• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "엔비디아"에 대한 통합 검색 내용이 1,674개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
슈나이더 일렉트릭, AI 데이터센터 위한 전력 관리 설루션으로 스마트 에너지 관리 실현
슈나이더 일렉트릭이 AI 기반 데이터센터 수요 증가에 대응하여 고도화된 전력 관리 및 냉각 설루션을 통해 스마트 에너지 관리를 실현하고 있다고 밝혔다. 고성능 GPU 서버 기반의 AI 데이터센터는 일반적인 IT 인프라에 비해 훨씬 큰 전력 소모와 발열을 발생시킨다. 이에 따라 안정적인 전력 공급과 효율적인 에너지 관리가 비즈니스 연속성을 좌우하는 핵심 요소로 부상하고 있다. 슈나이더 일렉트릭은 고성능 UPS(무정전 전원 공급장치), DC(직류) 배전 시스템, 그리고 고밀도 서버 환경에 최적화된 액체 냉각 설루션 등 데이터센터 전력 인프라 전반에 걸친 포트폴리오를 통해 이러한 니즈에 대응하고 있다. 특히, 슈나이더 일렉트릭의 ‘갤럭시 V 시리즈(Galaxy V-Series) UPS’는 AI 워크로드에 특화된 고효율 전력 백업을 제공하는 UPS다. 고효율 운영 모드를 통해 최대 99%의 효율성을 제공하며, UPS의 전력 소비를 3배 이상 감소시키는 이컨버전(eConversion) 모드를 적용했다.     이 중 ‘갤럭시(Galaxy) VXL’은 500~1,250kW(400V) 용량을 지원하는 3상 무정전전원장치(UPS)로, 고밀도 기술은 물론 안정적이고 내결함성 있는 설계를 모두 갖춰 대규모 데이터센터와 클라우드 및 서비스 제공업체 시설의 핵심 IT 인프라에 최적화된 성능을 제공한다. 슈나이더 일렉트릭은 이 제품이 컴팩트한 사이즈로 기존 갤럭시 V 시리즈 UPS 대비 설치 공간을 50~70% 절약하며, 높은 에너지 효율성을 제공한다는 점을 내세운다. 더불어 라이브 스왑(Live Swap) 기능으로 시스템 중단 없이 주요 부품 교체가 가능해 가용성을 극대화하고 운영 효율성과 핵심 부하 보호 기능을 강화하여 총소유비용(TCO)을 절감할 수 있다. 이와 함께 슈나이더 일렉트릭은 전통적인 AC 중심 전력 시스템의 한계를 극복하기 위한 직류(DC) 배전 설루션도 소개했다. 슈나이더 일렉트릭의 직류 배전 시스템은 에너지 변환 손실을 최소화하고 전력 사용 효율을 높여, AI 데이터센터의 운영 안정성과 에너지 절감을 동시에 실현하는 데에 초점을 맞추었다. 한편, 슈나이더 일렉트릭은 2024년 미국의 냉각 설루션 전문기업 ‘모티브에어(Motivair)’를 인수하며, AI 서버의 발열을 효과적으로 제어할 수 있는 ‘다이렉트 투 칩(D2C)’ 액체 냉각 기술을 포함한 고밀도 쿨링 설루션 포트폴리오를 확대했다. 이를 통해 냉각 에너지 효율을 극대화하고, AI 데이터센터의 전력 소비를 줄이는 데 기여하고 있다. 이와 함께, 슈나이더 일렉트릭은 최근 엔비디아, SK텔레콤과 지속 가능한 전력 공급 및 열 관리 기술 확보를 목표로 AI 데이터센터의 차세대 전력 인프라 구축을 위한 MOU를 체결했다. 이를 통해 국내외 AI 데이터센터 생태계의 안정성과 지속 가능성을 높이는 데 일조하고 있다. 슈나이더 일렉트릭 코리아 시큐어파워 사업부의 최성환 본부장은 “단순한 IT 시설을 넘어 초고밀도 전력 소비가 집중되는 미래 핵심 인프라인 AI 데이터센터는 전력 품질과 안정성의 무엇보다 중요하다”면서, “슈나이더 일렉트릭은 UPS, 배전, 냉각 등 전력 인프라 전반에서 스마트하고 지속 가능한 설루션을 제공하며 고객의 디지털 전환 여정을 지원하고 있다”고 전했다.
작성일 : 2025-05-08
[특별기고] 디지털 트윈 발전 전망
디지털 트윈과 산업용 메타버스 트렌드   데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다.  디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.   ▲ 철도 네트워크의 디지털 트윈 구축하는 독일 디지털 철도(이미지 출처 : 엔비디아)   1. 디지털 전환과 디지털 트윈 디지털 전환(Digital Transformation: DX)은 비즈니스 전 과정에 ICT 기술을 도입하여 전사적 업무, 생산 기술, 제품 등을 디지털화 한 후 이를 기반으로 가상 실험이 가능한 디지털 환경을 구축하는 것이다.  디지털 전환의 궁극적 목적은 기업 이윤 극대화에 필요한 업부/생산 효율성 및 제품 부가 가치 증대를 위한 다양한 창의적 대안들을 가상 실험을 통해 평가한 후 그 결과를 비즈니스 전 과정에 활용하는 것이다. 예를 들어, 스마트 팩토리의 디지털 전환은 조달 시스템, 생산 시스템, 물류 시스템 등 스마트 팩토리 구성요소들의 자원 할당 및 운용에 대한 다양한 대안들을 가상 실험을 통해 평가할 수 있는 환경을 구축하여야 한다. 그렇다면, 비즈니스 전 과정을 가상 실험하기 위해서는 무엇이 필요할까?  가상 실험을 하기 위해서는 먼저 가상 실험 대상(예: 제조 공장)을 선정하고, 다음으로, 가상 실험 시나리오(예:새로운 제조 장비 도입)가 필요하며 시나리오를 수행할 모델(예: 제조 공정 시뮬레이션 모델)이 필요하다. 이러한 가상 실험을 위한 모델이 디지털 트윈이며 이런 이유로 많은 사람들이 디지털 트윈을 DX의 Key(Richard Marchall, 2017), DX의 Enablers(Reterto Saracco, 2019), DX의 Central(Vijay Ragjumathan, 2019), DX의 Steppingstone(Harry Forbes, 2020), DX의 Pillar(Fransesco Belloni, 2020)라고 지적하였다.   2. 디지털 트윈의 정의 디지털 트윈은 물리적 자산, 프로세스 및 시스템에 대한 복제본으로 정의[Wiki 사전]되며, 복제본이란 대상 체계의 운용 데이터, 지형/공간/형상 정보 및 동작/운용 법(규)칙을 컴퓨터 속에 디지털화 해 놓은 것을 의미한다. 예를 들면, 제조 공장의 디지털 트윈은 제조 공장의 운용 데이터, 제조 공장의 공간/형상 정보, 그리고 제조 장비 동작 및 공정 모델이 컴퓨터 속에 복제된 것이 될 것이다. 디지털 트윈과 대상 체계가 쌍둥이기 때문에 쌍둥이 중 누가 먼저 태어났느냐에 따라 디지털 트윈의 이름을 다르게 붙이기도 한다. 대상 체계가 존재하기 전에 만들어진 디지털 트윈을 디지털 트윈 프로토타입(Prototype) 그리고 대상 체계가 만들어진 후 복제된 디지털 트윈을 디지털 트윈 인스턴스(Instance)라고 부른다. 디지털 트윈 프로토타입은 대상 체계 설계 단계에서 활용되며 디지털 트윈 인스턴스는 대상 체계의 운용 분석에 활용되는 것이 일반적이다. 디지털 트윈 인스턴스(실 체계의 복제본)와 디지털 트윈 프로토타입(실 체계의 설계 모델)이 모두 존재할 수도 있지만 디지털 트윈 프로토타입 없이 디지털 트윈 인스턴스만 존재할 수도 있다. 디지털 트윈 프로토타입과 인스턴스가 모두 존재한다면 인스턴스는 프로토타입에 실 체계 운용 정보가 반영되어 진화(성장)된 트윈으로 볼 수 있다. 3. 디지털 트윈 구축 목적 디지털 트윈의 구축 목적은 대상 실 체계와 디지털 트윈을 연동 운용함으로써 실 체계 관련 이해 당사자에게 지혜 수준의 혁신적 서비스를 제공할 수 있는 핵심 도구/수단으로 활용하기 위함이다. 데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다. 융합 빅 데이터는 AI-통계/공학 분석도구들을 이용하여 실 세계의 구성요소인 자산, 사람, 운용 프로세스들의 다양한 결합에 대한 분석/예측 및 체계 운용 최적 대안(최적화)을 찾는데 활용될 수 있다. 아울러, 융합 빅 데이터는 실 세계를 가상 환경에서 현실감 있게 표출할 수 있는 다양한 장비/장치와 VR/AR/XR/메타버스 관련 ICT 기술과의 융합 인터페이스를 통해 오락, 관광, 교육 훈련, 체험 등에 활용될 수 있다.     디지털 트윈의 복제 대상은 실 체계의 운용 데이터, 공간/형상 정보 및 실 체계에 포함된 객체들의 행위 모델 등 3가지이다. 운용 데이터는 실 체계에 설치된 IoT 장비로부터 획득이 가능하다. 공간/형상 정보는 서비스 목적에 따라 GIS, BIM 혹은 3D CAD 중 한 가지 이상을 결합하여 사용한다. 객체 행위 모델은 다양한 시나리오를 가상 실험하기 위한 시뮬레이션 모델을 사용하지만 서비스 목적에 따라서는 운용 데이터를 학습한 데이터 모델을 사용할 수도 있다. 구성요소 중 일부만을 사용한 디지털 트윈은 나머지 구성요소를 사용하지 않음으로 인한 한계점에 봉착하게 된다. 예를 들면, 실 체계 운용 데이터 복제만으로 구성된 IoT 기반 디지털 트윈은 수집된 데이터를 분석할 수는 있지만, 실 체계를 시각화한 지형/공간 상에 데이터를 표출할 수 없을 뿐만 아니라 실 체계와는 다른 가상 데이터를 입력한 시뮬레이션을 수행할 수 없다. 마찬가지로, 지형/공간 정보 만으로 구성된 디지털 트윈은 실 체계에서 일어나는 지형/공간 정보의 변화를 실 시간으로 반영할 수 없으며 시뮬레이션을 통한 실 체계의 현상 분석 및 미래 예측이 불가능 하다.      디지털 트윈의 효율적인 활용을 위해서는 위의 세 가지 구성요소 모두를 개발 및 운용할 수 있는 통합 플랫폼이 바람직하지만 국내외적으로 표준화된 디지털 트윈 플랫폼은 존재하지 않는다. 디지털 트윈의 특성 상 3가지의 디지털 트윈 구성요소 각각을 개발하는 독립적인 플랫폼을 사용하여 구성요소를 개발한 후 이들을 연동하여 운용하는 것이 효율적이다.  구체적으로는, 먼저, 디지털 트윈 개발 목적에 맞게 운용 데이터를 수집하는 IoT 플랫폼, 지형/공간 정보를 구축하는 지형/공간정보 플랫폼 및 모델링 시뮬레이션 플랫폼들을 이용하여 각 구성요소를 개발한다. 다음으로, 개발된 세 가지 구성요소를 실행하는 플랫폼들을 연동 운용하는 PoP(Platform of Platforms) 구조를 사용할 수 있다. PoP 구조는 디지털트윈의 목적에 부합되는 모든 디지털트윈을 개발/운용할 수 있는 플랫폼으로써 신뢰성 및 경제성(개발 기간 및 비용) 면에서 효율적인 구조이다. PoP 구조를 사용할 경우 플랫폼들 사이의 연동을 위한 데이터 모델과 API의 국제적인 표준화가 요구되며 데이터 모델의 표준은 대상 시스템에 따라 달라질 수 있다.  디지털 트윈을 실제 시스템에 대한 문제 해결 목적으로 사용하기 위해서는 대상 시스템에 대한 다양한 질문의 답을 디지털 트윈을 통해서 얻을 수 있는 서비스가 제공되어야 한다. OR 이론의 창시자 중 한 명으로 경영 과학 이론가인 R.L.Ackoff 교수는 사람이 생각하는 내용을 데이터, 정보. 지식, 지혜 등 4가지로 분류하였다. 데이터는 단순한 심벌(숫자나 문자)을 말하지만 정보는 ‘who’, ‘what’, ‘where’, ‘when’을 답할 수 있고, 지식은 ‘how’를 답할 수 있고, 지혜는 ‘why’를 답할 수 있어야 한다고 정의하였다. 디지털 트윈의 서비스 수준을 Ackhoff 교수의 분류법에 매핑 시킨다면 정보 수준 서비스는 시스템 분석(현상, 기능 등), 지식 수준 서비스는 시스템 예측(행위, 성능 등) 그리고 지혜 수준 서비스는 시스템 최적화(운용 최적화 등) 및 진단(수명 진단 등)에 해당한다. 예를 들어, 교통 시스템에 대한 다양한 질문을 답하기 위해 교통 디지털 트윈을 만들었다고 하자. 정보 서비스의 예는 현재 교통 시스템의 현상을 분석하는 것으로 어느 위치의 현재 시간대에 단위 시간당 교차로 통과 차량 대수가 얼마인지에 대한 답을 하는 서비스이다. 지식 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 얼마가 되는지를 예측하는 질문에 대한 답을 하는 서비스이다. 지혜 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 최소가 되는 최적화된 경로가 어떤 것인지의 질문에 대한 답을 하는 서비스이다.    4. 디지털 트윈의 구성요소 디지털 트윈의 3 가지 구성요소 중 행위 모델은 목적에 따라 데이터 모델과 시뮬레이션 모델로 대별된다. 데이터 모델은 실 체계에서 수집된 데이터들 사이의 상관관계를 기계학습하여 얻어진 모델(예: 인공신경망)로서 지식 서비스를 위한 시스템 행위 예측에 한계점을 가지고 있다. 구체적으로, 데이터 모델은 학습된 데이터 영역에서는 미래 예측이 가능하지만 학습된 영역 밖의 데이터에 대한 예측은 불가능 하다. 뿐만 아니라 학습 시와 예측 시의 시스템 운용 조건이 달라질 경우에도 예측이 불가능하다. 앞서 예시한 교통 디지털 트윈으로 데이터 모델을 사용할 경우 학습 시 도로 상황(운행 시간, 사고 발생 유무 등)이 예측 시 도로 상황과 동일하지 않으면 소요 시간 예측의 정확도가 보장되지 않는다. 더욱이, 시스템 변수 사이의 상관 관계로 표현된 데이터 모델은 변수 사이의 인과 관계가 필요한 시스템의 최적화 및 고장 진단 등에는 활용할 수 없다. 이러한 데이터 모델의 서비스 한계를 극복하기 위해서는 시뮬레이션 모델을 사용할 수 있다. 시뮬레이션 모델은 구축은 대상 시스템에 대한 도메인 지식과 이를 표현하는 지배 법칙에 대한 수학적/논리적 표현 방법을 이해해야 하므로 데이터 모델에 비해 고 비용이 요구된다. 따라서, 디지털 트윈의 행위 모델은 대상 시스템의 서비스 목적과 수준에 따라 다르게 선택될 수 있다.    5. 디지털 트윈의 발전 전망  디지털 트윈의 향후 발전 전망은 문제 해결과 가상 체험 및 빅 데이터 분야로 대별할 수 있다. 문제 해결 분야에서 디지털 트윈의 대상은 분석, 예측, 최적화/진단 대상이 되는 모든 시스템 분야로서 산업(제조, 생산, 물류, 식물공장 등), 공공(교통, 환경, 금융 등), 의료(진단, 인공장기, 가상수술 등), 재난안전(안전점검, 피해분석, 대피훈련 등), 국방(군사훈련, 국방분석, 무기체계 획득 등)등을 포함한다.  현재 디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.  가상 체험 분야는 디지털 트윈이 실 세계 혹은 가상 세계를 움직이는 다양한 시나리오를 정형화한 지배 법칙(모델)을 실행(시뮬레이션)하는 수단으로 활용될 전망이다. 이러한 지배법칙 실행은 실제 세계와 가상 세계의 구별 없는 가상 체험을 목표로 하는 메타버스의 서비스 콘텐츠를 제공한다. 따라서, 메타버스 발전을 위해서 메타버스의 서비스 컨텐츠를 제공하는 디지털 트윈 발전이 필수적으로 향후 메타버스와 디지털 트윈은 동시에 발전할 전망이다.  빅 데이터 분야에서는 디지털 트윈의 가상 실험을 통해 실 체계에서는 물리적/경제적 이유로 수집 불가능한 다양한 빅 데이터를 생성하는데 활용될 전망이다. 유의미한 빅 데이터 생성을 위해서는 실 체계에서 수집 가능한 데이터를 사용하여 디지털 트윈 모델의 검증이 선행된 후 실 체계에서 수집 불가능한 데이터 생성을 위한 가상 실험이 설계되어야 한다. 디지털 트윈을 사용한 빅 데이터 생성은 시스템 기능 검증, 예지 진단 및 기계학습 등과 같은 부가가치가 높은 데이터 생성에 집중되어 미래 데이터 구독 시장 활성화에 기여할 전망이다.   김탁곤 명예교수  KAIST 전기전자공학부  
작성일 : 2025-05-05
오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석
BIM 칼럼니스트 강태욱의 이슈 & 토크   생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로, 행동과 의사결정을 위한 인지 아키텍처를 갖추고 있다. 이번 호에서는 오픈소스 AI 에이전트인 오픈마누스(OpenManus)를 통해 AI 에이전트의 동작 메커니즘이 어떻게 구현되는지 분석해 본다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   최근 AI 에이전트 기술이 크게 발전하고 있다. 구글의 에이전트 백서를 보면, 생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로 설명한다. 명시적인 지시가 없어도 스스로 판단하고 능동적으로 목표에 접근할 수 있다. 이러한 에이전트는 행동과 의사결정을 위한 인지 아키텍처를 갖추며, 핵심 구성 요소는 <그림 1>과 같이 사용자 입력에 대한 추론 역할을 하는 모델(보통은 GPT와 같은 LLM), 입력에 대해 필요한 기능을 제공하는 도구(tools), 그리고 어떤 도구를 호출할지 조율하는 오케스트레이션의 세 가지로 이루어진다.   그림 1. AI 에이전트의 구성 요소(Agents, Google, 2024)   이번 호에서는 AI 에이전트의 동작 메커니즘을 분석하기 위한 재료로, 딥시크(DeekSeek)와 더불어 관심이 높은 마누스(Manus.im)에서 영감을 받아 개발된 오픈마누스(OpenManus) 오픈소스 AI 에이전트를 활용하겠다. 오픈마누스는 메타GPT(MetaGPT)라는 이름으로 활동 중인 중국인 개발자가 공개한 AI 에이전트이다. 개발자는 오픈마누스가 연결된 다양한 도구를 LLM으로 조율하고 실행할 수 있다고 주장하고 있다. 깃허브(GitHub) 등에 설명된 오픈마누스는 다음과 같은 기능을 지원한다. 로컬에서 AI 에이전트 실행 여러 도구 및 API 통합 : 외부 API, 로컬 모델 및 자동화 도구를 연결, 호출 워크플로 사용자 지정 : AI가 복잡한 다단계 상호 작용을 효율적으로 처리 여러 LLM 지원 : 라마(LLaMA), 미스트랄(Mistral) 및 믹스트랄(Mixtral)과 같은 인기 있는 개방형 모델과 호환 자동화 향상 : 내장 메모리 및 계획 기능을 통해 코딩, 문서 처리, 연구 등을 지원   <그림 2>는 이 에이전트가 지원하는 기능 중 일부이다. 프롬프트 : “Create a basic Three.js endless runner game with a cube as the player and procedurally generated obstacles. Make sure to run it only in browser. If possible also launch it in the browser automatically after creating the game.”   그림 2   오픈마누스는 이전에 중국에서 개발된 마누스에 대한 관심을 오픈소소로 옮기는 데 성공했다. 오픈마누스는 현재 깃허브에서 4만 2000여 개의 별을 받을 정도로 관심을 받고 있다.    그림 3. 오픈마누스(2025년 4월 기준 42.8k stars)   필자는 오픈마누스에 대한 관심이 높았던 것은 구현된 기술보다는 에이전트 분야에서 크게 알려진 마누스에 대한 관심, 오픈소스 버전의 AI 에이전트 코드 공개가 더 크게 작용했다고 생각한다. 이제 설치 및 사용해 보고, 성능 품질을 확인해 보자. 그리고 코드 실행 메커니즘을 분석해 본다.    오픈마누스 설치 개발 환경은 이미 컴퓨터에 엔비디아 쿠다(NVIDIA CUDA), 파이토치(PyTorch) 등이 설치되어 있다고 가정한다. 이제, 다음 명령을 터미널에서 실행해 설치한다.   conda create -n open_manus python=3.12 conda activate open_manus git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus pip install -r requirements.txt playwright install   오픈마누스가 설치하는 패키지를 보면, 많은 경우, 기존에 잘 만들어진 LLM, AI Agent 라이브러리를 사용하는 것을 알 수 있다. 여기서 사용하는 주요 라이브러리는 다음과 같다.  pydantic, openai, fastapi, tiktoken, html2text, unicorn, googlesearch-python, playwright, docker     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[핫윈도] 디지털 트윈 기대 속에 실질적 도입과 확산 위한 노력 필요
캐드앤그래픽스 디지털 트윈 설문조사 분석   디지털 트윈 기술에 대한 관심이 국내 제조 및 엔지니어링 업계를 중심으로 높아지고 있지만, 실제 산업 현장에서는 여전히 다양한 현실적 제약에 직면해 있는 것으로 나타났다. 캐드앤그래픽스는 국내 디지털 트윈 현황을 집대성한 ‘디지털 트윈 가이드’를 발간하고, 국내 제조 및 엔지니어링 업계 관계자를 대상으로 3월 13일부터 4월 14일까지 ‘국내 디지털 트윈 현황 설문조사’를 실시했다. 총 1212명이 참여한 이번 설문조사에서는 디지털 트윈의 이해도, 적용 분야, 도입 단계, 구축 시 어려움 등 다양한 관점에서 기술의 현주소를 조망했다. 특히 디지털 트윈을 실제로 사용 중인 기업과 종사자를 대상으로 진행한 심층 조사에서는 기술 도입 과정에서의 구체적인 어려움과 향후 투자 계획 등 실질적인 인사이트가 도출됐다. ■ 최경화 국장   설문조사 개요 및 참가자 현황 이번 설문조사는 국내 제조 엔지니어링 업계 관계자 1212명을 대상으로 진행되었다. 설문 참가자들의 배경은 다양한 산업 분야에 걸쳐 있었으며, 이는 디지털 트윈 기술이 단일 산업에 국한되지 않고 여러 분야에서 관심을 받고 있음을 시사한다. 참가자들의 직무 또한 연구개발, 설계, 생산, 관리 등 다양한 영역에 분포하고 있어, 디지털 트윈 기술이 기업 내 여러 부서와 직무에 걸쳐 중요성을 인정받고 있음을 알 수 있었다. 디지털 트윈 관련 업무 분야에서도 다양한 응답이 나타나, 이 기술의 응용 범위가 넓어지고 있음을 확인할 수 있다.   주력 산업 분야 설문 응답자들의 주력 산업 분야는 ‘건축/건설/토목’(22.7%)과 ‘전기전자/하이테크/반도체’(17.9%), ‘시각화/그래픽/디자인’(14.2%) 등이 높은 비중을 차지했으며, 자동차, 플랜트 등 다양한 산업 분야가 분포되어 있음을 알 수 있다.   그림 1. 설문 응답자 현황 - 주력 산업 분야   직무 분야 설문 응답자들의 직무 분포는 ‘엔지니어’(41.2%)가 압도적으로 높은 비율을 보였고, ‘경영진/임원’(15.9%), ‘SW 개발’(14.3%) 순으로 나타나, 기술 및 관리 직무 종사자들의 높은 관심을 반영했다.   그림 2. 설문 응답자 현황 – 직무   디지털 트윈 관련 업무 분야 설문 응답자들의 디지털 트윈 관련 업무 분야에 대해서는 CAD/3D 모델링이 가장 높게 나타났고, AI/머신러닝, CAE/시뮬레이션 순으로 나타났다.    그림 3. 설문 참가자 현황 - 디지털 트윈 관련 업무 분야   국내 디지털 트윈 도입 현황 - 뜨거운 기대감과 더딘 현실 디지털 트윈 이해 수준 기술에 대한 이해 수준은 아직 부족한 것으로 나타났다. 디지털 트윈 이해 수준에 대해서는 ‘대체로 알고 있다’(36.8%)와 ‘조금 알고 있다’(37.2%)가 비슷한 비율을 보였으며, ‘매우 잘 알고 있다’ (10.4%)는 소수에 불과했다. ‘잘 모른다’(15.6%)는 응답도 상당수를 차지했다. 이는 기술에 대한 인지도는 높지만, 깊이 있는 이해와 활용 능력은 아직 부족하다는 점을 시사한다.   그림 4. 디지털 트윈에 대한 이해 수준   디지털 트윈 발전 전망 반면, 디지털 트윈의 미래에 대한 업계의 기대는 매우 컸다. 향후 디지털 트윈 발전 전망에 대한 응답에 따르면 ‘매우 중요하게 성장할 것’(66%)과 ‘다소 성장할 것’(30.5%)이라는 답변이 전체의 압도적인 대다수를 차지했다. 또한 전체 응답자의 96.5%가 기술의 중요성과 잠재력에 대해 폭넓은 공감대를 형성하고 있음을 확인시켜 주었다.   그림 5. 디지털 트윈 향후 발전 전망   디지털 트윈 사용 기업 및 도입 현황 디지털 트윈을 실제로 사용하고 있는 기업 및 유저를 대상으로 한 심층 조사에는 총 385명이 참여했다. 이들 기업의 규모는 매출액과 직원 수를 기준으로 다양하게 분포하고 있어, 디지털 트윈 기술이 대기업뿐 아니라 중소기업에서도 점차 도입되고 있음을 알 수 있다.   디지털 트윈 사용 기업 규모 디지털 트윈 사용 기업의 매출액은 5000억원 이상이 48.8%를 차지해 가장 높은 분포를 보였으며, 1000억원 이상~500억원 미만이 13.2%로 큰 기업들이 주로 관심을 가지고 있었음을 알 수 있었다. 직원 수도 5000명 이상이 32.2%로 가장 높은 수치를 차지했으며, 1000명~5000명 미만이 17.9%, 100명~500명 미만이 11.7% 순으로 나타났다.    그림 6. 디지털 트윈 사용 기업 매출액   디지털 트윈 사용 기업 적용 분야 디지털 트윈 적용 분야는 ‘제품 설계 및 시뮬레이션’(66.8%), ‘생산/제조 운영’(43.9%), 설비 모니터링 및 유지보수(39.2%) 순으로, 제품 개발과 생산 영역에 활용이 집중되는 경향을 보였다. 제조 분야에 비해서는 사용이 적지만 도시, 에너지, 교통, 물류, 의료 등 다양한 영역에서 활용되고 있음을 확인할 수 있다. 특히 제조업 분야에서는 생산 공정 최적화, 품질 관리, 설비 예지 보전 등의 목적으로 활용되고 있을 것으로 추정된다.   그림 7. 디지털 트윈 적용 분야   디지털 트윈 적용 목적 디지털 트윈을 적용하는 주요 목적은 ‘설계 최적화’(61.0%), ‘생산성 향상’(54.5%), ‘운영 효율화’(46.2%) 등 효율성 증대 관련 항목들이 우위를 점했다.   그림 8. 디지털 트윈 적용 목적   디지털 트윈 도입 단계 아직까지 디지털 트윈에 대한 관심은 높지만 실제 사용 보다는 검토 중인 기업이 많은 것으로 나타났다. 디지털 트윈 사용 기업의 도입 단계 관련 답변을 보면, ‘도입 검토 중’(43.6%)이 가장 큰 비중을 차지했다. 이어 ‘일부 시스템 도입 완료’(18.4%), ‘PoC(파일럿) 진행 중’(12.2%), ‘전사 확산 및 활용 중’은 4.2% 순으로, 본격적인 활용 단계에 진입한 기업은 소수임을 알 수 있었다. ‘도입 계획 없음’(17.9%)이라는 응답도 적지 않았다.    그림 9. 디지털 트윈 도입 단계   다양한 상용 디지털 트윈 툴 사용… 자체 개발·검토도 다수 디지털 트윈 기술의 확산과 함께, 국내 기업들이 활용 중인 디지털 트윈 소프트웨어 및 플랫폼은 매우 다양하며, 기업별로 도입 단계나 활용 수준에서도 큰 차이를 보이는 것으로 나타났다. ‘현재 사용 중인 디지털 트윈 툴’에 대한 주관식 응답 결과를 분석해 보면, 국내 산업계는 BIM 기반 플랫폼, CAE 시뮬레이션 도구, PLM 및 협업 플랫폼, 그리고 게임 엔진 기반 시각화 도구를 중심으로 디지털 트윈 기술을 도입하고 있는 것으로 나타났다. 아래 내용은 답변 내용을 중심으로 정리한 것이다.   BIM 및 설계 중심 소프트웨어의 강세 디지털 트윈 구축의 초기 단계에서 가장 두드러지는 분야는 설계 기반 모델링(BIM) 도구다. 응답자 중 상당수가 오토데스크의 레빗(Revit), 오토캐드, 시빌 3D(Civil 3D), 나비스웍스(Navisworks) 등을 사용하고 있다고 응답했다. 벤틀리 시스템즈의 아이트윈(iTwin), 트림블의 테클라(Tekla) 및 트림블 커넥트(Trimble Connect), 아비바의 아비바 E3D(AVEVA E3D) 등도 건설·플랜트 산업에서 활용하고 있다고 답변했다.   정밀 해석 기반의 시뮬레이션 툴 확산 앤시스(Ansys), 아바쿠스(Abaqus), 하이퍼웍스(HyperWorks), LS-DYNA, 시뮬링크(Simulink), 아담스(Adams), GT-스위트(GT-Suite), 플렉스심(FlexSim) 등 해석 전문 툴의 사용도 두드러졌다. 특히 제품 설계나 공정 시뮬레이션에서 정밀한 모델링이 필요한 제조업, 자동차, 중공업 분야에서는 다물리 해석 툴 기반의 디지털 트윈 구현이 주를 이뤘다.   PLM 기반 통합 디지털 플랫폼도 주목 설계-생산-운영 전 주기를 통합 관리하기 위한 PLM 기반 플랫폼도 활발히 사용되고 있다. 다쏘시스템즈의 3D익스피리언스(3DEXPERIENCE), 카티아(CATIA), 에노비아(ENOVIA), 지멘스의 NX, 팀센터(Teamcenter), 플랜트 시뮬레이션(Plant Simulation), PTC의 크레오(Creo), 윈칠(Windchill), 씽웍스(ThingWorx) 외에도 전문 툴인 비주얼컴포넌트 등은 스마트 공정 및 운영 관리까지 연계된 디지털 트윈 구현에 활용되고 있는 것으로 보인다.   게임엔진 기반 실시간 시각화 기술 부상 유니티(Unity), 언리얼 엔진(Unreal Engine), 트윈모션(Twinmotion), 엔비디아 옴니버스(Omniverse) 등 게임엔진 기반 시각화 도구는 실시간 협업과 현장 시뮬레이션에서 각광받고 있다. 특히 언리얼엔진, 유니티와 옴니버스 등은 다른 플랫폼과의 연동성을 강화해 디자인 협업 및 공정 검증에 널리 활용되고 있다.   자체 설루션 및 커스터마이징 비율도 높아 이밖에도 국산 설루션인 이에이트, 소프트힐스, 버넥트, 한국디지털트윈연구소 설루션을 이용하고 있다는 응답도 있었다. 흥미로운 점은 응답자의 상당수가 ‘인하우스 개발’ 또는 ‘자체 플랫폼’, ‘프로젝트마다 요구사항 수렴 방식’ 등의 형태로 독자적인 디지털 트윈 시스템을 운영하고 있다는 것이다. 이는 특정 상용 설루션만으로는 각기 다른 업무 흐름이나 도메인 지식을 완벽히 반영하기 어렵기 때문으로 분석된다. 또한 ‘아직 도입 예정’ 또는 ‘검토 단계’라는 응답도 적지 않아, 디지털 트윈 도입의 확산은 진행 중인 흐름임을 알 수 있다.   넘어야 할 장벽 : 현장의 목소리로 본 핵심 과제 디지털 트윈의 확산이 더딘 배경에는 공통적으로 지적된 여러 장애물이 존재했다. 특히 높은 비용과 불확실한 ROI는 가장 큰 걸림돌로 지목됐다.   디지털 트윈 시스템 구축의 어려움 디지털 트윈 사용 기업이 꼽은 구축 시 가장 큰 어려움으로 ‘초기 투자 비용’(24.4%)과 ‘전문 인력 부족’(20.5%)이 가장 높은 비율을 차지했다. 그 뒤를 이어 ‘ROI 분석의 어려움’(16.6%), ‘경영진의 이해 부족’(15.1%) 순으로 나타났다. 주관식 답변에서는 고비용의 소프트웨어, 외산 설루션 및 3D 프로그램의 높은 라이선스 비용, 디지털 전환(DX) 도입 및 유지보수 비용 과다 등 경제적 부담에 대한 토로가 많았다. 특히 기대효과가 명확해야 한다, 비용 대비 효율이 확보되지 않으면 불가능하다, 실질적인 경영 효과로 어떻게 연결되는지 의문이라며, 투자를 정당화할 명확한 성과 측정과 검증된 성공 사례 부족을 지적했다. 전문 인력 부족 문제는 교육 시스템의 부재와 연계돼 있으며, 현장에서는 관련 교육 기회가 부족하다는 지적이 많았다. 경영진의 이해 부족도 중요한 문제로 나타났다.   그림 10. 디지털 트윈 구축 시 어려움   디지털 트윈 시스템 구축 관련 투자 계획 이러한 어려움에도 불구하고, 향후 디지털 트윈에 대한 투자 의향은 비교적 긍정적이었다. 사용 기업의 향후 투자 계획을 보여주는 그래프를 보면, ‘2년 이내’(31.4%), ‘1년 이내’(19.0%), ‘6개월 이내’(11.4%) 등 2년 내 투자 계획이 있다는 응답이 전체의 61.8%를 차지했다. 반면에 ‘도입 계획 없음’(26.2%)도 상당수 있었다.   그림 11. 향후 투자 계획   미래 투자 방향과 나아갈 길 전체 응답자가 디지털 트윈 확산을 위해 가장 필요하다고 꼽은 요소를 가중치 순으로 나타낸 그래프를 보면, ‘경영진의 의지와 디지털 트윈에 대한 이해’가 다른 항목을 큰 차이로 앞서며 압도적인 1위를 차지하고 있음을 확인할 수 있다. 또한 실제 사용 기업이 겪는 어려움에서도 ‘경영진의 이해 부족’이 중요한 요인으로 드러났다. 주관식 답변에서는 ROI 증명의 어려움과 맞물려 경영진 설득의 어려움을 토로하거나, 심지어 “실제 시험을 안 해도 된다고 생각하는 경영진이 많다”는 언급까지 나와, 리더십의 인식 개선이 시급함을 알 수 있었다. 표준화의 부재 역시 반복적으로 지적되었다. 응답자들은 데이터 표준화, 3D CAD 포맷 변환, 시스템 간 호환성 부족 등을 구체적인 문제로 언급했다.   그림 12. 디지털 트윈 시스템 구축과 확대를 위해 가장 필요한 것   구체적 정보와 성공 사례의 부족 또한 큰 장벽이다. 응답자들은 산업별 사례, 성공 및 실패 경험 등을 통한 실질적 정보 공유를 절실히 요구하고 있다. 이 밖에도 데이터 확보의 어려움, 외산 소프트웨어 의존도, 기술 복잡성, 국산 소프트웨어 개발의 필요성 등이 복합적으로 언급되며, 생태계 전반에 대한 개선이 필요함을 시사했다. 따라서 성공적인 디지털 트윈 도입과 확산을 위해서는 산적한 과제를 해결하기 위한 다각적인 노력이 필요하다. 현장의 목소리와 설문 데이터는 다음과 같은 방향을 제시하고 있다. 정부의 적극적인 역할 : 중소기업 지원 확대 , R&D 지원 및 국산 소프트웨어 육성, 산업 표준화 주도, 선도적인 인프라 투자 및 정책 지원 등 정부의 체계적이고 일관성 있는 지원 정책이 요구된다. 실질적 가치 증명 및 정보 공유 : 명확한 ROI 산정 모델 개발, 산업별 성공/실패 사례 발굴 및 투명한 공유, 기술 효용성에 대한 적극적인 홍보와 교육 강화가 필요하다. 표준화 및 기술 개발 : 데이터 형식 통일, 호환성 확보 등 산업 표준을 조속히 마련하고, 사용자 편의성을 높인 기술 및 플랫폼 개발 노력이 필요하다. 인력 양성 및 생태계 조성 : 실무 중심의 교육 프로그램 개발발 및 전문가 양성 시스템 구축, 산학연관 협력 시스템 강화가 필요하다.   맺음말 : 잠재력 현실화 위한 협력과 실질적 노력 시급 이번 설문조사는 디지털 트윈에 대한 국내 산업계의 높은 관심과 함께, 도입을 가로막는 다양한 현실적 장애 요인을 통계와 목소리로 생생하게 보여준 것이라고 할 수 있다. 이 같은 결과는 국내 산업계에서 디지털 트윈 도입이 활발히 이루어지고 있으나, 여전히 도입 도구의 표준화, 조직 내 전사적 활용, 실제 업무 흐름과의 통합 등에서 과제가 많다는 점을 보여준다. 향후에는 상용 툴과 자체 개발 플랫폼 간의 융합 전략, 그리고 데이터 연동성과 유지관리 측면에서의 체계적인 접근이 더욱 중요해질 것으로 보인다. 또한 디지털 트윈이 제조업 혁신의 핵심 동력으로 자리매김하기 위해서는 산업계, 정부, 학계가 함께 협력해 실질적인 해결책을 모색하고, 지속 가능한 생태계를 조성하려는 노력이 절실하다고 할 것이다.     ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[포커스] 델, ‘AI PC 시대’ 주도 선언… 통합 브랜드 제품 대거 출시
델 테크놀로지스가 지난 3월 26일, 서울 그랜드 인터컨티넨탈 파르나스에서 ‘델 생성형AI 메가 런치(GenAI Mega Launch)’를 열고 2025년형 AI PC 및 클라이언트 제품들을 대거 공개했다. 이번 행사는 ‘델(Dell)’이라는 단일 브랜드로 클라이언트 제품군을 통합한 이후 첫 공식 발표 자리로, 델의 클라이언트 전략이 AI 중심으로 재편되고 있다는 점을 강조하는 무대였다. ■ 박경수 기자   ▲ 델 테크놀로지스 생성형AI 메가 런치(GenAI Mega Launch)’ 행사 전경   델은 ‘NPU(Neural Processing Unit, 신경망 처리 장치)’를 탑재한 차세대 AI PC는 물론, 워크스테이션, 클라우드 인프라, 데이터센터, 소프트웨어 및 AI 서비스까지 아우르는 ‘엔드-투-엔드 AI 포트폴리오’를 통해 시장을 선도하겠다는 청사진을 밝혔다. 워크스테이션 포트폴리오인 ‘델 프로 맥스(Dell Pro Max, 전 ‘델 프리시전’)’ 라인업에 엔비디아의 가장 강력한 전문가용 그래픽 설루션인 엔비디아 GB10·GB300 슈퍼칩을 탑재하는 등 최신 AI 기술을 발빠르게 적용해 제품 포트폴리오를 빠르게 확장하고 있다.   브랜드부터 제품군까지 통합…3단계 AI PC 라인업 도입 올해 초부터 델은 기존의 PC, 모니터, 액세서리, 서비스 브랜드를 ‘델’로 통합하고, AI PC 선택을 쉽게 하기 위해 ‘델 프로 노트북(Dell Pro Laptop)’ 시리즈로 기업용 라인업을 재정비했다. 등급도 ‘엔트리’, ‘플러스(Plus)’, ‘프리미엄(Premium)’으로 세분화해 고객의 요구와 예산에 따른 맞춤형 선택이 가능하다. ‘델 프로 노트북’은 인텔 코어 울트라 시리즈 2(Intel Core Ultra processors Series 2) CPU를 탑재했으며, 추후 AMD 라이젠(AMD Ryzen) 프로세서를 탑재한 제품도 출시될 예정이다. 고성능 CPU, GPU, NPU를 탑재해 ‘코파일럿’과 같은 온-디바이스 AI 기능과 향상된 배터리 수명을 지원해 강력한 생산성을 안정적으로 제공한다. 깔끔한 디자인에 작고 슬림한 폼팩터를 갖췄고, 내구성이 우수한 소재를 적용해 휴대성이 뛰어나다. 또한 ‘델 프로 노트북’에는 사용자들이 최적의 AI 모델을 찾고 훈련하여 애플리케이션에 적용하도록 돕는 NPU 기반의 ‘델 프로 AI 스튜디오(Dell Pro AI Studio)’ 툴킷이 탑재됐으며, 이를 통해 AI 모델 개발 및 배포까지의 기간이 대폭 줄어들 것으로 예상된다. 델 노트북의 대표 모델인 ‘델 프로 13 프리미엄’은 약 1kg 초경량에 13형 디스플레이, 고해상도 8MP HDR 카메라, 조용한 듀얼 팬 냉각 시스템을 갖췄고, AI 워크로드 속도는 이전 세대 대비 3.5배 향상됐다. ‘델 프로 14 플러스’는 배터리 지속 시간이 46% 늘었고, AI 처리 성능도 3.7배 향상됐다. 두 제품 모두 인텔 코어 울트라 시리즈 2 CPU를 탑재했으며, 향후 AMD 라이젠 탑재 모델도 선보일 예정이다. 그리고 온디바이스 AI 지원, NPU 기반 ‘델 프로 AI 스튜디오’ 툴킷을 제공해 AI 모델 훈련과 배포까지 지원하는 점이 특징이다.   ▲ 한국 델 테크놀로지스 오리온 상무   한국 델 테크놀로지스의 오리온 상무는 “지난 2020년 코로나19의 등장으로 노트북과 PC에 대한 수요가 크게 늘었다. 이제 4년이 지난 상황이라 PC 및 노트북 교체 수요가 증가할 것으로 보고 있다”면서 2025년 PC 시장의 기회 요소를 설명했다. 또한 “2024년 AI가 PC 및 노트북 등 사용자의 업무 환경들을 변화시키고 있다”며, “오는 10월에 마이크로소프트가 윈도우 10에 대한 지원을 중단할 예정이라, 윈도우 11로 전환될 경우 새로운 노트북과 PC 환경에 대한 수요가 크게 늘어날 것으로 기대한다”고 말했다. 한국 델 테크놀로지스 정재욱 부장은 “노트북, 데스크톱, 워크스테이션, 서버에 이르는 델의 모든 제품들이 ‘델’이라는 통합 브랜딩으로 바뀌었다”고 말했다. 하지만 “델 에이리언처럼 기존 브랜딩 네이밍도 살려 마케팅을 강화해 나갈 계획이다”라고 말했다. 또한 “인텔 CPU 외에도 새롭게 AMD, 퀄컴과 협력하게 되어 개인용 및 기업용에서도 더 다양한 제품군을 공급할 수 있게 됐다”고 설명했다.   ▲ 한국 델 테크놀로지스 정재욱 부장   모니터 라인업도 일원화… IPS 블랙 기술로 차별화 모니터 분야도 사용자의 니즈에 따라 모니터 제품을 손쉽게 선택할 수 있도록 ‘델 울트라샤프(Dell UltraSharp)’, ‘델 프로(Dell Pro)’, ‘델’로 구분한 통합 브랜딩을 적용했다. 그 중 가장 주목받은 제품은 ‘델 울트라샤프 27 4K 썬더볼트 허브(U2725QE)’로, 세계 최초로 3000:1 명암비의 IPS 블랙 기술을 적용했다. 기존 IPS 대비 47% 깊은 블랙 표현, 89% 향상된 실외 명암비를 제공하며, TUV 라인란드 5-스타 인증, 최대 140W 썬더볼트 PD 충전도 지원한다. 함께 공개된 ‘델 프로 14 플러스 포터블 모니터(P1425)’와 ‘델 프로 32 플러스 4K 허브 모니터(P3225QE)’는 각각 휴대성과 시각 경험 강화를 겨냥한 제품으로, 이동성·색 정확도·화면 공유 편의성을 모두 갖췄다. 델 프로 14 플러스 포터블 모니터는 16:10 화면 비율의 14인치 IPS 디스플레이를 탑재한 초경량 휴대용 모니터로, 65W 전력 공급 및 데이터 전송, 영상 출력을 위한 USB-C 타입 단자를 내장해 사용자의 편의성을 높였다. 10도부터 90도까지 기울기 조절이 가능한 틸트(tilt) 기능으로 사용자의 세컨드 모니터로 활용하거나 대면 회의 중 모니터를 기울여 다른 참석자와 화면을 공유하는 데 유용하며, 100×100 VESA 마운트로 모니터 암에 거치할 수도 있다. 32인치 4K 모니터인 ‘델 프로 32 플러스 USB-C 허브 모니터’는 100Hz의 고주사율과 99% sRGB 색역대, 1500:1 명암비를 지원하며, TUV 라인란드(TUV Rhineland)의 ‘아이 컴포트(eye comfort)’ 부문 ‘4-star’ 인증을 받아 선명하면서도 편안한 시각 경험을 제공한다.   ▲ 델 테크놀로지스 미디어 간담회 전경   ‘하드웨어 회사’에서 ‘AI 통합 파트너’로 이번 행사는 델이 단순한 PC 제조사를 넘어, AI 시대에 맞는 인프라와 디바이스, 소프트웨어, 툴킷까지 아우르는 ‘AI 통합 파트너’로 진화하고 있음을 보여주는 자리였다. 브랜드 통합과 제품 포트폴리오 재정비는 그 출발점이며, 향후에는 파트너십과 생태계 전략을 어떻게 확장해나갈지가 관건이다. 한국 델 테크놀로지스 김경진 총괄사장은 “올해는 AI가 일상과 업무 환경에 필수 기술로 자리 잡는 원년이 될 것으로 예상되는 가운데, 델은 사용자들이 AI 시대의 다양한 니즈에 맞춰 최적의 클라이언트 제품을 선택할 수 있도록 새로운 통합 브랜딩을 선보였다”라며, “델 테크놀로지스는 클라이언트 설루션부터 서버, 스토리지, 소프트웨어 및 서비스와 개방형 에코시스템에 이르기까지 다양한 AI 사용 사례를 구현할 수 있는 엔드-투-엔드 AI 포트폴리오를 보유하고 있으며, 고객들이 AI 기반의 미래에 민첩하게 대응하고 최고의 생산성과 효율성을 구현할 수 있도록 최선을 다해 지원하고 있다”고 말했다.   ▲ 한국 델 테크놀로지스 김경진 총괄 사장     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
엔비디아, 오라클 클라우드 인프라에 블랙웰 GPU 지원
엔비디아가 오라클에 엔비디아 블랙웰(NVIDIA Blackwell) GPU를 지원해 에이전틱 AI와 추론 모델의 혁신을 가속화하고 있다고 밝혔다. 오라클은 자사 데이터센터에 수랭식 엔비디아 GB200 NVL72 랙을 최초로 도입하고 최적화했다. 현재 수천 개의 엔비디아 블랙웰 GPU가 엔비디아 DGX 클라우드(DGX Cloud)와 오라클 클라우드 인프라스트럭처(Oracle Cloud Infrastructure : OCI)를 통해 고객이 사용할 수 있도록 배치되고 있다. 이는 차세대 추론 모델과 AI 에이전트 개발과 실행을 지원한다. 오라클이 도입한 GB200에는 고속 엔비디아 퀀텀-2 인피니밴드(Quantum-2 InfiniBand)와 엔비디아 스펙트럼-X 이더넷(Spectrum-X Ethernet) 네트워킹이 포함된다. 이를 통해 확장 가능하고 저지연 성능을 구현하며, 엔비디아와 OCI 소프트웨어와 데이터베이스 통합의 풀스택을 지원한다. OCI는 엔비디아 GB200 NVL72 시스템을 최초로 도입한 기업 중 하나이다. OCI는 세계 최대 규모의 블랙웰 클러스터를 구축하려는 계획을 갖고 있다. OCI 슈퍼클러스터(Supercluster)는 10만 개 이상의 엔비디아 블랙웰 GPU로 확장해 전 세계적으로 급증하는 추론 토큰과 가속 컴퓨팅 수요를 충족할 예정이다. 지난 몇 주 사이 오픈AI(OpenAI)를 비롯한 여러 기업에서 새로운 추론 모델을 출시하면서 AI 혁신은 빠른 속도로 계속되고 있다.     엔비디아는 “OCI의 사례는 엔비디아 그레이스(Grace) 블랙웰 시스템이 전 세계적으로 본격 가동되기 시작한 최신 사례이다. 이는 클라우드 데이터센터를 대규모 인텔리전스를 제조하는 AI 팩토리로 탈바꿈시키고 있다”고 설명했다. 이러한 새로운 AI 팩토리는 36개의 엔비디아 그레이스 CPU와 72개의 엔비디아 블랙웰 GPU를 결합한 랙 스케일 시스템인 엔비디아 GB200 NVL72 플랫폼을 활용한다. 이를 통해 고급 AI 추론 모델 기반의 에이전틱 AI를 위한 고성능과 에너지 효율을 제공한다. OCI는 모든 규모의 고객에게 블랙웰을 제공할 수 있는 유연한 배포 옵션을 지원한다. 여기에는 공공, 정부, 소버린 클라우드는 물론 OCI 전용 리전(Dedicated Region)과 OCI 알로이(Alloy)를 통한 고객 소유의 데이터센터까지 포함된다. 한편 새로운 GB200 NVL72 랙은 엔비디아 DGX 클라우드에서 사용할 수 있는 첫 번째 시스템이다. 엔비디아 DGX 클라우드는 OCI와 같은 주요 클라우드에서 AI 워크로드를 개발하고 배포하기 위해 소프트웨어, 서비스, 기술 지원을 제공하는 최적화된 플랫폼이다. 엔비디아는 추론 모델 훈련, 자율주행차 개발, 칩 설계와 제조 가속화, AI 도구 개발 등 다양한 프로젝트에 이 랙을 사용할 예정이다. GB200 NVL72 랙은 현재 DGX 클라우드와 OCI에서 사용할 수 있다.
작성일 : 2025-04-30
엔비디아, 기업 생산성 강화하는 ‘네모 마이크로서비스’ 정식 출시
엔비디아가 에이전트 기반 AI 플랫폼 개발을 가속화하고 기업의 생산성을 높이는 ‘엔비디아 네모 마이크로서비스(NVIDIA NeMo microservices)’를 정식 출시했다고 밝혔다. 이번에 정식 출시된 엔비디아 네모 마이크로서비스는 기업 IT 부서가 데이터 플라이휠(flywheel)을 활용해 직원 생산성을 높일 수 있는 AI 팀원을 빠르게 구축하도록 지원한다. 이 마이크로서비스는 엔드 투 엔드 개발자 플랫폼을 제공한다. 이 플랫폼은 최첨단 에이전틱 AI(Agentic AI) 시스템의 개발을 가능하게 하고, 추론 결과, 비즈니스 데이터, 사용자 선호도에 기반한 데이터 플라이휠을 통해 지속적인 최적화를 지원한다. 데이터 플라이휠을 통해 기업 IT 부서는 AI 에이전트를 디지털 팀원으로 온보딩할 수 있다. 이러한 에이전트는 사용자 상호작용과 AI 추론 과정에서 생성된 데이터를 활용해 모델 성능을 지속적으로 개선할 수 있다. 이를 통해 ‘사용’을 ‘인사이트’로, ‘인사이트’를 ‘실행’으로 전환할 수 있다.     데이터베이스, 사용자 상호작용, 현실 세계의 신호 등의 고품질 입력이 지속적으로 제공되지 않으면 에이전트의 이해력은 약화된다. 그 결과, 응답의 신뢰성은 떨어지고 에이전트의 생산성도 저하될 수 있다. 운영 환경에서 AI 에이전트를 구동하는 모델을 유지하고 개선하기 위해서는 세 가지 유형의 데이터가 필요하다. 인사이트를 수집하고 변화하는 데이터 패턴에 적응하기 위한 추론 데이터, 인텔리전스를 제공하기 위한 최신 비즈니스 데이터, 모델과 애플리케이션이 예상대로 작동하는지를 판단하기 위한 사용자 피드백 데이터가 그것이다. 네모 마이크로서비스는 개발자가 이 세 가지 유형의 데이터를 효율적으로 활용할 수 있도록 지원한다. 또한, 네모 마이크로서비스는 에이전트를 구동하는 모델을 선별하고, 맞춤화하며, 평가하고, 안전장치를 적용하는 데 필요한 엔드 투 엔드 툴을 제공함으로써 AI 에이전트 개발 속도를 높인다. 엔비디아 네모 마이크로서비스는 ▲대규모 언어 모델(LLM) 미세 조정을 가속화해 최대 1.8배 높은 훈련 처리량을 제공하는 네모 커스터마이저(Customizer) ▲개인과 산업 벤치마크에서 AI 모델과 워크플로의 평가를 단 5번의 API 호출로 간소화하는 네모 이밸류에이터(Evaluator) ▲ 0.5초의 추가 지연 시간만으로 규정 준수 보호 기능을 최대 1.4배까지 향상시키는 네모 가드레일(Guardrails)을 포함한다. 이는 네모 리트리버(Retreiver), 네모 큐레이터(Curator)와 함께 사용돼, 맞춤형 엔터프라이즈 데이터 플라이휠을 통해 AI 에이전트를 구축하고, 최적화하며, 확장하는 과정을 기업이 보다 수월하게 수행할 수 있도록 지원한다. 개발자는 네모 마이크로서비스를 통해 AI 에이전트의 정확성과 효율성을 높이는 데이터 플라이휠을 구축할 수 있다. 엔비디아 AI 엔터프라이즈(Enterprise) 소프트웨어 플랫폼을 통해 배포되는 네모 마이크로서비스는 온프레미스 또는 클라우드의 모든 가속 컴퓨팅 인프라에서 엔터프라이즈급 보안, 안정성, 지원과 함께 손쉽게 운영할 수 있다. 이 마이크로서비스는 기업들이 수백 개의 전문화된 에이전트를 협업시키는 대규모 멀티 에이전트 시스템을 구축하고 있는 현재 정식 출시됐다. 각 에이전트는 고유의 목표와 워크플로를 가지고 있으며, 디지털 팀원으로서 복잡한 업무를 함께 해결하며 직원들의 업무를 보조하고, 강화하며, 가속화한다. 엔비디아 네모 마이크로서비스로 구축된 데이터 플라이휠은 사람의 개입을 최소화하고 자율성을 극대화하면서 데이터를 지속적으로 선별하고, 모델을 재훈련하며, 성능을 평가한다. 네모 마이크로서비스는 라마(Llama), 마이크로소프트 파이(Microsoft Phi) 소형 언어 모델 제품군, 구글 젬마(Google Gemma), 미스트랄 등 폭넓은 인기 오픈 모델을 지원한다. 또한, 기업은 엔비디아 가속 인프라, 네트워킹, 그리고 시스코, 델, HPE, 레노버(Lenovo) 등 주요 시스템 제공업체의 소프트웨어를 기반으로 AI 에이전트를 실행할 수 있다. 액센츄어(Accenture), 딜로이트(Deloitte), EY를 비롯한 거대 컨설팅 기업들 역시 네모 마이크로서비스를 기반으로 기업용 AI 에이전트 플랫폼을 구축하고 있다.
작성일 : 2025-04-25
엔비디아, “차세대 AI 성장 위한 인텔리전스 구축 나선다”
엔비디아가 AI 팩토리에서 인텔리전스를 생산하는 기반을 구축해 미국을 포함한 전 세계의 차세대 성장을 이끌겠다는 포부를 밝혔다. 모든 기업과 국가는 성장과 경제적 기회 창출을 원하지만, 이를 위해서는 사실상 무한한 인텔리전스가 필요하다. 엔비디아는 이러한 상황에서 에코시스템 파트너와 협력해 추론 기술, AI 모델, 컴퓨팅 인프라를 발전시켜 AI 팩토리를 통해 인텔리전스를 생산하겠다고 전했다. 엔비디아는 미국 내에서 AI 슈퍼컴퓨터를 제조할 것이라고 발표했는데, 향후 4년 내에 파트너들과 협력해 미국에서 최대 5000억 달러 규모의 AI 인프라를 생산할 계획이다. 엔비디아는 미국 AI 팩토리를 위한 AI 슈퍼컴퓨터 구축이 수십만 명에게 기회를 제공하고, 향후 수십 년 동안 수조 달러의 성장을 견인할 것으로 기대하고 있다. 이러한 AI 슈퍼컴퓨터의 핵심인 엔비디아 블랙웰(Blackwell) 컴퓨팅 엔진 중 일부는 이미 미국 애리조나에 있는 TSMC 공장에서 생산되고 있다.     또한 엔비디아는 차세대 AI 모델 훈련과 대규모 애플리케이션 실행을 위한 엔비디아 블랙웰 GB200 NVL72 랙 스케일 시스템이 코어위브(CoreWeave)를 통해 제공된다고 발표했다. 코어위브는 현재 수천 개의 엔비디아 그레이스(Grace) 블랙웰 프로세서를 통해 차세대 AI를 훈련하고 배포할 수 있다. 한편, 엔비디아는 보다 효율적이고 지능적인 모델을 만들기 위해 하드웨어 혁신을 넘어 AI 소프트웨어 분야도 강화한다는 전략을 소개했다. 이러한 발전의 최신 사례는 엔비디아 라마 네모트론 울트라(Llama Nemotron Ultra) 모델이다. 이 모델은 최근 아티피셜 애널리시스(Artificial Analysis)에서 과학적이고 복잡한 코딩 작업을 위한 정확한 오픈소스 추론 모델로 인정받았다. 또한 이는 현재 세계 최고 수준의 추론 모델 중 하나로 평가받고 있다.
작성일 : 2025-04-17
지멘스, “AI 기반 산업으로 전환 가속화”…하노버 메세 2025서 혁신 기술 및 파트너십 발표
한국지멘스는 지멘스그룹이 3월 31일부터 4월 4일 독일에서 열린 ‘2025 하노버 산업 박람회(하노버 메세)’에 참가해 산업 전반의 디지털 전환과 지속 가능한 미래를 가속화하는 혁신 기술을 선보이고, 강력한 에코시스템 파트너들과의 성공적인 협업 현황을 공유했다고 밝혔다. 지멘스는 이번 하노버 메세를 통해 공장의 두뇌 역할을 하는 가상 프로그램 로직 제어기(vPLC)를 아우디의 뵐링거 회페 공장에 도입한 사례를 소개했다. 이 공장에서는 기존처럼 기계나 로봇 근처에 하드웨어 기반 컨트롤러를 설치하는 대신 수 킬로미터 떨어진 데이터 센터에서 작동하는 가상 컨트롤러가 공장 전체의 생산을 제어함으로써 현장의 안전성을 강화하고, 생산 프로세스를 간소화하며, 제조 공정의 효율화를 이끌고 있다. 이와 관련해 지멘스는 독일기술검사협회(TÜV)로부터 vPLC에 대한 안전 인증을 획득했다. 지멘스는 개방형 디지털 비즈니스 플랫폼을 지향하는 ‘지멘스 엑셀러레이터(Siemens Xcelerator)’를 통해 파트너가 보유한 최첨단 기술을 산업 생태계에 원활하게 통합시킨다는 전략을 추진하고 있다. 지멘스의 핵심 역량과 글로벌 파트너 에코시스템이 결합된 지멘스 엑셀러레이터로 첨단 기술의 확장과 차세대 산업 혁신을 주도하는 핵심 동력을 만들겠다는 것이다.     이번 하노버 메세에서 지멘스와 액센츄어는 전 세계 7000여명의 전문가로 구성된 ‘액센츄어 지멘스 비즈니스 그룹’을 출범한다고 발표했다. 이 조직은 지멘스 엑셀러레이터 포트폴리오의 산업용 AI 및 소프트웨어, 자동화 기술과 액센츄어의 데이터 및 AI 역량을 결합한 설루션을 공동 개발하고 판매할 예정이다. 또한, 지멘스는 하노버 메세에서 엔비디아와의 파트너십을 통한 산업용 메타버스 기술을 시연하면서, 지멘스 엑셀러레이터와 엔비디아 옴니버스(Omniverse)를 통합한 ‘팀센터 디지털 리얼리티 뷰어(Teamcenter Digital Reality Viewer)’를 처음 공개했다. 시각화 및 시뮬레이션 기능이 향상된 팀센터 디지털 리얼리티 뷰어는 극사실적인 몰입형 디지털 트윈을 구현하여 사용자에게 설계 및 운영 워크플로에 대한 중요한 인사이트를 제공한다. 이 밖에도 양사는 지멘스의 산업용 소프트웨어 및 자동화 포트폴리오와 엔비디아의 AI 및 가속 컴퓨팅 기술을 결합해 산업 전반의 효율 및 생산성을 높이고자 한다.  지멘스는 마이크로소프트와 함께 '산업용 파운데이션 모델(IFM)'을 개발했다. 마이크로소프트 애저(Azure) 플랫폼을 기반으로 산업 특화 데이터를 활용하는 이 모델은 AI에게 엔지니어링 언어를 학습시킴으로써, 3D 모델과 2D 도면은 물론 산업에 특화된 복잡한 데이터와 기술 사양을 처리하고 맥락화할 수 있다. 지멘스는 IFM이 인간과 기계의 협업을 한 단계 끌어올려 산업 현장의 AI 설루션 도입을 앞당기고, 숙련 인력 부족 문제를 해소하며, 가치 사슬 전반에 걸쳐 생산성과 효율성, 품질을 향상시킬 것으로 기대하고 있다. 또한, 지멘스와 마이크로소프트는 지멘스의 실시간 데이터 수집 툴인 인더스트리얼 엣지(Industrial Edge)와 마이크로소프트 애저의 클라우드 플랫폼을 통합하는 산업 운영 효율화를 위한 파트너십을 강화하고 있다. 지멘스와 아마존웹서비스(AWS)는 지속 가능한 스마트 인프라를 발전시키기 위한 전략적 파트너십을 발표했다. 양사는 하노버 메세에서 지멘스의 디지털 빌딩 플랫폼 ‘빌딩 X(Building X)’와 아마존 노바(Amazon Nova), 아마존 베드록(Amazon Bedrock) 등 AWS의 클라우드 서비스 및 AI 역량을 결합한 성과를 선보였다. 이를 통해 효율성 증대, 비용 절감, 프로세스 자동화와 함께 에너지 소비 및 탄소 배출 데이터에 대한 실시간 인사이트를 기반으로 에너지 절감 효과까지 거둘 수 있음을 보여줬다. 지멘스그룹의 롤랜드 부시(Dr. Roland Busch) 회장 및 최고경영자는 하노버 메세의 개막 연설에서 전 세계의 중대한 산업 변화를 이끌 핵심 기술로 ‘산업용 AI’를 꼽았다. 롤랜드 부시 회장은 “올해 하노버 메세는 산업계가 역동적인 기술 및 시장 환경 변화에 직면해 있는 대변혁의 시기임을 보여준다. 지멘스는 산업용 AI, 포괄적인 디지털 트윈, 소프트웨어 정의 자동화(SDA) 분야를 선도하는 기업으로서 고객이 경쟁력과 회복 탄력성, 지속 가능성을 높이고 변화를 이끌어 나갈 수 있도록 지원한다”고 전했다. 이어 롤랜드 부시 회장은 “지멘스는 산업 현장에 대한 전문성과 깊은 이해, 충분한 데이터를 보유하고 있으며, 이러한 지멘스의 역량과 AI를 결합함으로써 엄청난 시너지 효과를 낼 것”이라고 전망했다.
작성일 : 2025-04-07