• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "솔버"에 대한 통합 검색 내용이 544개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
지멘스, AI기반 3D IC 설계 혼합 신호 검증 솔루션 ‘솔리도 시뮬레이션 스위트’ 발표
지멘스 디지털 인더스트리 소프트웨어, 지멘스 EDA 사업부는 고객이 차세대 아날로그, 혼합 신호 및 맞춤형 IC 설계를 위한 중요한 설계 및 검증 작업을 획기적으로 가속화할 수 있도록 설계된 AI 가속 SPICE, Fast SPICE 및 혼합 신호 시뮬레이터의 통합 제품군인 ‘솔리도 시뮬레이션 스위트 소프트웨어(Solido Simulation Suite software, 솔리도 심)’를 출시했다. 지멘스의 파운드리 인증 아날로그 FastSPICE(패스트스파이스 : AFS) 플랫폼을 기반으로 구축된 솔리도 심은 솔리도 SPICE 소프트웨어(Solido SPICE software), 솔리도 패스트스파이스 소프트웨어(Solido FastSPICE software) 및 솔리도 리브스파이스 소프트웨어(Solido LibSPICE software), 지멘스의 AFS 플랫폼인 엘도(ELDO) 소프트웨어와 심포니(Symphony) 소프트웨어 등 세 가지의 새로운 시뮬레이터를 통합한다.  솔리도 심은 IC 설계 팀이 점점 더 엄격해지는 사양, 검증 커버리지 지표, 시장 출시 시간 요건을 충족할 수 있도록 설계되었다. 회로 및 시스템 온 칩(SoC) 검증 기능으로 포괄적인 애플리케이션 범위를 제공한다. AI 기술을 기반으로 하는 솔리도 심은 차세대 공정 기술과 복잡한 집적 회로(IC) 구조를 염두에 두고 개발되어 정확한 신호 및 전력 무결성 목표를 달성하는 데 필요한 도구 세트와 기능을 제공한다.     솔리도 SPICE는 지멘스의 차세대 SPICE 시뮬레이션 기술로 아날로그, 혼합 신호, RF 및 3D IC 검증에 2배~30배의 속도 향상을 제공한다. 최신 컨버전스, 캐시 효율적 알고리즘, 높은 멀티코어 확장성을 갖춘 솔리도 SPICE는 대규모 레이아웃 전후 설계에 성능 향상을 제공한다.  솔리도 패스트스파이스는 SoC, 메모리 및 아날로그 기능 검증에서 속도 향상을 제공하는 지멘스의 최첨단 Fast SPICE 시뮬레이션 기술이다. 이 솔루션은 SPICE-to-Fast SPICE 확장을 위한 동적 사용 모델을 제공하여 예측 가능한 정확도로 속도에 대한 목표를 달성할 수 있도록 확장 가능한 인터페이스를 제공한다.  솔리도 리브스파이스는 소형 설계를 위해 제작된 지멘스의 목적별 배치 솔버 기술로, 라이브러리(Library) IP 애플리케이션에 최적화된 런타임을 제공한다. 세 가지 새로운 솔버를 구동하는 것은 지멘스의 AI 가속 시뮬레이션 기술의 최신 버전인 솔리도 심 AI(Solido Sim AI)다. 솔리도 심 AI를 사용하면 자체 검증 및 SPICE 정확도에 맞게 조정된 알고리즘을 통해 회로 시뮬레이션이 한 단계 더 발전하여 기존 파운드리 인증 디바이스 모델을 변경 없이 사용하여 수십 배 향상된 가속도를 제공한다. 지멘스 디지털 인더스트리 소프트웨어의 마이클 엘로우(Michael Ellow) 실리콘 시스템 부문 CEO는 “AI 가속 SPICE 및 FastSPICE 엔진을 탑재한 솔리도 시뮬레이션 스위트는 칩 설계 및 검증 엔지니어에게 탁월한 정확성과 효율성을 제공하는 맞춤형 IC 시뮬레이션 기술의 획기적인 도약을 의미한다”면서, “솔리도 심의 초기 고객은 여러 공정 기술 플랫폼에서 괄목할 만한 성공을 거두었으며, 더 빠른 런타임과 차세대 아날로그, RF, 혼합 신호 및 라이브러리 IP 설계를 위한 매력적인 새로운 기능을 구현할 수 있었다”고 말했다.
작성일 : 2024-07-04
혼합 오더 메시 커브
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (10)   이번 호에서는 CFD에 유한요소법을 활용해 더 적은 요소 수로 해석 정확도를 높일 수 있는 곡선형 혼합 오더 메시(Mixed Order Mesh)를 생성하는 방법을 살펴본다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   High-Order 메시 커브는 전산유체역학(CFD) 솔버 커뮤니티에서 유한요소법(FEM)을 활용하는 사람들에게 큰 도움이 될 새로운 기술이다. 유한요소기법은 유한 체적 및 유한 미분 방법과 같은 기존 CFD 방법보다 적은 요소 수로 정확도를 높인다. 선형 요소의 가장자리, 면, 내부에 버텍스(새로운 자유도)를 추가로 도입하여 정확도를 높일 수 있다. 곡선 지오메트리에 인접한 요소의 경우 이러한 새로운 자유도가 지오메트리에 위치해야 하므로 원래 선형 요소의 모양이 변경된다. 메시가 점성이 있는 경계를 향해 요소들이 모여 있는 경우 이 과정은 더 어렵다. 또한 내부 요소의 가장자리와 면은 요소 반전을 방지하기 위해 경계 요소 곡률에 따라 곡선을 만들어야 한다. 케이던스 피델리티 포인트와이즈(Cadence Fidelity Pointwise)에서 사용하는 WCN 스무딩에 대한 연구를 통해 혼합 오더 메시(Mixed Order Mesh)를 사용하여 지오메트리 곡률을 해결할 수 있다. 요소는 곡률이 심한 지오메트리 근처에서는 최대 4차 다항식(quartic)까지 올라갈 수 있으며, 곡률이 심한 지오메트리에서 멀리 떨어진 곳에서는 선형을 유지한다. 메시 평활화 방법은 비용 함수를 사용하여 원하는 요소 모양과 양의 자코비안을 각 요소에 적용한다. 요소가 지오메트리 근처에서 곡선이 될 때 점성 메시 간격이 유지된다. 결과는 복잡한 3D 구성에 대해 표시된다.   지오메트리 선형 메시를 올리고 표면 곡률에 따라 곡선을 그리려면 지오메트리에 쉽게 액세스하고 강력한 초기화 및 평활화 프로세스가 필요하다. 초기화 중에 고차 노드가 지오메트리에 정확하게 배치되고 메시 평활화 중에 표면에 유지되도록 하려면, 지오메트리에 대한 표면 검색작업이 필요하다. 엘리베이트 및 스무딩을 위한 지오메트리 액세스는 메시링크 API¹) 를 통해 제공된다. 메시링크는 지오메트리 및 메시 데이터를 관리하기 위한 라이브러리로, 메시 생성 및 메시 적응 애플리케이션과 관련된 함수를 쿼리할 수 있는 간단한 인터페이스를 제공한다.   혼합 오더 커브 프로세스 혼합 오더 메시 커브는 유효한 선형 메시로 시작하는 프로세스를 사용한다. 프로세스의 주요 구성 요소는 <그림 1>의 순서도에 나와 있다. 이 백서 전체에서 요소의 차수 또는 다항식 차수는 선형, 이차, 입방체와 같은 Q1~4 명명법을 사용하여 표시되며, 이차 요소는 각각 Q1, Q2, Q3, Q4이다. 고차 요소는 라그랑지안 기저 함수를 사용하여 요소의 가장자리, 면, 내부에 고차 노드를 고르게 분포시킨다. 이러한 물리적 노드는 하위 요소와 요소 모양을 적용하기 위해 WCN 방식에 필수이다.   그림 1. 혼합 오더 메시 커브 프로세스의 순서도에는 가장 안쪽 고도 루프를 통과하는 여러 경로가 포함되어 있다. 진입 지점에 따라 색상으로 구분된 화살표를 따라가게 된다.   고도 프로세스는 입력된 선형 메시에서 시작하여 사용자가 요청한 최종 차수인 Qfinal에 도달할 때까지 최대 차수인 Qmax를 한번에 하나씩 증가시킨다. 각 차수 패스동안 먼저 표면 요소와 볼륨 요소의 편차를 테스트한다. 고차 점이 지오메트리에서 너무 많이 벗어나는 서피스 요소(허용 오차 기준)는 높이가 올라가고, 그 섭동이 볼륨에 퍼진다. 마지막으로, 요소 반전을 수정하고 엘리베이션 프로세스에서 생성된 요소의 품질을 개선하기 위해 WCN 메시 스무딩이 수행된다. 각 스무딩 반복 후 각 볼륨 요소의 편차를 다시 테스트하여 추가 높이 조정이 필요한지 여부를 결정한다. 이 프로세스는 모든 요소가 편차 기준을 충족하거나 최종 정도에 도달할 때까지 반복되며, 메시 평활화 프로세스가 수렴한다. 품질 제약 조건은 인접한 요소가 한 차수 이상 차이가 나지 않도록 보장한다. 최종 출력은 같은 차수의 요소 간에 공유되는 고차 노드가 포함된 메시이다. 그러나 차수가 다른 요소 간에 공유되는 면과 가장자리는 동일한 인터페이스 노드를 공유하지 않다. 따라서 내보내기 전에 이러한 인터페이스에서 형상 적합성을 적용한다.   요소 편차 메트릭 편차 메트릭(Deviation Metric)은 엘리먼트 엘리베이션 프로세스 및 메시 스무딩 프로세스의 일부로, 엘리먼트 엘리베이션 프로세스를 제어한다. 편차 메트릭은 곡선 경계 또는 다른 볼륨 요소에 인접한 요소의 가장자리와 면에 있는 테스트 노드의 변위를 측정한다. 이러한 테스트 노드의 변위가 임계값 거리를 초과하면 해당 요소에 상승 플래그가 지정된다. 높이를 트리거하는 임계값은 요소 내의 최소 선형 에지 길이에 입력 편차 임계값 파라미터(일반적으로 1~5%)를 곱한 값이다.   서피스 요소 편차 곡선 경계에 인접한 요소의 경우 편차 메트릭은 6차 가우스 구적법 점 위치에 배치된 테스트 노드를 사용한다. 그런 다음 테스트 노드를 지오메트리에 투영하고, 원래 위치와 투영된 위치 사이의 거리를 측정한다. 편차량은 <그림 2>에서 선형 삼각형의 중심(청록색)에 있는 테스트 노드를 곡선 지오메트리 표면(주황색)에 투영하여 보여준다.   그림 2. 지오메트리에 투영된 표면 요소의 중심에 있는 테스트 노드     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-07-04
헥사곤, 한국자동차공학회 세미나에서 AI/ML 활용 미래 모빌리티 연구 발표
헥사곤 매뉴팩처링 인텔리전스(헥사곤 MI)가 ‘2024 한국자동차공학회 춘계학술대회’에 참가해 현대자동차와 함께 ‘인공지능과 머신러닝을 활용한 미래 모빌리티 주행성능 버추얼 개발’을 주제로 세미나를 진행했다고 밝혔다. 현대자동차가 주관하고 헥사곤이 후원한 이번 발표에서는 100여 명의 모빌리티 분야 전문가가 참석한 가운데 자동차 산업 분야의 엔지니어링 프로세스에 인공지능(AI)과 머신러닝(ML) 기반의 예측 모델 도입과 미래 모빌리티의 주행 성능 향상에 대한 연구를 중점적으로 다뤘다. 세션의 세부 프로그램은 ▲AI/ML을 활용한 미래 모빌리티 주행성능 버추얼 개발 ▲AI R&H 자동화 툴을 활용한 엔지니어링 고도화 ▲소음 예측을 위한 차량과 e-파워트레인(e-powertrain)의 모델링 통합과 머신러닝 예측에의 활용 ▲AI/ML을 활용한 EV 구동모터의 방사 소음(radiation noise) 예측 ▲AI/ML을 활용한 PBV(Platform Beyond Vehicle)의 실시간 버추얼 개발 ▲헥사곤의 자동차 산업 AI/ML 연구동향 및 사례로 구성됐다. 세션에서 발표된 연구에는 다양한 주행 상황을 시뮬레이션할 수 있는 아담스(Adams), 다분야 구조해석 솔루션 나스트란(Nastran), 음향 솔루션 엑트란(Actran), 인공지능 및 머신러닝 플랫폼 오딧세이(ODYSSEE) 등 헥사곤 제품이 예측 모델을 개발하는 데에 활용됐다. 헥사곤의 아담스와 오딧세이는 고성능 스포츠카의 다양한 사례 연구에서 공차 범위를 변경하는 반복 작업을 신속하게 수행해 기어 변속의 품질과 효율성에 직결되는 기어박스 메커니즘 최적화에 사용됐다. 아담스는 메커니즘의 동작 검토와 설계 목표 정의, DoE(실험설계)를 지원한다. 아담스에서 입력 데이터로 사용이 가능한 데이터 매트릭스를 생성한 후, 오딧세이에서 데이터 학습을 거쳐 설계 사양에 따른 새로운 설계 변수에 대한 결과를 예측할 수 있다. 헥사곤 MI는 사례 발표를 통해 충돌 성능 예측에 활용된 오딧세이의 글로벌 사례, 헥사곤의 크래들 CFD(Cradle CFD) 솔버에 내장된 3D-ROM 기능, 딥러닝을 사용한 CT 데이터 결함 검사 등 다양한 기술과 활용 예시를 소개했다.     이번 연구 발표의 좌장을 맡은 현대자동차의 김용대 마스터는 “현대자동차와 헥사곤이 함께 진행한 이번 연구를 통해 자동차 제품 설계, 모델링, 해석에 인공지능과 머신러닝 도입의 중요성을 다시 한번 확인하게 됐다”면서, “헥사곤과의 협력을 통해 현대자동차의 버추얼 차량 개발 기간을 단축하고,  비용 절감 효과를 가질 것을 기대하고 있다”고 말했다. 헥사곤 매뉴팩처링 인텔리전스 코리아의 성브라이언 사장은 “미래 모빌리티 기술 혁신을 위한 연구에서 헥사곤의 솔루션이 활용되길 바란다”면서, “앞으로도 지속적인 교류를 통해 국내의 연구자들이 제품 연구 및 개발에 생산성 및 효율성을 높일 수 있도록 지원을 아끼지 않겠다”고 전했다.동차공학회 춘계학술대회는 6월 19일부터 22일까지 진행되며, 행사기간 중 진행된 전문 연구 발표인 ‘AI/ML을 활용한 미래 모빌리티 주행성능 버추얼 개발’ 세미나는 현대자동차가 주관하고 헥사곤이 후원했다.
작성일 : 2024-06-21
BARAM v24.0 공개 (LES/DES, Passive Scalar) 및 넥스트폼 채용 공고
@media only screen and (max-width:640px) {.stb-container {}.stb-left-cell,.stb-right-cell {max-width: 100% !important;width: 100% !important;box-sizing: border-box;}.stb-image-box td {text-align: center;}.stb-image-box td img {width: 100%;}.stb-block {width: 100%!important;}table.stb-cell {width: 100%!important;}.stb-cell td,.stb-left-cell td,.stb-right-cell td {width: 100%!important;}img.stb-justify {width: 100%!important;}}.stb-left-cell p,.stb-right-cell p {margin: 0!important;}.stb-container table.munged {width: 100% !important; table-layout: auto !important; } .stb-container td.munged {width: 100% !important; white-space: normal !important;}               BARAM v24.2.0 & NextFOAM 2405 및 WSL 이미지 공개 교육 안내 넥스트폼 채용 공고             SW 소식 >             BARAM v24.2.0 공개 >             BARAM v24.2.0이 공개되었습니다. BARAM v24.2.0에는 LES (Large Eddy Simulation), DES (Detached Eddy Simulation), UDS (User-Defined Scalar)와 격자 Gap Refinement 등 다양한 기능이 추가되었습니다. (링크)를 누르시면 BARAM v24.2.0 안내 페이지로 이동합니다.  이외에도 baramFlow tutorials 2개, baramMesh tutorials 2개가 추가되었습니다. (링크)에서 확인해주세요.             baramFlow New Features LES (Large Eddy Simulation), DES (Detached Eddy Simulation) 기능 포함 Non-Reflecting 경계 조건 추가 UDS (User-Defined Scalar) 기능 포함   baramFlow Improvement SST k-ω, Spalart-Allmaras 모델의 벽함수 개선 관리자 권한 실행 시, 초기화 에러 수정 Case wizard에서 flow type 제거 Maximum Viscosity Ratio 설정 가능 Monitoring 그래프의 사용자 편의성 개선             baramMesh New Features Gap refinement 기능 추가 Small gap에 자동으로 격자를 refine해주는 기능 Multi-Solid STL import 기능 추가   baramMesh Improvement baramMesh STL import 기능 개선 Cancel 버튼이 작동하지 않는 버그 수정                         NextFOAM v2405 및 WSL 이미지 공개 >             NextFOAM v2405가 출시 되었습니다. 이번 버전에서는 NextFOAM 솔버가 설치된 WSL 이미지가 출시되었습니다. Windows 유저들도 NextFOAM 솔버를 쉽게 설치 및 사용하실 수 있게 되었습니다. (링크)를 클릭하시면 NextFOAM 솔버 WSL 이미지의 설치 가이드를 확인하실 수 있습니다.   교육 소식 >             6월 BARAM을 활용한 CFD 실전 교육 >             BARAM을 활용한 CFD 실전 교육 6월 BARAM을 활용한 CFD 실전 교육에 대해 안내드립니다. CFD 기본 이론, 개념, 과정 설명과 예제 실습을 통해 CFD를 처음 접하시는 분들의 이해를 도와드립니다. 실습은 공개소스 S/W인 BARAM을 사용하므로 교육 후에도 제한 없이 사용하실 수 있습니다. 일정 : 6월 27일 ~ 6월 28일 (링크)를 클릭하시면 6월 BARAM을 활용한 CFD 실전 교육 내용을 확인하실 수 있습니다.                         7월 OpenFOAM 사용자 교육 >             7월 OpenFOAM 사용자 교육에 대해 안내드립니다. OpenFOAM에 관심은 잇으나 첫 발을 내딛지 못한 고객 여러분께 도움을 드리고자 일정 : 7월 24일 ~ 7월 26일 (링크)를 클릭하시면 7월 OpenFOAM 사용자 교육 내용을 확인하실 수 있습니다.             일반 소식 >             야외 공연장 특화형 안전사고 위험 실시간 예측 방치 시뮬레이터 개발 과제 수주             넥스트폼이 문화체육관광부의 과제를 수주하였습니다. 이번 과제는 '야외 공연장 특화형 안전사고 위험 실시간 예측 방지 통합운영관리플랫폼 개발'을 목표로 아래 6가지 목표로 과제를 수행합니다.    1. 실측 정보 기간 가상 공간 생성 도구 및 시뮬레이터 개발 2. 야외 공연장 특화형 군중 밀집 추적 도구 및 시뮬레이터 개발 3. 복합센서 기반 실시간 군중 밀집도 및 이상 상황의 위험도 분석기술 개발 4. 야외 공연장 특화형 군중 밀집 안전사고 예측 기술 개발 및 인터페이스 제작 5. 선별 관제 모니터링 시스템 및 사고 대응 체계 개발 6. 국가 재난 안전망 연계 사고 대응 시나리오 기반 가상 훈련 및 검증   이를 통해, 야외 공연장 및 시설에서 보다 안전하게 관람을 즐길 수 있는 문화 시설을 만들 수 있도록 과제를 수행할 예정입니다.             대기오염 확산 시뮬레이션 SaaS 개발 및 실증 과제 수주              (주) 넥스트폼이 한국지능정보사회진흥원의 '대기오염 확산 시뮬레이션 SaaS 개발 및 실증 과제'를 수주하였습니다.  이번 과제는 공중 보건과 환경에 심각한 영향을 주는 대기 오염 확산 문제를 분석하고 대안을 검토, 평가할 수 있는 시뮬레이션 Saas를 개발, 실증하여 국내 SW 경쟁령 강화 및 디지털 트윈 확산 기반 마련과 공공(LX 플랫폼)이 보유한 양질의 3D 공간 데이터와 민간 기업의 시뮬레이션 및 SaaS 구축기술 역량을 결합하여 디지털 행정 혁신 기반 마련 및 글로벌 디지털 경쟁력 확보를 위한 과제입니다.  주요 사업 내용으로는 공공 플랫폼 기반 서비스 구축, 대기 오염 확산 시뮬레이션 소프트웨어의 클라우드 기반 SaaS 모델 구축, 수요기관 현장 실증 시험 진행이 있습니다.             신재렬 수석, 정황희 선임연구원 한국연소학회 우수 논문상 수상             우주기술팀 신재렬 수석과 정황희 선임연구원이 (사)한국연소학회에서 우수 논문상을 수상하였습니다.  신재렬 박사님과 정황희 선임연구원님께서 진행하신 연구는 "Hypergolic 추진체에 관한 수치 연구"라는 제목으로 hypergolic 열유동 현상을 이해하기 위해 MMH/NTO 축소 반응 기구를 구현하고, 점화 지연에 대한 수치 연구를 진행하였습니다. 그리고 이전 실험 결과에 대해 1차원 수치 해석 결과와 비교하였으며, 가스 상에 대한 2차원 열유동 수치해석을 수행하고 그 결과를 기술하였습니다. 연구 결론으로 축소 반응기구의 점화 지연 및 온도의 타당한 결과를 확인하였으며, 이를 확장한 2차원 평행 유동 해석을 통해 NTO/NO2의 분사 속도에 따른 점화 현상을 확인하였습니다.             (주) 넥스트폼 CFD 엔지니어 채용 공고             (주) 넥스트폼에서 CFD 엔지니어를 채용합니다. 모집 분야 : CFD 해석 및 S/W 개발 모집 인원 : 신입/경력 O명 직무 내용 CFD S/W를 활용한 열유체 해석 및 컨설팅 CFD 해석 S/W 개발 개발 프로그램에 대한 기술 지원 지원 자격 : 열유체 관련 전공자로 석사 학위 이상 소지자 관련 학과 : 기계, 항공우주, 조선해양, 화공, 건축, 토목 등 우대 사항 : CFD S/W 경험자, OpenFOAM 경험자, in-house code 경험자 근무 조건 지역 : 서울 정규직, 4대보험, 주 5일 근무, 연차 휴가 혜택 장기 근속자 안식월 (유급 1개월) 12월 마지막주 특별 유급휴가 자율출퇴근 (병역특례 제외) 대체 휴무 - 회사 내규로 토요일이 중복되는 공휴일 대체 휴무 지원 학회 발표 인센티브, 학회 참가 지원 기타 : 전문연구요원 병역특례 가능 문의처 : (주) 넥스트폼 채용 담당자 Tel. 070-8796-3025, kjlee@nextfoam.co.kr 마감 : 채용 시             WHAT IS OPENFOAM? OpenFOAM은 오픈소스 CFD 소프트웨어이다. GNU GPL 라이센스를 사용하고 있어 누구나 자유롭게 사용이 가능하며 수정 및 재배포를 할 수 있다.       WHAT IS MESHLESS CFD? 질점격자 기반의 CFD해석 기법으로 FVM해석 기법의 보존성을 갖추고 있으며 전처리 작업시간을 획기적으로 줄일 수 있습니다.FAMUS는 무격자 기법의 CFD 해석 SW 입니다.       WHAT IS BARAM SERIES? BARAM은 넥스트폼이 개발한 OpenFOAM CFD 해석 프로그램입니다. 넥스트폼이 개발한 OpenFOAM Solver와 Utility를 GUI 기반으로 사용이 가능합니다.           수신거부
작성일 : 2024-06-07
전기/기계 엔지니어의 역량을 강화하는 통합 AI 열 해석
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (10)   케이던스 셀시우스 스튜디오(Cadence Celsius Studio)는 전자 시스템의 열 해석과 열 응력, 전자 제품 냉각을 해결하기 위한 AI 기반 열 플랫폼이다. 현재 제공되는 제품은 대부분 포인트 툴 솔루션으로 구성되어 있지만, 셀시우스 스튜디오는 전기 및 기계/열 엔지니어가 형상 단순화, 조작, 변환 없이 단일 플랫폼 내에서 동시에 설계 및 해석할 수 있는 통합 플랫폼으로 완전히 새로운 접근 방식을 도입했다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   셀시우스 스튜디오는 전열 공동 시뮬레이션, 전자 냉각, 열 응력을 하나의 솔루션으로 통합한다. 또한 설계 중 다중 물리 분석으로 셀시우스 스튜디오를 원활하게 사용할 수 있으므로, 설계자는 설계 프로세스 초기에 열 무결성 문제를 발견하고 이상적인 열 설계를 발견하기 위해 생성형 AI 최적화와 새로운 모델링 알고리즘을 효율적으로 활용할 수 있다. 그 결과 협업이 개선되고 설계 반복이 줄어들며 예측 가능한 설계 일정이 가능해지는 간소화된 워크플로를 통해 처리 시간을 단축하고 출시 기간을 단축할 수 있다.   셀시우스 스튜디오의 주요 이점 셀시우스 스튜디오는 복잡한 열 해석, 열 응력, 전자 냉각 등의 문제를 해결할 수 있다.    매끄러운 통합 셀시우스 스튜디오는 케이던스의 버추소, 알레그로, 이노베이티브, 옵티멀리티 및 AWR 구현 기술과 통합된다.   디자인 인사이트 전체 설계 공간을 빠르고 효율적으로 탐색하여 최적의 설계에 수렴할 수 있도록 통합된 옵티멀리티 AI(Optimality AI) 기반 기술을 통해 지원한다.   시스템 레벨의 열 해석 전체 시스템 분석을 위해 유한 요소법(FEM)과 전산 유체 역학(CFD)을 결합한다.   생산성 향상 기존 솔루션보다 최대 10배 빠른 성능을 달성하는 대규모 병렬 실행을 제공한다.   셀시우스 스튜디오의 솔루션 구성 전열(Electrothermal) 해석 셀시우스 스튜디오는 다양한 ECAD 및 MCAD 파일 형식을 지원하며, 전기 및 열 시뮬레이션을 위한 재료 및 부품 관리자를 제공한다. 정적 및 과도 전열 공동 시뮬레이션을 모두 제공하며 케이던스의 클래리티, 시그리티, 스펙터 솔버와 원활하게 통합된다.     기구 응력(Mechanical Stress) 셀시우스 스튜디오는 선형 및 비선형 재료 구조 모델뿐만 아니라 뒤틀림 및 응력 분석을 위한 정적 및 준정적 솔버, 수분 솔버, 고온고습(HTHH) 분석을 지원한다. 설계자는 설계 조립 공정과 재료 고장 및 신뢰성 분석을 위한 다단계 시뮬레이션을 수행할 수 있다. 3D-IC 뒤틀림/응력 시뮬레이션을 위한 글로벌 및 로컬 모델이 있다.     머신러닝/인공지능(ML/AI) 셀시우스 스튜디오는 열 설계 및 관리를 위한 AI 기반 최적화와 DFM 검증을 위한 몬테카를로 분석 및 민감도 연구, 열 RC 및 컴팩트 모델 생성 및 네트워크 시뮬레이션을 통합한다. 메타모델 칩/패키지/서버는 빠른 열 성능, 특성화 및 평가를 제공한다.   전자 냉각(Electronic Cooling) 셀시우스 스튜디오는 전체 전자 시스템의 열 효율을 최적화하기 위한 전자 냉각 시뮬레이션을 제공한다.       ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-06-03
앤시스 플루언트 GPU 솔버의 소개와 활용
앤시스 워크벤치를 활용한 해석 성공사례   CPU를 이용한 해석을 진행할 때 여러 개의 코어(core)를 사용하여 병렬 연산을 진행하기 때문에, 성능은 낮아지고 전력 소모량은 늘어나는 단점이 존재한다. 반면 GPU를 이용할 경우, 수백 개의 작은 코어를 사용하기 때문에 단순 작업 병렬화로 인해 CPU보다 높은 효율을 보인다.  앤시스 2023R1에서는 GPU가 적용된 앤시스 네이티브 GPU 솔버(Ansys Native GPU Solver)가 출시되었다. 이번 호에서는 앤시스 플루언트 GPU 솔버(Ansys Fluent GPU Solver)의 소개를 비롯해 사례 및 해석 시간 비교부터 결과까지 확인해보자.   ■ 김은자 태성에스엔이 FBU에서 근무하고 있으며, 유동 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   GPU의 병렬연산을 활용하는 해석 솔버 우리가 해석해야 하는 내용은 점점 더 복잡해지고 보다 어려워졌으며 보다 많은 해석을 필요로 하고 있다. 그리고 보다 빠른 시간 안에 정확한 결과를 얻고자 한다. 앤시스에서는 계산 시간을 단축하기 위하여 HPC(High Performance Computing) 기능을 유상으로 제공하며, 일반적으로 HPC는 CPU를 이용하여 병렬 연산을 수행한다. 싱글 코어를 기준으로 CPU는 큰 코어를 사용하여 처리 속도가 빠르고 다양한 작업을 한꺼번에 수행할 수 있으나, 여러 개의 코어를 사용하여 병렬 연산을 할 경우에는 성능이 떨어지고 전력 소모량은 증가하는 문제가 발생한다. GPU는 CPU와 다르게 수백 개의 작은 코어를 사용하기 때문에, 병렬 연산 시 많은 코어로 단순 작업을 병렬화하여 CPU보다 나은 효율을 보인다.  앤시스는 CPU 병렬 연산의 문제점을 해결하고자 GPU를 도입하려 노력하였으나, GPU는 CPU와 계산 방식이 다르기 때문에 기존의 CPU 솔버에 GPU를 적용시키기에는 어려움이 있었다. 하지만 앤시스는 GPU를 활용하기 위하여 많은 노력을 해왔으며, 앤시스 2023R1에서 앤시스 네이티브 GPU 솔버를 정식 출시하였다.   플루언트 네이티브 GPU 솔버 앤시스 플루언트 네이티브 GPU 솔버는 GPU가 국부적인 연산에만 참여하는 것이 아니라, 전체 연산에 참여하여 효율이 향상된 솔버이다. 사용자들이 알고 있는 일반적인 플루언트 솔버와는 다른 솔버이다.   그림 1. 앤시스 플루언트 네이티브 솔버   플루언트 CPU 솔버와 플루언트 네이티브 GPU 솔버는 어떤 차이가 있을까? CPU는 코어로 구성되어 있고, GPU는 많은 CUDA(쿠다) 코어가 포함된 SMs(Streaming Multiprocessors)으로 구성되어 있다. 병렬 연산을 위하여 앤시스 HPC(Ansys HPC) 기능을 사용하고자 한다면 CPU의 경우 코어 수를 기반으로 하며, GPU의 경우 SMs 수를 기반으로 한다. 앤시스의 HPC 1 Task는 CPU의 1코어를 지원하며, GPU의 경우 1 SMs를 지원한다. GPU의 개수가 아닌 SMs 숫자를 기반으로 앤시스 HPC를 사용한다.  앤시스 HPC 기능을 사용하여 플루언트 CPU 솔버(인텔 스카이레이크 48코어)와 플루언트 GPU 솔버(싱글 GPU)의 병렬 연산 성능을 비교해보자.    그림 2. 계산 시간 비교   <그림 2>는 200만개 정도의 격자 수를 가진 자동차 외부 유동 사례를 비교한 결과이다. <그림 2>에서는 스카이레이크 48코어와 GPU 카드(5종)의 계산 시간을 비교하였다. GPU 카드가 나열된 순서대로 계산 속도가 향상되었음을 알 수 있다. 인텔 스카이레이크 48코어에 비해 엔비디아 테슬라(Tesla) P100은 약 2.6배, 테슬라 V100은 약 4.6배, 테슬라 A100은 약 7.8배의 속도 향상을 보인다.  플루언트 CPU 솔버와 성능을 비교한 GPU 카드의 정보는 <표 1>과 같다.   표 1. GPU 카드 비교     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-06-03
CDA&Graphics 2024년 6월호 목차
  17 THEME. 제조기업이 말하는 스마트 혁신 전략과 추진 과정   제조 혁신의 미래 : 포스코의 디지털 트윈 추진 사례 설계부터 운영까지 : LG의 스마트 공장 구축 여정과 사례 생산성을 넘어서는 가치 추구 : 현대차/기아의 스마트 공장 추진 현황   INFOWORLD    New Products 29 비주얼 콘텐츠 제작의 퍼포먼스 · 품질 · 생산성 향상 언리얼 엔진 5.4 34 건축 설계-시공 워크플로 개선 및 건설 생산성 강화 올플랜 2024-1 서비스 릴리스 36 하드웨어 기반 반도체 개발 검증 솔루션 벨로체 CS 45 이달의 신제품   Case Study 38 발레오, SXSW에서 차량 내 XR 레이싱 게임 공개 자율주행 시대의 새로운 사용자 경험을 제시하다   Focus 40 폼랩, “제조산업에서 3D 프린팅의 가능성 넓힌다” 42 AWS, 산업 혁신 지원하는 포괄적 클라우드/AI 기술 소개   Column 48 디지털 지식전문가 조형식의 지식마당 / 조형식 디지털 AI 전환 시대의 디지털 엔지니어링 이니셔티브 51 책에서 얻은 것 No. 20 / 류용효 컨셉맵으로 미래 그리기   On Air 56 캐드앤그래픽스 CNG TV 지식방송 지상중계 생성형 AI LLM과 스테이블 디퓨전 최신 기술 및 활용 동향 57 캐드앤그래픽스 CNG TV 지식방송 지상중계 다양한 산업군에서의 HPC on AWS 58 캐드앤그래픽스 CNG TV 지식방송 지상중계 생성형 AI 시대의 BIM 기술과 스마트 건설 59 캐드앤그래픽스 CNG TV 지식방송 지상중계 산업별 DX/PLM 전략과 생성형AI 혁신 60 캐드앤그래픽스 CNG TV 지식방송 지상중계 미래를 선도하는 혁신 제조 기술의 활용 가능성 61 News 66 New Books   Directory 115 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 68 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈소스 LLaVA 기반 멀티모달 생성형 AI 서비스 만들기 72 새로워진 캐디안 2024 살펴보기 (6) / 최영석 캐디안 2024 SE의 새로운 기능 소개 76 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (2) / 천벼리 아레스 AI 어시스트 112 복잡한 모델에서 인사이트를 얻고 설계 의사결정을 돕는 직스캐드 (3) / 이소연 사용성을 강화하는 QPro 및 LANDY 연동   Reverse Engineering 83 문화유산 분야의 이미지 데이터베이스와 활용 사례 (6) / 유우식 고서 자형 데이터베이스   Mechanical 94 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (1) / 김성철 크레오 11.0에서 향상된 주요 기능 소개 100 산업 디지털 전환을 위한 버추얼 트윈 (2) / 최윤정 자동차 산업에서 3D익스피리언스 카티아의 활용법   Analysis 80 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (10) / 나인플러스IT 전기/기계 엔지니어의 역량을 강화하는 통합 AI 열 해석 104 앤시스 워크벤치를 활용한 해석 성공사례 / 김은자 앤시스 플루언트 GPU 솔버의 소개와 활용 108 시뮤텐스 소프트웨어를 활용한 복합소재 해석 (3) / 씨투이에스코리아 복합재 성형-구조 연계 해석을 위한 시뮤드레이프       캐드앤그래픽스 2024년 6월호 목차 from 캐드앤그래픽스
작성일 : 2024-05-31
앤시스, ‘옵틱스 테크 서밋 2024’에서 광학 시뮬레이션 및 설계 소프트웨어 소개
앤시스코리아는 5월 29일 수원 컨벤션센터에서 ‘앤시스 옵틱스 테크 서밋(Ansys Optics Tech Summit) 2024’를 개최한다고 밝혔다. 이번 행사는 갈수록 그 중요도가 증대함과 동시에 하루가 다르게 급변하고 있는 광학 산업 내에서 제품 개발 가속화에 기여할 수 있는 앤시스의 광학 솔루션에 대한 유용한 정보와 인사이트를 공유하기 위해 마련됐다. 앤시스코리아는 올해로 세 번째를 맞이한 이번 행사에서 자동차, 하이테크, 항공우주 및 방위, 멀티피직스 등 다양한 최신 산업 현황 및 사례와 함께 앤시스의 주요 광학 시뮬레이션 및 설계 소프트웨어인 ▲앤시스 루메리컬(Ansys Lumerical) ▲앤시스 지맥스(Ansys Zemax) ▲앤시스 스피오스(Ansys Speos)를 소개할 예정이다.     앤시스 광학 솔루션은 고급 물리 솔버 제품군을 통해 나노 규모에서 매크로 규모까지 정밀한 다중규모 시스템 설계를 지원하는 사용자 친화적인 워크플로를 제공하여 다양한 산업에서 애플리케이션을 설계할 수 있도록 지원하고 있다. 다중물리 광자 모델링 솔루션인 앤시스 루메리컬은 광학, 전기, 열 현상의 상호 작용을 고려한 포토닉스 모델링 소프트웨어로, 설계자가 어려운 포토닉스 문제를 효과적으로 모델링할 수 있게 돕는다. 또한, 제품군 간의 유연한 상호 운용성을 통해 다중물리 시뮬레이션, 시스템 레벨의 광집적회로 시뮬레이션, 파이썬(Python) 기반의 자동화와 포토닉스 파운드리를 위한 컴팩트 모델 라이브러리(CML)를 지원한다. 광학 부품 모델링 솔루션인 앤시스 지맥스는 광학 산업 전반의 선도 기업과 전 세계 대학의 광학, 조명 및 레이저 시스템 설계를 위한 표준 소프트웨어다. 결상, 조명, 레이저 시스템 광학계를 하나의 시스템으로 제공할 수 있는 솔루션으로 다중물리 시뮬레이션 지원, 실제 광학 시스템 제조를 위한 설계 및 회절 광학 통합을 위한 포괄적인 기능을 제공한다. 또한 광학 설계의 시뮬레이션, 최적화 및 공차 분석을 모두 수행할 수 있다. 시스템 설계 및 검증 솔루션인 앤시스 스피오스는 국제조명위원회(CIE)의 CIE 171:2006 테스트를 통해 정확성을 인증 받은 광학 설계 소프트웨어로, 시스템의 광 전파 설계 및 측정에 주로 사용된다. 가시광선, 자외선 및 원적외선 스펙트럼 영역까지 분석이 가능하며 조도 및 광학 성능을 예측해 프로토타입 제작 시간과 비용을 절감한다. 이외에도 직관적이고 포괄적인 사용자 인터페이스를 제공하며, GPU를 사용한 시뮬레이션 미리 보기와 앤시스 다중물리 에코시스템에 대한 간편한 액세스를 통해 생산성을 높일 수 있다. 앤시스코리아의 박주일 대표는 “앤시스코리아는 광기술의 발전과 광학 엔지니어를 위한 정확하고 고성능의 광학 설계 및 시뮬레이션 기능을 제공하기 위해 계속해서 혁신의 한계를 뛰어넘고 있다”면서, “이번 행사는 다양한 분야 간 융합의 핵심으로서 광기술의 중요성을 확인하는 시간이 될 것으로 기대한다”고 밝혔다.
작성일 : 2024-05-22
PyMAPDL의 기초부터 활용까지
앤시스 워크벤치를 활용한 해석 성공사례   파이앤시스(PyAnsys)는 파이썬(Python)을 활용하여 앤시스(Ansys) 제품을 사용할 수 있는 라이브러리를 뜻한다. 파이앤시스는 구조해석과 관련한 PyMAPDL, PyMechanical과 전처리 및 후처리에 대한 PyDPF가 있다. 이와 같은 라이브러리를 이용하면 파이썬 내에 있는 패키지와 함께 다양한 작업이 가능해진다. 이번 호에서는 파이앤시스 중에서도 PyMAPDL에 대한 사용 방법과 활용 예시를 소개하고자 한다.   ■ 노은솔 태성에스엔이 구조 3팀 매니저로 구조해석 및 자동화 프로그램에 대한 기술 지원을 담당하고 있다. 이메일 | esnoh@tsne.co.kr 홈페이지 | www.tsne.co.kr   앤시스에서 구조, 열, 음향 등 다양한 해석에 사용되는 유한요소 솔버 중 하나인 Mechanical APDL은 명령어를 기반으로 구동된다. 복잡한 연산이나 매개변수 설정 및 자동화 기능이 가능하기 때문에 여전히 많이 사용되고 있다. 하지만 앤시스 워크벤치(Ansys Workbench)의 제한적인 기능을 활용할 경우, 추가적으로 APDL 명령어를 사용해야 한다. 말하자면 APDL 명령어로 여러 기능을 구현할 수 있지만, 넓은 범위에서 적용하기에는 한계가 있는 것이다. 예로 머신러닝이나 딥러닝과 관련한 라이브러리인 텐서플로(TensorFlow)나 케라스(Keras) 등은 APDL 명령어 내에서는 사용할 수 없으며, 파이썬과 APDL 연동에도 한계가 있다.  이 때 PyMAPDL 라이브러리를 사용하면 파이썬 내에서 APDL을 사용하기 때문에 활용도가 넓어진다. 이번 호에서는 PyMAPDL의 사용 방법과 활용 예시를 다뤄보고자 한다.    PyMAPDL 사용 방법 PyMAPDL은 파이썬에서 사용될 때 gRPC(Google Remote Procedure Call)를 기반으로 파이썬 명령어를 APDL 명령어로 변환하여 MAPDL 인스턴스(Instance)에 전송하고, 결과를 파이썬으로 다시 반환한다. 이러한 작업 과정 때문에 파이썬과 MAPDL 간 원활한 데이터 통신이 가능해지며, 다수의 MAPDL 인스턴스를 생성하여 다른 명령으로 동시 작업 또한 가능하다.   그림 1. PyMAPDL gRPC   먼저 PyMAPDL을 사용하기 위해서 앤시스 메커니컬(Ansys Mechanical)이 설치되어 있어야 하며, 관련 라이선스를 보유하고 있어야 한다. 현재 파이앤시스 홈페이지에 따르면 파이썬 3.8 이상 버전을 지원하고 있으며, gRPC 기반으로 사용하기 위해서 앤시스 2021 R1 이상을 권장한다. 파이썬과 앤시스 모두 설치되어 있는 환경이라면 추가적으로 PyMAPDL 라이브러리를 설치해야 한다. 터미널 창에 ‘pip install ansys-mapdl-core’ 한 줄의 입력으로 쉽게 설치되며, 버전을 따로 지정하지 않을 경우 최신 버전으로 설치된다. PyMAPDL은 <그림 2>와 같이 ‘launch_mapdl’ 함수를 호출하여 사용한다. 이는 Mechanical APDL Product Launcher를 실행하는 것과 유사하다. 해당 함수를 활용할 때 입력 가능한 주요 인자들을 입력하여 작업 폴더 위치나 파일 이름, 계산 방식 및 라이선스 등을 지정할 수 있다.    그림 2. PyMAPDL 실행 명령어   기존에 APDL에서 육면체 형상을 모델링하여 요소를 생성하는 과정은 <그림 3>과 같이 작성되고, 동일한 작업을 PyMAPDL로는 <그림 4>와 같이 구성할 수 있다. 작성된 APDL과 PyMAPDL 명령어를 비교하면 형태가 매우 유사한 것을 볼 수 있다. 이 때 PyMAPDL은 파이썬에서 두 가지 방식으로 사용된다. 첫 번째는 ‘run’ 명령어를 활용하여 APDL 명령어를 스트링(string)으로 입력해 직접 실행하는 방법이며, 두 번째는 파이썬 명령어로 변환해서 처리하는 방법이다.   그림 3. MAPDL 모델링 및 요소 생성 예시   그림 4. PyMAPDL 모델링 및 요소 생성 예시     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02
[무료다운로드] 1D 시뮬레이션을 위한 카티아 다이몰라
산업 디지털 전환을 위한 버추얼 트윈 (1)   이번 호부터 산업 분야에서 버추얼 트윈(virtual twin)을 구축하고 활용하기 위한 다쏘시스템의 솔루션을 살펴본다. 첫 번째로 소개하는 다이몰라(CATIA Dymola)는 모델 기반 시스템 설계와 시뮬레이션을 위한 툴이다. 다이몰라는 다양한 산업 분야에서 사용되며, 기계, 전기, 열, 유체, 제어 시스템 등 다양한 시스템의 거동(behavior)을 모델링 및 시뮬레이션할 수 있다. 다이몰라를 알기 위해서는 우선 모델리카(Modelica)에 대해 알아야 한다.   ■ 안치우 다쏘시스템코리아의 카티아 인더스트리 프로세스 컨설턴트로 CATIA Dymola를 활용한 1D 시뮬레이션을 담당하고 있다. 관심 분야는 Modelica, FMI, 1D~3D 코시뮬레이션, SysML 기반의 Modelica 모델 개발이며 LG전자, 삼성전자, SK하이닉스 등 다수의 프로젝트 및 제안을 수행하고 있다. 홈페이지 | www.3ds.com/ko   1D 시뮬레이션이란 시간의 흐름에 따라 지배 방정식을 1차원으로 한정지어 계산하는 방법을 의미한다. 예를 들어, 스프링-댐퍼 시스템에서 길이 방향인 하나의 차원에서 수학적 모델링을 통해 빠른 시간 내에 결과를 도출해 검토할 수 있다. 장점으로는 모델 구성 및 검토의 시간이 빠르고, 표현의 제약이 적으며, 시스템간 상호 작용을 효율적으로 검토 가능하다. 단점으로는 시스템의 기능을 수식화하기 위해 도메인(domain)에 대한 높은 이해도가 필요하고, 인풋(input) 정보의 품질에 따라 아웃풋(output)이 민감하게 반응한다.   모델리카는 시스템 모델링을 위한 언어이다. 모델리카(Modelica)는 1996년 모델리카 어소시에이션(Modelica Association)에 의해 개발된 시스템 모델링을 위한 언어이다. 무료로 사용할 수 있고, 여러 개발자 및 전문가에 의해 개발되고 있다. 모델리카는 시스템 모델링을 지원하며, 다쏘시스템에서는 시스템 모델링의 원활한 시뮬레이션을 위한 솔버 알고리즘을 개발하고 있다. 다이몰라에는 모델 시뮬레이션을 위한 다양한 솔버가 내장되어 있다. 사용자는 문제 해결을 위한 미분방정식에 대한 표현을 모델리카 문법에 맞게 표현함으로써 시뮬레이션을 위한 모델링은 끝났다고 볼 수 있으며, 이러한 이유 때문에 모델리카는 C, C++, 포트란(Fortran) 등 타 언어에 비해 코드량이 적다는 것을 알 수 있다. 모델리카의 모델링 방법에는 텍스트 타입으로 방정식을 정의할 수 있고, 또한 유저에게 친근한 GUI(그래픽 사용자 인터페이스)를 활용한 객체 모델링 기반으로 모델을 구성할 수 있다.    모델리카는 비인과적/인과적 해석을 모두 지원한다. 인과적(causal) 모델링과 비인과적(acausal) 모델링은 둘 다 시스템이나 현상을 설명하고 예측하기 위한 방법론이다.   그림 1   비인과적 모델링은 원인과 결과 간의 인과 관계를 명확히 구분하지 않고 시스템의 구성요소 간의 관계를 모델링하는 방법이다. 이 방법은 일반적으로 동적 시스템의 거동을 설명하거나 예측할 때 사용하며, 시스템의 구성 요소와 그들 간의 관계를 수학적 방정식으로 표현하여 시스템의 동작을 설명한다. 각 요소가 다른 요소에 의해 어떻게 영향을 받는지를 보다 전체적으로 이해하는 데에 도움이 된다. 인과적 모델링은 원인과 결과 간의 인과관계를 중심으로 모델을 구성한다. 이 모델링 기법은 일반적으로 인과관계를 고려하여 시스템의 동작을 설명하고 예측한다. 예를 들면 A가 B에 어떻게 영향을 주는지, 또는 어떤 요인이 결과에 어떻게 기여하는지를 분석한다. 주로 원인과 결과 간의 관계를 나타내는 도표나 그래프를 사용해 시각화하며, 시간의 흐름을 고려하여 이전 사건이 이후 사건에 어떻게 영향을 미치는지를 이해한다.  비인과적 모델링은 물리적 시스템의 동작을 설명하는데 유용하다. 예를 들어, 열 전달, 유체 흐름, 전기 회로 등과 같은 시스템에서 원인과 결과 간의 명확한 인과 관계를 파악하기 어려운 경우가 있다. 이러한 시스템은 에너지, 질량 또는 정보의 흐름을 모델링하여 설명할 수 있다.    모델리카는 해석 솔버에 대한 개발이 필요 없다. 실제 모델링 후 유저는 소스코드를 볼 수 있고, 해석 결과를 확인 할 수 있다. 그렇지만 솔버에 대한 구현 방식은 확인할 수 없다. 다이몰라에 솔버가 내장되어 있어 유저는 미분방정식에 대한 표현을 모델리카 문법에 맞게 표현하면, 유저가 모델링한 시스템에 대한 해석 결과를 확인할 수 있다. 이러한 이유로 인해 모델리카의 코드량은 타 언어에 비해 적다. 솔버가 해석 결과를 보여주기 위해 <그림 2>를 참조하면, 모델리카 file(*.mo)를 C 언어로 변환하고 참조할 라이브러리와 함께 컴파일을 수행하기 때문에 유저는 이 과정을 인식하지 못하는 경우가 많다.   그림 2     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02