• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "솔버"에 대한 통합 검색 내용이 559개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
개념 설계부터 최종 제품까지 다물체 동역학 해석을 위한 심팩
산업 디지털 전환을 위한 버추얼 트윈 (7)   이번 호에서는 다물체 동역학 해석(MBS) 소프트웨어인 심팩(Simpack)의 전반적인 기능과 성능 및 주요 적용 분야를 소개하고자 한다.  심팩은 이미 일본/미국/유럽과 같은 선진국 및 전 세계적으로 자동차, 철도, 풍력 등 핵심 산업에서 널리 사용되고 있으며, 국내에서도 점차 도입되면서 다물체 동역학계를 선도하려는 움직임을 보이고 있다. 심팩은 기존의 다물체 동역학 해석 프로그램이 수행할 수 없었던 복잡한 시스템에 대한 접근성을 높이고, 개념 설계부터 최종 제품까지 일관된 해석을 제공함으로써 비용 절감, 성능 예측, 제품 성능 향상 등의 다양한 가치를 제공할 수 있게 되었다.    ■ 임상혁 다쏘시스템코리아 시뮬리아 브랜드팀에서 다물체 동역학 해석 기술을 담당하고 있는 인더스트리 프로세스 컨설턴트이다. 한국항공대학교 학사와 석사 과정을 마쳤다.  홈페이지 | www.3ds.com/ko   다물체 동역학 해석(MBS : Multi-body Simulation)이란 자동차, 철도, 풍력 터빈 등 기계 시스템의 거동 및 하중을 구현, 예측 및 최적화하는데 사용하는 해석을 말한다. 보통 하나의 시스템은 여러 개의 단품으로 이루어지는데, 각각의 단품은 시스템의 일부가 될 때 단품 자체일 때와는 다른 거동 및 다양한 하중을 받는다. 전체 시스템의 거동 및 하중을 예측하기 위해서, 그리고 각 단품에 작용하는 하중을 예측하고 이를 최소화하기 위해서 시스템 전체에 대한 해석은 반드시 필요하다. 심팩은 1987년도에 독일 우주항공센터(DLR)와 MAN Technology에 의해 처음 개발이 시작되어 1993년도에 상용화를 개시하였다. 이후로 BMW, 다임러, JLR, 지멘스, 알스톰, 베스타스 등 자동차, 레일, 풍력 터빈 산업 관련 기업에 의해 선택을 받아왔으며 2014년도에 다쏘시스템의 일원이 되었다.   그림 1   심팩의 특징 실시간 시뮬레이션 심팩의 가장 큰 특징은 실시간(real-time) 시뮬레이션 능력이 탁월하며, 고유의 빠르고 강인한 솔버로 인해 경쟁 제품이 따라올 수 없을 정도의 실시간 시뮬레이션 수행 능력을 보여준다는 것이다. 심팩은 기존의 많은 제품들이 사용하는 사전 정의된(predefined) 템플릿 모델 방식이 아닌 3D로 구현된 상세 모델을 그대로 사용한다. 따라서, 실시간 구현을 위한 선형화와 같은 별도의 모델 단순화가 불필요하다. 실시간 시뮬레이션에는 유연체를 포함한 고주파 및 고자유도 모델도 사용 가능하며, 비선형 또는 주파수에 의존하는 부싱(bushing)이나 고무 마운트까지도 별도의 선형화와 같은 단순화 없이 사용이 가능하다. 이는 단순화 작업 시간을 줄여줄뿐만 아니라, 시뮬레이션 모델 검증 시 흔히 발생하는 모델 변수 외의 다른 경우의 수를 줄여주어 모델 검증을 용이하게 해 준다. 또한, 단순한 해석부터 전혀 다른 성격의 해석, 그리고 복잡한 해석까지 동일한 단일 모델을 이용하여 해석할 수 있게 되어 결과의 일관성을 보장한다.    그림 2    NVH 해석 심팩은 상세 드라이브트레인 모델링(기어, 베어링, 샤프트 등) 요소를 바탕으로 구동 시스템의 내부에서 발생하는 가진력 해석을 수행할 수 있다. 이와 더불어 고주파 영역에서의 정확한 해석이 가능한 솔버 및 다양한 라이브러리로 제공되는 분석 기법(주파수 분석, Campbell diagram 등)을 바탕으로 NVH 해석이 가능하다.    그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-12-05
Stochos : 온프레미스 기반의 AI 알고리즘 솔루션
개발 및 공급 : 태성에스엔이 주요 특징 : 확률적 머신러닝 알고리즘 접근 방식 사용, 기존 데이터 활용 또는 새로운 데이터 수집 계획으로 샘플과 자원의 효율적 관리, 전문가의 도움 없이도 확률적 머신러닝 작업 수행, 2D 및 3D FEM/CFD 등 다양한 형상과 데이터 형식 학습 가능, 실제 실험 데이터와 시뮬레이션 데이터의 유연한 처리 등   ▲ DIM-GP 알고리즘   Stochos(스토코스)는 딥러닝(DL)과 가우시안 프로세스(GP)를 독창적으로 결합하여 각 알고리즘의 장점을 최대화하고 단점을 최소화한 혁신적인 머신러닝 솔루션(DIM-GP : Deep infinite mixture of Gaussian Processes)을 제공한다. 기존 머신러닝 기업이 주로 딥러닝에 의존해 많은 하이퍼 파라미터 튜닝을 요구하는 것과 달리, 하이퍼 파라미터 훈련이 전혀 필요하지 않다. 또한 온프레미스(on-premise) 방식으로 학습 및 응용 시에 사내에서 안전하게 처리 및 보관할 수 있어 보안이 강화되며, 비용과 자원이 많이 드는 클라우드 컴퓨팅 솔루션이 요구되지 않는다.  낮은 하드웨어 요구 사항으로 빠른 AI 모델 구축 가능(클라우드 필요 없음) 하이퍼 파라미터 설정 불필요(AI 전문 지식 필요 없음) 다양한 형태의 데이터 사용 가능(1D/2D/3D, 이미지, 실험 데이터, 정해석, 과도해석 등) CAE 해석 프로그램의 종류에 무관하게 적용 가능 적은 데이터 수로 높은 정확도 구현 자동 노이즈 처리 데이터는 고객에게 보관됨 Stochos는 지도 학습, 비지도 학습, 강화 학습의 세 가지 유형의 머신러닝을 모두 지원한다. 지도 학습에서는 시뮬레이션 솔버를 대체하고 최적화를 수행하는 데에 유용하다. 비지도 학습의 예로는 모델이 센서 데이터에서 이상을 분석하는 예측 유지보수 작업이 있다. 강화 학습 작업은 로봇 공학이나 자율주행과 같은 실시간 제어 작업을 모두 포괄한다. 이 소프트웨어는 CPU, GPU, 마이크로 컨트롤러 등 다양한 하드웨어 플랫폼에서 작동하여 실시간 응답을 제공할 수 있다.   2D 유동 과도 해석, 사용 샘플 5개 변수 : 받음각 엔비디아 4090 GPU, 학습 시간 14분 1 CPU(8 코어), 학습 시간 32분   3D 고주파 해석, 사용 샘플 37개 변수 : 안테나 위치 엔비디아 4090 GPU, 학습 시간 7초, CPU  학습 시간 10초   3D 과도 충돌 해석, 사용 샘플 32개 변수 : 판재 두께 엔비디아 4090 GPU, 학습 시간 21초   3D 열유동 해석, 사용 샘플 34개 변수 : 냉각채널 형상 엔비디아 4090 GPU, 학습 시간 6시간   또한, Stochos의 AI 라이브러를 이용해 업체 맞춤형 AI 제작 프로그램을 만들어, 해석 및 분석 작업의 효율을 최대화할 수 있다.    ▲ Stochos 라이브러리를 이용한 맞춤형 AI 프로그램 제작     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-12-04
알테어, 엔비디아와 협력해 AI·HPC 워크로드 성능 향상
알테어가 자사의 설계 및 시뮬레이션 플랫폼인 ‘알테어 하이퍼웍스’에서 엔비디아 그레이스 CPU 및 그레이스 호퍼 슈퍼칩 아키텍처를 지원한다고 밝혔다. 엔비디아 그레이스 및 그레이스 호퍼 아키텍처는 고성능 컴퓨팅(HPC)과 AI 워크로드를 위해 설계되었으며 성능, 효율성, 확장성을 향상시킨다. 이를 통해 전력 제약이 있는 데이터 센터에서도 대규모 시뮬레이션을 원활히 실행할 수 있도록 지원한다. 일례로, 레노버는 알테어의 충돌 해석 오픈소스 소프트웨어인 ‘오픈라디오스’를 활용한 테스트에서 엔비디아 그레이스 CPU가 기존 서버 구성 대비 최대 2.2배 높은 에너지 효율성을 기록했다고 밝혔다.     이번 협력을 통해 알테어는 AI와 고성능 컴퓨팅(HPC) 워크로드의 처리 속도를 높이면서, 복잡한 시뮬레이션과 대규모 데이터 처리 작업에서 더 우수한 성과를 실현할 수 있을 것으로 보고 있다. 알테어의 내부 테스트 결과, 엔비디아 그레이스 호퍼 GPU 시리즈는 이전 세대 대비 최대 2배 빠른 시뮬레이션 속도를 구현했으며, 이를 통해 알테어 솔버의 실행 시간을 단축할 수 있음을 입증했다. 이번 협업으로 하이퍼웍스 사용 고객은 엔비디아의 최신 CPU와 GPU 하드웨어를 활용하여 시뮬레이션과 설계 작업을 더욱 빠르고 효율적으로 수행할 수 있게 되었다. 이는 특히 복잡한 시뮬레이션이나 대규모 데이터 처리가 필요한 작업에서 향상된 성능과 효율을 제공한다. 현재 엔비디아 그레이스와 그레이스 호퍼 아키텍처를 지원하는 알테어 솔루션은 ▲옵티스트럭트 ▲라디오스 ▲오픈라디오스 ▲울트라플루이드엑스 ▲나노플루이드엑스 ▲PBS프로페셔널 ▲그리드엔진 등이 있다. 알테어의 샘 마할링감 최고기술책임자(CTO)는 “그레이스와 그레이스 호퍼 아키텍처에서 알테어 솔루션이 최고의 성능을 발휘한 것은 고객 요구에 부응하기 위해 꾸준히 노력해 온 결과”라면서, “엔비디아의 혁신적인 CPU와 GPU 기술을 활용해 뛰어난 성능과 에너지 효율성을 제공하며 AI 혁신을 선도할 것”이라고 밝혔다. 엔비디아의 팀 코스타 HPC 및 양자 컴퓨팅 담당 이사는 “이번 협력은 엔비디아와 알테어가 CAE 워크로드 가속화를 위해 수 년간 노력해온 성과”라면서, “그레이스 CPU 및 그레이스 호퍼 슈퍼칩 아키텍처에서 알테어의 강력한 소프트웨어를 활용함으로써, 다양한 산업 분야에서 혁신을 촉진하고 설계 가능성을 크게 확장할 수 있을 것”이라고 말했다.
작성일 : 2024-11-21
엔비디아, CAE에 실시간 디지털 트윈의 활용 돕는 ‘옴니버스 블루프린트’ 공개
엔비디아가 ‘슈퍼컴퓨팅 2024(SC24)’ 콘퍼런스에서 ‘엔비디아 옴니버스 블루프린트(NVIDIA Omniverse Blueprint)’를 발표했다. 이는 소프트웨어 개발업체가 항공우주, 자동차, 제조, 에너지, 기타 산업의 컴퓨터 지원 엔지니어링(CAE) 고객들이 실시간 상호작용이 가능한 디지털 트윈을 제작할 수 있도록 지원한다. 알테어, 앤시스, 케이던스, 지멘스와 같은 소프트웨어 개발업체는 실시간 CAE 디지털 트윈을 위한 엔비디아 옴니버스 블루프린트를 사용해 고객이 개발 비용과 에너지 사용량을 절감하면서 시장 출시 기간을 단축할 수 있도록 지원한다. 엔비디아는 이 블루프린트가 1200배 빠른 시뮬레이션과 실시간 시각화를 달성하기 위한 엔비디아 가속 라이브러리, 물리-AI 프레임워크, 대화형 물리 기반 렌더링을 포함하는 레퍼런스 워크플로라고 설명했다. 블루프린트의 첫 번째 적용 분야 중 하나는 전산유체역학(CFD) 시뮬레이션이다. 이는 자동차, 비행기, 선박 등 여러 제품의 설계를 가상으로 탐색하고 테스트하며 개선하는데 있어 중요한 단계이다. 기존의 엔지니어링 워크플로는 물리 시뮬레이션부터 시각화와 설계 최적화에 이르기까지 완료하는 데 몇 주 또는 몇 달이 걸릴 수 있다. 실시간 물리 디지털 트윈을 구축하려면 실시간 물리 솔버(solver) 성능과 대규모 데이터 세트의 실시간 시각화라는 2가지 기본 기능이 필요하다. 옴니버스 블루프린트는 이러한 기능을 달성하기 위해 엔비디아 쿠다-X(CUDA-X) 라이브러리를 활용해 솔버 성능을 가속화한다. 또한, 엔비디아 모듈러스(Modulus) 물리-AI 프레임워크를 사용해 플로 필드를 생성하기 위한 모델을 훈련하고 배포한다. 마지막으로, 엔비디아 옴니버스 애플리케이션 프로그래밍 인터페이스를 통해 3D 데이터 상호운용성과 실시간 RTX 지원 시각화를 제공한다.      앤시스는 옴니버스 블루프린트를 채택해 유체 시뮬레이션 소프트웨어인 앤시스 플루언트(Ansys Fluent)에 적용해 전산 유체 역학 시뮬레이션을 가속화했다. 앤시스는 텍사스 첨단 컴퓨팅센터에서 320개의 엔비디아 GH200 그레이스 호퍼 슈퍼칩(Grace Hopper Superchip)으로 플루언트를 실행했다. 2,048개의 x86 CPU 코어에서는 거의 한 달이 걸리던 25억 셀의 자동차 시뮬레이션을 6시간 만에 완료했다. 이를 통해 밤새 고충실도 CFD 분석을 수행할 수 있는 실현 가능성을 향상시키고 새로운 업계 벤치마크를 수립했다. 루미너리 클라우드 또한 블루프린트를 채택하고 있다. 엔비디아 모듈러스를 기반으로 구축된 이 회사의 새로운 시뮬레이션 AI 모델은 GPU 가속 CFD 솔버에서 생성된 훈련 데이터를 기반으로 기류장과 자동차 형상 간의 관계를 학습한다. 이 모델은 솔버 자체보다 훨씬 빠른 속도로 시뮬레이션을 실행해 옴니버스 API를 사용해 시각화된 실시간 공기 역학 흐름 시뮬레이션을 가능하게 한다. 엔비디아와 루미너리 클라우드는 SC24에서 가상 풍동을 시연했다. 이는 터널 내부에서 차량 모델을 변경하더라도 실시간으로 상호작용하는 속도로 유체 역학을 시뮬레이션하고 시각화할 수 있다. 엔비디아는 알테어, 비욘드 매스, 케이던스, 헥사곤, 뉴럴 컨셉, 지멘스, 심스케일, 트레인 테크놀로지스 등이 자체 애플리케이션에 옴니버스 블루프린트 도입을 검토하고 있다고 밝혔다. 옴니버스 블루프린트는 아마존 웹 서비스(AWS), 구글 클라우드, 마이크로소프트 애저를 비롯한 주요 클라우드 플랫폼에서 실행할 수 있다. 엔비디아 DGX 클라우드(DGX Cloud)에서도 사용할 수 있다.  리스케일은 엔비디아 옴니버스 블루프린트를 사용해 단 몇 번의 클릭만으로 맞춤형 AI 모델을 훈련하고 배포할 수 있도록 지원한다. 리스케일 플랫폼은 전체 애플리케이션-하드웨어 스택을 자동화하며, 모든 클라우드 서비스 제공업체에서 실행될 수 있다. 조직은 어떤 시뮬레이션 솔버를 사용해도 훈련 데이터를 생성하고, AI 모델을 준비, 훈련, 배포하며, 추론 예측을 실행하고, 모델을 시각화하고 최적화할 수 있다. 엔비디아의 젠슨 황(Jensen Huang) CEO는 “우리는 모든 사물이 디지털 트윈을 가질 수 있도록 옴니버스를 구축했다. 옴니버스 블루프린트는 엔비디아 옴니버스와 AI 기술을 연결하는 레퍼런스 파이프라인이다. 이는 선도적인 CAE 소프트웨어 개발자가 설계, 제조부터 운영에 이르기까지 세계 최대 산업을 위해 산업 디지털화를 혁신할 획기적인 디지털 트윈 워크플로를 구축할 수 있도록 지원한다”고 말했다.
작성일 : 2024-11-19
헥사곤-프라운호퍼 연구소, 새로운 전기화학 시뮬레이션 설루션으로 배터리 설계 가속화
헥사곤 매뉴팩처링 인텔리전스는 새로운 배터리 셀 설계 설루션을 출시했다고 발표했다. 이 설루션은 독일의 프라운호퍼 연구소(프라운호퍼 ITWM)의 전기화학 시뮬레이션 기술과 헥사곤의 멀티피직스 및 측정 소프트웨어를 결합한 것이다. 헥사곤은 새로 출시한 배터리 설계 설루션이 이 설루션이 새로운 배터리 셀 연구 개발 프로그램을 가속화할 수 있을 것으로 기대하고 있으며, 이를 통해 국내 배터리 산업의 기술 향상과 글로벌 시장 내 경쟁력 강화를 적극 지원할 계획이다. 헥사곤은 “가상 실험실을 통한 비용 절감, 생산성 향상, 다양한 배터리 전기화학 반응에 대한 시뮬레이션 능력 등을 제공함으로써 국내 기업들의 기술 경쟁력을 한층 높일 것”이라고 전했다. 새로운 배터리 셀 개발은 복잡하고 시간이 많이 소요되는 과정이다. R&D 단계에서는 이론 원리에 기반한 실험계획법(DoE)의 과정이 필요하며, 이는 많은 시행착오와 반복작업이 요구되는 실험실에서의 실제 테스트를 통해 검증된다. 또한, 셀 제조 과정의 여러 단계가 불량률과 배터리 성능에 영향을 미칠 수 있어 세심한 관리가 요구된다. 헥사곤의 새로운 전기화학 배터리 설계 설루션은 프라운호퍼 ITWM의 배터리 및 전기화학 시뮬레이션 도구(Battery and Electrochemistry Simulation Tool : BEST) 솔버를 헥사곤의 디지털 재료 제품군 중 하나인 디지매트(Digimat)에 통합한다. 이를 통해 다양한 배터리 유형에 대해 내부 구조와 성분을 자세히 시뮬레이션하고, 제조 공정의 영향을 고려한 효율적인 다중물리 기반 셀 설계 탐색을 지원한다. 또한 배터리 설계에 필요한 다양한 재료 정보를 제공하고, CT 스캔을 통해 배터리 내부를 분석할 수 있는 기능을 통해 배터리의 물리적 특성 분석 및 배터리 설계 과정을 효율적으로 수행할 수 있도록 지원한다.     새로운 설루션을 활용한 가상 실험실은 ▲입자 크기 분포와 탄소 바인더 분포 등 적절한 재료와 구성 최적화를 통한 에너지 효율, 수명, 최적 충전 프로토콜 등 성능 향상 ▲헥사곤의 산업용 3D 측정 소프트웨어인 ‘VGSTUDIO Max’를 활용하여 제조된 셀의 내부 구조를 CT 스캔하여 역설계하고, 이를 통해 제조 공정이 셀 미세구조에 미치는 영향을 검토 ▲배터리 에이징 및 셀 설계의 안전성 영향 조사를 통한 배터리 관리 시스템의 최적 충전 프로토콜 개발 등과 같은 주요 기능을 제공한다. 배터리 셀의 설계와 개발은 소재, 전기화학반응 설계, 기계적 설계, 제조 공정 간의 복잡한 상충 관계로 인해 상당한 어려움이 있는 영역이다. 헥사곤은 프라운호퍼 ITWM과의 파트너십을 통해 R&D 팀이 더 나은 성능의 배터리 셀을 설계하고, 프로토타입 단계에서 빠른 피드백을 받아 더 신속하게 개발할 수 있도록 도울 수 있게 됐다고 설명했다. 이를 통해 복잡한 과정의 많은 부분을 시행착오에 의존하던 개발 프로세스를 개선할 수 있다는 것이다. 헥사곤 매뉴팩처링 인텔리전스의 수밤 셋(Subham Sett) 멀티피직스 부문 부사장은 “배터리 성능과 품질은 특히 자동차 시장에서의 제품 경쟁력에 큰 영향을 미치는 차별화 요소”라며, “헥사곤은 열 관리 및 열폭주 시뮬레이션에 투자해오고 있으며, 이번 설루션 출시로 인해 많은 제조기업에서 배터리 셀 내 다중물리 상호작용에 대해 전체적인 관점의 분석을 가능하게 한다”고 말했다. 프라운호퍼 ITWM의 요헨 차우슈(Jochen Zausch) 박사는 “우리는 헥사곤의 혁신적인 재료 모델링 소프트웨어에 프라운호퍼 ITWM의 신뢰도 높은 BEST 배터리 전기화학 솔버 기능을 도입하기 위해 훌륭한 기술 협력을 이뤘다”면서, “이러한 포괄적인 시뮬레이션 워크플로를 통해 새로운 배터리 혁신이 빠르게 추진되기를 기대한다”고 말했다.
작성일 : 2024-11-19
에픽게임즈, 언리얼 엔진 5.5에서 게임 개발자 및 산업 크리에이터 위한 기능 향상
에픽게임즈 코리아는 게임 개발자와 모든 산업의 크리에이터를 위해 다양한 툴세트와 기능을 새롭게 추가하고 개선한 언리얼 엔진 5.5 버전을 정식 출시했다고 밝혔다. 이번 언리얼 엔진 5.5 업데이트에서는 ▲애니메이션 제작 ▲렌더링 ▲버추얼 프로덕션 ▲모바일 게임 개발 ▲개발자 반복작업 등에서 향상이 이뤄졌다.     애니메이션 제작 영역에서는 에디터에서 고퀄리티 애니메이션 제작 워크플로를 지원하는 신규 및 향상된 기능을 제공하여 상황에 맞는 애니메이션을 제작할 수 있으므로, DCC 애플리케이션을 오가며 작업할 필요성이 줄어들었다. 또한, 애니메이션 게임플레이 제작 툴세트에도 새로운 기능이 추가됐다. 언리얼 엔진의 비선형 애니메이션 에디터인 ‘시퀀서’가 개선돼 더 나은 필터링과 속성을 더욱 쉽게 사용할 수 있어 인터페이스상에서 더 쉽게 제어할 수 있으며, 변경 유지 애니메이션 레이어가 추가되어 기존 DCC 애플리케이션에서만 볼 수 있었던 추가적인 제어 기능과 유연성을 제공한다. ‘조건부 상태 변경’, ‘커스텀 바인딩’ 등과 같은 기능으로 다양한 다이내믹 시네마틱 시나리오를 작동하도록 설정하는 것 역시 더욱 쉬워졌다. 컨트롤 릭에서 애니메이션을 적용할 수 있는 ‘애니메이션 디포머’를 만들어 클릭 한 번만으로 시퀀서의 캐릭터에 쉽게 적용할 수 있는 기능이 추가되어 더욱 사실적인 애니메이션 이펙트를 제작할 수 있다. 또한, 애니메이션에 바로 사용하거나 자신만의 릭으로 구동되는 디포머 또는 헬퍼 릭을 제작하는데 예제로 활용할 수 있는 ‘애니메이터 키트 플러그인’도 제공된다. 다양한 UI 및 UX 개선, 새로운 사족 보행 및 비클 모듈 등을 지원하는 ‘모듈형 컨트롤 릭’이 베타 버전으로 제공되며, 더 빠르고 간소화된 페인팅 워크플로 및 가중치 편집 등의 다양한 개선 사항이 포함된 ‘스켈레탈 에디터’를 정식 버전으로 만나볼 수 있다. 언리얼 엔진용 메타휴먼 플러그인 중 하나인 ‘메타휴먼 애니메이터’ 역시 향상됐다. 이제 오디오만으로 얼굴 상단 부분의 표정을 추론하여 고퀄리티의 페이셜 애니메이션을 생성할 수 있게 됐다. 로컬 오프라인 설루션으로서 다양한 음성 및 언어와 함께 작동되며, 다른 메타휴먼 애니메이터 입력과 함께 일괄 처리 및 스크립팅할 수 있다. 런타임에 동적으로 변경되는 콘텐츠를 개발하는 게임 개발자에게 도움이 될 ‘뮤터블 캐릭터 커스터마이제이션 시스템’도 새롭게 추가됐다. 이 시스템은 캐릭터, 동물, 소품, 무기 등의 다이내믹 스켈레탈 메시, 머티리얼, 텍스처를 생성하는 동시에 메모리 사용량을 최적화하고 셰이더 비용 및 드로 콜 수를 줄여주며, 많은 파라미터와 텍스처 레이어, 복잡한 메시 상호작용 등을 처리할 수 있는 심층적인 커스터마이징을 지원한다. 하드웨어 레이 트레이싱 기반 시스템에 많은 향상이 이루어지면서, 이제 하드웨어 지원을 제공하는 플랫폼에서 ‘루멘’을 60Hz로 실행할 수 있다. 또한, 물리적으로 정확한 DXR 가속 프로그레시브 렌더링 모드인 ‘패스 트레이서’가 정식 버전으로 제공되어, 비선형 애플리케이션 또는 모든 기능을 갖춘 실사 레퍼런스 이미지의 최종 픽셀을 제작할 때 높은 퀄리티를 제공한다. 5.2 버전에서 실험단계로 선보인 머티리얼 제작 프레임워크인 ‘서브스트레이트’가 베타 버전으로 전환되면서 이제 언리얼 엔진이 지원하는 모든 플랫폼과 기존 머티리얼의 모든 기능이 지원된다. 선형 머티리얼 제작에 정식으로 사용할 수 있으며, 룩 개발 아티스트는 이 프레임워크를 활용하여 오브젝트의 룩 앤 필을 더 제어할 수 있게 됐다. 5.4 버전에서 실험단계로 도입되었던 ‘무비 렌더 그래프’ 역시 베타 버전으로 전환되면서 커스텀 EXR 메타데이터를 사용하는 기능, 컬렉션의 스포너블 지원 그리고 오브젝트 ID 지원과 같은 기존 프리셋 구성의 호환성 향상 등을 제공한다. 또한, 패스 트레이서용 ‘스파시오 템포럴 디노이저’를 신규로 제공해 선형 시퀀스에 고퀄리티의 결과를 구현할 수 있다. 신에 제약 없이 다이내믹한 그림자를 만드는 수백 개의 라이트를 추가할 수 있는 ‘메가라이트’를 통해 라이팅 아티스트는 이제 콘솔과 PC에서 소프트 섀도와 함께 텍스처가 적용된 에어리어 라이트, 라이트 함수, 미디어 텍스처 재생, 볼류메트릭 섀도를 자유롭게 사용해 볼 수 있다. ‘SMPTE 2110’의 정식 지원으로 수많은 안정성 개선, 프레임록 손실 자동 감지 및 복구, 타임코드로 PTP 지원 추가 등에 대한 개선이 이뤄졌다. ‘카메라 캘리브레이션’ 솔버 역시 정식 버전으로 제공되면서 렌즈 및 카메라 파라미터 추정 정확도가 향상됐다. 또한, 5.4 버전에서 처음 도입되었던 ‘버추얼 스카우팅’ 툴세트도 정식 버전으로 업데이트됐다. 이제 OpenXR 호환 HMD를 사용해 강력한 경험을 곧바로 활용할 수 있으며, 광범위한 API를 통한 새로운 커스터마이징도 제공한다. 한편, 이전에는 ICVFX 에디터에서만 제공됐던 ‘컬러 그레이딩 패널’이 이제 언리얼 에디터의 일반 기능으로 사용할 수 있게 돼 nDisplay로 작업하는 사용자뿐만 아니라 모든 아티스트에게 향상된 컬러 그레이딩 경험을 제공하며, 포스트 프로세스 볼륨, 시네 카메라 및 색 보정 영역도 지원한다. ‘모바일 포워드 렌더러’에 플랫폼의 비주얼 퀄리티를 높일 수 있는 다양한 신규 기능이 추가됐다. 뿐만 아니라 5.4 버전에서 도입된 런타임 자동 PSO(Pipeline State Object) 프리캐싱이 이제 기본 활성화되어 수동 PSO 수집 워크플로에 대한 쉽고 빠른 대안을 제공한다. ‘모바일 프리뷰어’의 경우 모바일 게임 콘텐츠 개발에 도움이 되는 다양한 개선이 이뤄져, 특정 안드로이드 디바이스 프로필을 캡처 및 프리뷰하는 기능과 함께 반정밀도 16비트 플로트 셰이더를 에뮬레이션하여 오류를 쉽게 확인하고 대응할 수 있는 기능을 제공한다. 개발자 반복작업의 경우, 최적화된 신규 캐시 데이터 스토리지 및 네트워크 커뮤니케이션 아키텍처인 ‘언리얼 젠 서버’가 정식 버전으로 제공돼 공유 파생 데이터 캐시로 사용될 수 있다. 또한, 이번 버전에서는 젠 서버가 타깃 플랫폼으로 쿠킹된 데이터의 스트리밍을 지원해 개발 중에도 PC, 콘솔, 모바일 등의 타깃 플랫폼에서 게임이 어떻게 보이고 작동하는지 보다 빠르고 쉽게 평가할 수 있다. 또한, 에디터 시스템과 쿠킹 프로세스에 최적화된 애셋 로딩 경로를 제공하는 ‘언리얼 젠 로더’, 더 빠른 C++ 및 셰이더 컴파일을 제공하는 ‘언리얼 빌드 액셀러레이터’, 더욱 효율적이고 확장 가능한 개발 워크플로를 제공하는 ‘언리얼 호드 지속적 통합 및 원격 실행’ 등 다양한 기능이 정식 버전으로 제공된다. 에픽게임즈 코리아는 10월 정식 출시된 새로운 통합 콘텐츠 마켓플레이스 ‘팹’이 언리얼 엔진 5.5에 통합되어 퀵셀 메가스캔과 같은 개별 애셋을 신으로 직접 드래그 앤 드롭할 수 있으며, 팹의 애셋 팩을 콘텐츠 브라우저에 추가할 수 있게 됐다고 밝혔다.
작성일 : 2024-11-13
펑션베이, 2024 유저 콘퍼런스 통해 최신 해석 기술과 설루션 소개
펑션베이는 지난 10월 18일 ‘2024 리커다인 유저 콘퍼런스’를 개최했다. 이번 콘퍼런스는 다물체 동역학 소프트웨어 리커다인(RecurDyn) 및 입자법 소프트웨어 파티클웍스(Particleworks)와 관련된 최신 트렌드와 혁신 기술을 공유하는 장으로 마련됐다. 이번 행사에서 펑션베이는 자사의 대표 제품인 동역학 해석 소프트웨어 리커다인의 최신 버전과 입자법 CFD 소프트웨어 파티클웍스의 최신 기능을 선보였다. 특히 리커다인 2025 버전에서는 접촉 및 유연체 해석 관련 솔버의 성능이 강화되어, 복잡한 엔지니어링 문제에 대해 더욱 정확하고 효율적인 해석이 가능해졌다. 펑션베이는 마찰에 의해 발생하는 열을 고려한 시뮬레이션 기능의 추가를 중점 소개하면서, “기존의 리커다인 열해석 기능 및 파티클웍스와의 양방향 열해석과 시너지를 내어 자동차, 항공우주, 로봇공학 등 다양한 산업 분야에서 설계 개선 효과를 강화할 할 것”이라고 기대했다. 또한, 강화된 포스트 프로세스(후처리) 기능인 ‘리커다인 포스트(RecurDyn Post)’의 신기능을 통해 사용자의 데이터 분석 및 시각화 작업이 한층 더 수월해질 것이라고 전했다.     이번 콘퍼런스에서는 제품 소개 외에 실제 사용자가 궁금해하는 실용적인 기술 팁도 공유되었다. 접촉 파라미터 활용법, 리커다인 메셔(RecurDyn Mesher)를 이용한 효율적인 메시 생성 방법, 그리고 수식을 활용한 빠르고 효율적인 케이블 모델링 기법 등이 소개되었다. 또한 토요타 자동차, 현대자동차를 비롯해 세메스, LG전자, HD현대사이트솔루션, 포스코홀딩스, LG마그나, 효성, 공주대학교 등 국내외 기업과 학계에서 리커다인과 파티클웍스를 활용한 혁신적인 사례를 소개했다.  행사를 주관한 펑션베이 마케팅팀의 김상태 팀장은 “이번 콘퍼런스를 통해 우리의 최신 기술이 실제 산업 현장에서 어떻게 혁신을 이끌어내고 있는지 생생하게 확인할 수 있었다. 그리고, 참가자들의 열정적인 반응을 보며 우리의 기술이 미래 엔지니어링의 새로운 지평을 열어가고 있다는 확신을 갖게 되었다”고 밝혔다. 또한 “앞으로도 펑션베이는 고객과 긴밀히 소통하면서 더욱 혁신적이고 실용적인 설루션을 개발해 나갈 것이며, 이를 뒷받침할 교육과 기술 서비스에도 노력을 아끼지 않을 것”이라고 덧붙였다.
작성일 : 2024-11-06
리커다인 2025 : 동역학 솔버 기능 강화 및 툴킷 개선 
개발 및 공급 : 펑션베이 주요 특징 : 지속적인 솔버 개발을 통한 접촉 기능 향상, 마찰열을 고려한 유연 다물체 동역학 해석, 열전도 및 열응력을 고려한 동역학 해석 개선, DriveTrain 툴킷 개선 등  사용 환경(OS) : 64비트 윈도우 10/11    2024년 11월, 리커다인 2025(RecurDyn 2025)가 새롭게 출시되었다. 지속적인 솔버 개선을 통해 이번 버전에서도 다양한 솔버 관련 기능이 강화되었다. 접촉 성능이 향상되었으며, 유연체를 포함한 동역학 모델의 열해석이 강화되었다. 또한, 드라이브트레인(DriveTrain)의 지속 개발을 통해 이번에도 기능 개선이 이루어졌다.  이러한 개선 사항들을 좀 더 자세히 소개하면 다음과 같다.    솔버 기능 강화  지오 콘택트 개선  리커다인의 강력한 접촉 요소인 지오 콘택트(Geo Contact)의 다양한 성능이 향상되었다. 특히 접촉점의 수가 자주 변경되는 접촉 모델에 대해 보다 안정적이고 정확한 해석을 수행할 수 있다. 또한, Sliding & Stiction 마찰 옵션을 모든 지오 콘택트에서도 사용할 수 있도록 개선되었다. 이를 통해 지오 콘택트를 이용한 접촉 모델에서도 Stiction 옵션을 이용하여 미끄러짐이 없는 정지 마찰 상태를 시뮬레이션할 수 있다.  그리고 강체의 접촉에 대해서도 컨투어(contour)를 통해 Sliding Velocity와 Pressure Velocity 결과를 확인할 수 있게 되어, 접촉 모델에서 마모 특성을 효율적으로 분석할 수 있다.    그림 1. 접촉점의 수가 자주 변경되는 경우 MPM 옵션 사용 권장    프리미티브 콘택트 개선 각 형상에 대한 전용 접촉 요소로서 빠르고 정확한 접촉 계산이 가능한 프리미티브 콘택트(Primitive Contact)에 대해서도 개선이 이루어졌다. 토러스(torus)와 실린더(cylinder) 형상에 대한 전용 접촉 요소인 Tours In Cylinder Contact가 새롭게 추가되어, Tripod Type CV Joint와 같은 시스템에서 더욱 빠르고 정확한 접촉 해석을 수행할 수 있다.    그림 2. Tours In Cylinder Contact를 이용한 Tripod CV Joint    또한, Cone To Cylinder Contact 사용 시 콘(cone)과 실린더의 면과 면 간 접촉도 고려할 수 있도록 개선되었다. 그리고 모든 프리미티브 콘택트에 대하여 Force Vector, Normal Force, Friction Force에 대한 시각적인 표시가 되도록 개선되었다.    그림 3. Cone To Cylinder Contact    지오 롤 콘택트  롤러(실린더)에 시트를 감는 롤 투 롤(roll to roll) 시스템을 위한 전용 접촉 요소인 지오 롤 콘택트(Geo Roll Contact)가 새롭게 추가되었다. 유연체에 대한 전용 접촉으로 유연체로 구성된 시트의 두께 정보와 감겨 있는 횟수를 활용하여, 시트가 롤러에 감기는 현상을 빠르게 해석할 수 있다.    그림 4. 지오 롤 콘택트를 이용한 시트 적층 해석   이 기능을 이용하면 롤 투 롤 시스템에서 시트 적층 시 발생하는 시트의 장력 변화, 시트의 적층에 따른 두께 증가에 의한 거동 변화 등을 고려한 해석을 빠르게 수행할 수 있다.    MFBD 기능 강화  프릭션 히트  지오 콘택트를 통해 유연체에 접촉 마찰로 인해 발생하는 열을 고려한 해석을 수행할 수 있게 되었다. 지오 콘택트에 추가된 프릭션 히트(Friction Heat) 기능을 이용하여 접촉에 의한 마찰로 인해 발생하는 열과 열전도에 의한 열응력을 고려한 MFBD(Multi Flexible Body Dynamics : 유연 다물체 동역학) 해석을 수행할 수 있다.    그림 5. 프릭션 히트를 이용한 브레이크의 마찰열 해석   열해석 개선 유연체의 열전도에 의한 열응력을 동역학 해석에 실시간으로 적용할 수 있는 FFlex Thermal에 대하여 열해석에 소요되는 시간을 줄이기 위한 기능이 추가되었다. FFlex 보디의 열변형 고려 여부를 선택할 수 있게 함으로써, 열해석 시 해석 시간을 단축할 수 있다. 또한, 새롭게 추가된 서멀 부스트(Thermal Boost) 옵션을 이용하여 온도장의 정상 상태에 빠르게 도달시킴으로써, 보다 효율적인 해석을 수행할 수 있다.    그림 6   Patch Constraint  Patch Constraint 기능이 새롭게 추가되어 두 유연체를 연결할 수 있게 되었다. 이 기능을 통해 두 FFlex 보디가 접합된 것처럼 모델링하고 시뮬레이션할 수 있다.    그림 7. Patch Constraint를 이용한 유연체 접합    제어 기능 강화  코링크의 파이썬 기능 개선  리커다인의 다물체 동역학 해석 환경에 통합된 제어 해석 툴킷 인 코링크(CoLink)의 파이썬(Python) 기능이 개선되었다. 기본으로 내장된 파이썬 패키지에 넘파이(NumPy)가 추가되었으며, 기본 내장된 파이썬 외에도 사용자가 설치한 파이썬 패키지를 지정하여 활용할 수 있게 개선되었다.  또한, 리커다인 리눅스 스탠드얼론 솔버(RecurDyn Linux Standalone Solver)를 사용할 때에도 코링크의 파이썬을 사용할 수 있게 되었다.    툴킷 기능 강화  드라이브트레인 개선  리커다인 드라이브트레인 툴킷의 GearKS로 만든 기어쌍에 대한 Mesh Stif fness를 확인할 수 있게 개선되었다. 또한 BearingKS로 만든 베어링에 대한 Rotational Resistance 기능이 추가되어, 축 방향 회전에 대한 베어링의 구름 저항을 고려한 해석을 수행할 수 있다.    그림 8. 기어쌍에 대한 Mesh Stiffness      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-11-04
CAD&Graphics 2024년 11월호 목차
  INFOWORLD   Editorial 17 가을이다, 책과 함께 떠나보자   Case Study 18  자전거 개발의 혁신을 추구하는 피나렐로 금속 3D 프린팅으로 부품 경량화와 고난도 설계 달성 20 부동산 시장에 변화를 일으키고 있는 베로 디지털 트윈으로 부동산 개발부터 관리까지 시각화   Focus 23 코리아 그래픽스 2024, 생성형 AI와 3D 기술이 이끄는 디자인 혁신 비전 소개 28 헥사곤 ALI, “디지털 혁신의 핵심은 데이터의 가치 확장” 30 SAP, “비즈니스 혁신 위한 AI의 가능성 더욱 넓힌다” 32 시놀로지, 기업 시장 겨냥한 스토리지 및 백업 설루션으로 국내 시장 성장세 강화 34 유니티, “산업 분야의 실시간 3D 및 디지털 트윈 구축과 활용 지원 확대”   New Products 37 동역학 솔버 기능 강화 및 툴킷 개선 리커다인 2025 40 제품 개발 가속화하는 3D 설계/엔지니어링 애플리케이션 솔리드웍스 2025 42 AI 적용한 전기 CAD 솔루션 일렉트릭스 AI 44 초고속∙대형 포맷의 SLA 3D 프린터 폼 4L 46 차세대 기업용 PC를 위한 AI 프로세서 라이젠 AI 프로 300 시리즈 58 이달의 신제품   On Air 48 캐드앤그래픽스 CNG TV 지식방송 지상중계 새로운 트렌드, 산업 데이터 스페이스와 제조업의 변화 49 캐드앤그래픽스 CNG TV 지식방송 지상중계 전기/전장 부문 DX의 장애 요소와 해결 방안 제시 50 캐드앤그래픽스 CNG TV 지식방송 지상중계 AI와 CAE 융합을 통한 차세대 제조 혁신 전략   Column 51 책에서 얻은 것 No.23 / 류용효 AI 트렌드 2025 : 세 권의 책을 통해 본 미래 전망 54 디지털 지식전문가 조형식의 지식마당 / 조형식 스마트 혁신 엔지니어링   60 New Books 62 News   Directory 131 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 69 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 대규모 언어 모델의 핵심 개념인 토큰, 임베딩과 모델 파인튜닝에 대해 74 새로워진 캐디안 2024 살펴보기 (11) / 최영석 캐디안 2024 SE 자료실의 리스프 소개 118 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (7) / 천벼리 아레스 캐드 2025의 실시간 협업   Visualization 78 기업용 AR 및 VR의 놀라운 효과 / 유니티 코리아 산업 분야에서 혼합현실을 통해 측정 가능한 결과를 도출하는 방법   Reverse Engineering 84 문화유산 분야의 이미지 데이터베이스와 활용 사례 (11) / 유우식 도자기 데이터베이스   Analysis 95 앤시스 워크벤치를 활용한 해석 성공 사례 / 정준영 ASME BPVC, Section-VIII, Division-2, 5.4 항에 근거한 좌굴 해석 108 산업 디지털 전환을 위한 버추얼 트윈 (6) / 이아라 모드심을 통한 자동차 B-필러 개념 설계 적용방안 검토 114 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (15) / 나인플러스IT 터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅰ 121 화제가 되고 있는 모델 기반 개발을 함께 배우기 / 오재응 모델 기반 개발의 이점과 진행 과정에서의 해결 과제   Mechanical 102 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (6) / 박수민 크레오 파라메트릭 11의 인터페이스 개선사항   PLM 127 영업 성공 리더십 – 솔루션/가치 영업 활동 프로세스 (2) / 홍승철 솔루션을 ‘소울루션’으로 : B2B 솔루션/가치 영업 활동 프로세스       캐드앤그래픽스 2024년 11월호 목차 - 생성형 AI와 3D 기술이 이끄는 디자인 혁신 비전 from 캐드앤그래픽스     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2024-10-28
항공 음향 시뮬레이션을 위한 엔지니어 가이드 Ⅲ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (14)   항공 음향학은 난류 유체 운동 또는 표면과 공기역학적 힘의 상호작용으로 인한 소음 발생을 연구하는 학문이다. 이번 호에서는 효과적인 항공 음향 시뮬레이션을 위한 전략과 실제 사례에 대해 살펴본다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   경계 및 초기 조건 지오메트리 및 메시 프로세스에 이어 음파가 반사되지 않고 빠져나갈 수 있는 경계를 지정한다. 일반적인 방법으로는 변수를 감쇠시켜 경계 반사를 방지하는 스펀지 레이어 또는 파동을 기하급수적으로 감쇠시키는 비반사 레이어인 PML(Perfectly Matched Layers : 완벽하게 일치하는 레이어)이 있다. 그런 다음 흐름 시나리오에 따라 유입, 유출, 벽 및 기타 조건을 설정한다. 시뮬레이션 유형에 따라 초기 흐름 또는 노이즈 필드를 제공해야 할 수도 있다.   솔버 선택 솔루션 전략은 문제의 복잡성, 원하는 정확도, 사용 가능한 리소스에 따라 선택해야 한다. 케이던스의 피델리티 찰스(Fidelity CharLES)는 시간 의존적인 간접 LES(Large Eddy Simulation) 방법론을 활용한다. 이러한 과도 시뮬레이션의 경우 가장 높은 관심 주파수를 포착하는 시간 간격을 선택하여 시간적 해상도가 충분한지 확인한다.   음향 유추 및 소스 올바른 음향 모델을 사용하는 것은 항공 음향 시뮬레이션의 정확성과 신뢰성을 위한 기본이다. 적절한 음향 유추는 소음원의 특성과 문제의 특정 요구 사항에 따라 결정되는 경우가 많다. 따라서 시뮬레이션에 올바른 소스 조건을 통합하는 것은 소음 발생으로 이어지는 물리적 현상을 나타내므로 매우 중요하다. 일부 시뮬레이션, 특히 직접 방법론(direct methods)을 사용하는 시뮬레이션에서는 와류 방출 또는 경계층 상호 작용과 같은 물리적 프로세스를 나타내는 명시적인 소스를 도입해야 할 수도 있다. 간접 방법에서는 소스 조건이 계산된 유동장에서 파생되는 경우가 많다. 예를 들어, 난류 통계는 RANS(Reynolds Averaged Navier-Stokes) 시뮬레이션에서 추출한 다음 항공 음향학적 유추에서 소스 조건으로 사용할 수 있다. 이러한 소스 용어가 작용하는 위치를 정확하게 정의하는 것이 중요하다. 회전하는 기계와 관련된 시나리오에서는 블레이드에 가까운 영역이 주요 소스 영역으로 지정될 수 있다.   후처리와 최적화 항공 음향 시뮬레이션을 수행하려면 전처리 및 시뮬레이션 단계만큼이나 후처리 및 최적화 단계도 중요하다. 계산이 완료되면 방대한 데이터 세트가 기다리고 있다. 피델리티 찰스는 시뮬레이션 데이터에 숨겨진 의미 있는 정보를 추출하는 데에 도움이 되도록 다음과 같은 후처리 도구를 제공하며, 모두 한 가지 목표를 염두에 두고 설계되었다. Quantitative Imaging : 시뮬레이션에서 직접 정량적 PNG 이미지를 생성한다. Modal Decomposition : 흐름과 음향 필드를 개별 모드로 분해한다. Ffowcs Williams-Hawkings Acoustic Predictions : 원거리 데이터에서 근거리 소음을 예측한다.   그림 1. 효율적인 초음속 비행체(ESAV)의 마하수 윤곽선 플롯   피델리티 찰스는 데이터 분석 기능을 제공할 뿐만 아니라 <그림 1>에 표시된 것처럼 시뮬레이션 데이터에 생명을 불어넣는 플롯, 등고선 지도, 그래픽 표현과 같은 고급 시각화 도구도 제공한다. 등고선 및 표면 플롯을 통해 압력 및 속도 필드에 대한 인사이트를 얻어 흐름 특징과 노이즈 원인을 정확히 파악할 수 있다. 스펙트로그램과 주파수 플롯을 사용하면 공명하는 톤 사운드와 혼란스러운 광대역 노이즈를 구분하는 데에 도움이 될 수 있다. 파티클 추적과 유선형 플롯은 난류 구조, 와류 및 기타 노이즈 생성 현상에 대한 그림을 그리는 또 다른 깊이 있는 레이어를 추가한다. 더 자세히 살펴보면, 특정 작업이나 프로세스를 사용자 지정 및 자동화하고, 변수 및 방정식을 생성하여 음압 레벨(SPL : Sound Pressure Level) 또는 난기류 강도 등 파생된 수치를 계산하여 시각적 인사이트를 정량화하기 위한 파이썬 API(Python API)와 내장 식 평가기를 찾을 수 있다. SPL과 같은 지표는 음향 핫스팟을 강조하며, 전체 음압 레벨(OASPL : Overall Sound Pressure Level)은 지정된 주파수 범위의 총 SPL을 측정한 값이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-10-07