 터보 기계의 동작을 정확하게 예측하는 것이 무엇보다 중요하다. 이를 통해 항공기 추진 시스템에 결함이 없고, 에너지 시스템은 최소한의 낭비로 최대 출력을 제공하며, 전 세계 산업은 수요에 따라 흔들리지 않는 기계에 의존할 수 있다. 하지만 이러한 노력은 간단하지 않다. 여러 층의 복잡성, 기본 원리에 대한 이해, 고급 계산 기술의 적용이 필요하다.  이번 호부터 소개할 가이드에서는 터보 기계의 시뮬레이션 프로세스를 설명하고자 하는데, 이론적 토대와 실제 적용 사례를 모두 조명하는 것을 목표로 한다. 내용은 풍부하고 상세하지만, 전문성을 향상하고자 하는 전문가, 한계를 뛰어넘고자 하는 연구자, 핵심을 파악하고자 하는 초보자를 위해 명확하게 구성되어 있다.  향후 연재할 가이드를 통해 터보 기계 시뮬레이션의 원리, 방법론, 향후 발전 방향에 대해 살펴본다. 단순한 지식 전달을 넘어 이 분야에 대한 깊은 이해를 심어주는 것이 목표이다.    터보 기계의 기초  터보머신을 시뮬레이션하려면 유체 역학 및 열역학에 대한 기본적인 이해가 필요하다. 이 장에서는 이러한 정교한 기계의 시뮬레이션을 안내하는 핵심 원리, 터보 기계의 유형 및 주요 구성 요소에 대해 설명한다.    기본 원리  터보머신의 핵심은 로터라고 하는 회전 메커니즘을 통해 에너지를 전달하는 장치를 말한다. 공기, 증기, 물, 휘발유, 디젤, 고온 가스 등 지속적으로 흐르는 유체가 회전하는 구성 요소(예 : 블레이드, 베인, 임펠러)와 상호작용하여 유체에서 에너지를 추출하거나 유체에 전달한다. 이러한 에너지 전달은 유체 속도, 압력, 때로는 온도의 변화로 나타나며, 기계적 작업 결과물 또는 유체 에너지의 증가로 이어진다. 디지털 시대에는 전산 유체 역학(CFD)이 터보 기계를 시뮬레이션하는 주요 수단 이 되었다.  많은 CFD 소프트웨어는 다음에 정의된 유체 운동에 보존 법칙을 적용하여 도출된 나비에-스토크스(Navier-Stokes) 방정식을 기반으로 한다.  질량 보존(연속성 방정식) : 이 법칙은 닫힌 시스템에서는 질량이 생성되거나 소멸될 수 없다는 것을 말한다. 유체의 경우, 이는 질량이 부피에 들어오는 속도와 부피에서 나가는 속도가 같아야 하며, 부피 내에 축적된 질량은 모두 같아야 함을 의미한다. 이 원리는 연속성 방정식으로 이어진다.  운동량 보존(뉴턴의 운동 제2법칙) : 유체에 적용되는 뉴턴의 제2법칙으로, 유체 요소의 운동량 변화율은 그 요소에 작용하는 힘의 합과 같다는 것을 말한다. 이러한 힘에는 유체 요소의 표면에 작용하는 압력 힘과 유체 내의 점성 응력이 모두 포함된다. 운동량 보존 법칙이 유체에 적용되면 운동량 방정식이 성립한다.  에너지 보존(열역학 제1법칙) : 이 법칙에 따르면 에너지는 생성되거나 파괴될 수 없으며, 한 형태에서 다른 형태로만 전달되거나 변환될 수 있다. 유체 역학에서 이 보존 법칙은 전도, 대류 및 유체 내의 열원이나 흡원으로 인한 열 에너지 전달을 설명하는데 적용된다. 비압축성(밀도가 일정한) 및 등온성(온도가 일정한) 흐름의 경우 열 효과는 나비에-스토크스 방정식에 나타나지 않는 경우가 많다. 그러나 압축성 및 비등온성 흐름의 경우 에너지 방정식을 나비에 스토크스 방정식과 결합하여 유체 내의 온도장 및 열 전달을 설명할 수 있다.  이 세 가지 보존 법칙은 나비에-스토크스 방정식의 핵심을 이루며 편미분 방정식으로 표현된다. 나비에-스토크스 방정식은 특히 복잡한 경계 조건의 경우 해석적으로 풀기 어려운 경우가 많다. 따라서 근사 해를 구하기 위해 수치적 방법을 자주 사용한다. 나비에-스토크스 방정식을 수치적으로 풀면 터보 기계 내부의 유체 흐름 특성에 대한 통찰력을 얻을 수 있다.   그림 1. 다단 원심 컴프레서의 계산 모델에서 흐름이 간소화된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-11-04