• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "상호작용"에 대한 통합 검색 내용이 185개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
2023년 메타버스 시장 및 동향 분석
1. 조사 목적 및 필요성 메타버스 시장의 선점을 목표로 하는 정책 수립을 위해 메타버스 시장과 최신 동향에 대한 연구가 필요성이 높아지고 있다. 메타버스는 커머스, 교육, 엔터테인먼트 등 다양한 분야에서 빠르게 확산되고 있으며, 우리 정부도 메타버스 산업을 육성하기 위한 다각적인 노력을 기울이고 있다. 본 연구는 메타버스 시장의 초기 단계에서 현황을 파악하고, 새로운 산업 창출과 프로젝트 기획에 필요한 메타버스 동향과 이슈를 분석하는 데 목적이 있다. 이를 통해 메타버스 관련 정보와 인사이트를 수요자와 공급자에게 제공하고 확산시키고자 한다. 메타버스 산업은 XR, 인공지능 등 기술의 발전과 비대면 생활의 증가로 인해 몰입형 경험에 대한 수요가 급격히 증가하면서 빠르게 확장되고 있다. 메타, 마이크로소프트, 애플 등 글로벌 기업들은 시장 선점을 위해 치열한 경쟁을 벌이고 있으며, 게임, 교육, 엔터테인먼트, 의료 등 다양한 산업에서 메타버스 관련 플랫폼과 서비스가 새롭게 등장하고 있다. 본 연구는 글로벌 시장조사기관의 메타버스 시장 규모와 전망 데이터를 바탕으로, 국내외 주요 기업들의 동향과 주요국의 정책을 분석하여 국내 정책 입안을 위한 기초자료를 제공하고, 메타버스 산업 발전에 기여하기 위해 글로벌 동향 정보를 산학연 종사자들에게 제공하는 것을 목표로 하고 있다.   2. 연구의 구성과 범위     본 연구는 글로벌 메타버스 시장 규모 및 전망, 산업 및 권역별 메타버스 시장 현황, 국내외 메타버스 기업 동향, 주요국 메타버스 정책 동향 그리고 최근 메타버스 주요 10대 이슈 동향으로 구성되어 있다. 제1장에서는 본 연구의 개요 및 메타버스의 개념을 정리하였다. 제2장에서는 메타버스 시장에 대한 조사 배경에 대하여 살펴보았다. 제3장에서는 메타버스 시장 동향을 세계 시장 규모에 대한 전망, 산업별 및 주요 권역별로 살펴본 후, 국내 메타버스 시장 규모와 전망을 확인하였다. 시장 통계 자료는 특정 자료 한가지에 의존하는 것을 지양하고 글로벌 시장조사기관인 Emergen Research, Markets and markets, Statista, Grand View Research에서 2023년 발간한 자료를 활용 및 다양한 기관에서 공개한 데이터를 활용하였다. 이밖에 소비자 수요, 산업계 현황 및 전망에 대해 글로벌 컨설팅기관 Accenture, Deloitte, EY등이 수행한 보고서도 자료로 활용하였다. 제4장에서는 2023년 국내외 메타버스 시장의 주요 사업자들의 동향을 살펴보았다. 제5장은 2023년 중국, EU, 미국, 영국, 일본, 중동 등 주요국에서 메타버스 산업 육성을 위해 발표한 주요 정책을 살펴보고, 이어서 한국의 메타버스 관련 정책도 살펴보았다. 마지막으로 제6장에서는 앞선 내용을 통해 도출된 내용을 요약 정리하고, 2023년 메타버스 산업 10대 주요 동향을 제시하고, 메타버스 관련 정책을 위한 시사점을 도출하였다. 3. 연구 내용 및 결과 글로벌 메타버스 시장 규모 및 전망   본 연구에서는 메타버스 시장 규모 및 전망을 분석하기 위해서 글로벌 주요 시장조사기관(Emergen Research, Markets and Markets, Statista, Grand View Research, 360iResearch)의 공개 데이터를 활용하였다.   글로벌 메타버스 시장 규모는 XR, 인공지능, 블록체인 등 디지털 기술의 급속한 발전, 코로나19 이후의 몰입형 세계에 대한 수요 증가, 다양한 산업에 메타버스 도입 증가로 인해 고성장이 전망된다. 특히, XR, HCI(Human Computer Interaction, 인간 컴퓨터 상호작용), 인공지능, 블록체인, 컴퓨터 비전, 엣지 및 클라우드 컴퓨팅, 미래 모바일 네트워크 등과 같은 기술 성장이 글로벌 메타버스 시장을 주도할 것으로 예측된다. 코로나19 팬데믹으로 인한 몰입형 세계에 관한 관심 증가로 XR 기술 기반 애플리케이션 및 디바이스에 대한 지속적인 수요가 확대되고, 기업과 개인이 몰입형 가상경험의 가치와 잠재력을 인식하면서 메타버스 시장의 성장 및 투자가 지속적으로 진행될 것으로 예상된다. 또한, XR 기반 게임 및 엔터테인먼트, 업무, 교육 등 다양한 분야에 가상경험에 대한 수요가 증가하면서 메타버스 시장이 성장할 것으로 예상된다. 특히, 메타, MS, 애플 등의 글로벌 기업들은 메타버스 구현을 위한 기술 개발과 플랫폼 및 서비스 제공에 앞장서며 시장을 견인할 것으로 예측된다. 이에 조사기관별 메타버스 시장 산정 및 방법론의 차이로 전망 수치의 차이는 있으나, 전반적으로 연평균 30%~40% 내외 수준의 지속적인 고성장을 예상한다. 산업별 메타버스 시장 규모 및 전망 산업별 메타버스 동향을 종합적으로 파악하기 위해 2023년 메타버스 관련 주요 시장 조사기관들의 공통 산업의 전망치를 비교·분석하였다. 교육 분야의 메타버스 시장은 아직 초기 단계에 있으나, 위에서 언급한 주요 글로벌 시장조사기관1)들은 공통으로 2022년부터 2030년까지 약 30%~50% 사이의 지속적인 고성장을 예측한다. 최근 메타버스 기술의 발전과 비대면 수요 증가로 메타버스의 교육 분야 활용이 증가하는 추세이다. 향후 교수자와 학생의 메타버스 활용 역량 향상, 메타버스 교육 및 훈련 콘텐츠와 XR 디바이스의 개선 등을 통해 메타버스 교육 시장 역시 꾸준히 성장할 것으로 전망된다.   소셜미디어 기업들은 다양한 형태로 메타버스 플랫폼 내 콘텐츠를 제공하여 수익을 창출하며 성장 중이며, 주요 시장조사기관들은 공통으로 이 시장이 2022년부터 2030년까지 약 35%~42% 사이로 지속적으로 성장할 것으로 예측된다. 메타버스 소셜 시장은 현실과 유사한 몰입감을 제공하며, 소셜미디어 기업이 새로운 수익모델을 모색하고 기업이 마케팅 수단으로 활용하는 등 다양한 성장 동인으로 인해 전망이 긍정적이다. 특히, 새로운 디지털 경험을 추구하는 Z세대의 높은 수요로 높은 시장 성장이 예상된다. 메타버스 엔터테인먼트 분야에 대한 시장 규모 및 전망은 음악, 영화 등 엔터테인먼트 산업 전반에서 메타버스 기술과 서비스가 도입 중이며, 공연, 콘서트, 전시회 등의 이벤트가 가상으로 재현되고 있기에 시장조사기관들은 향후 이 시장이 2022년부터 2030년까지 연간 약 40% 이상의 높은 성장을 할 것으로 예측한다.   메타버스 업무지원 분야에 대한 시장 및 규모 전망은 팬데믹 이후 원격근무 체계가 확산하면서 생산성 높은 몰입형 근무 환경에 대한 필요성 증대로 크게 성장하였으며, 주요 시장조사기관들은 향후 이 시장이 2022년부터 2030년까지 연간 약 30%~40% 사이로 꾸준히 성장할 것을 예측한다.   메타버스 제조 분야에 대한 시장 및 규모 전망은 생산성, 안전성, 효율성, 비용 절감 등을 목표로 제조업체의 디지털 트윈, AR/VR 등 주요 메타버스 기술 활용이 증가하는 추세이며, 주요 세계 시장조사기관들은 향후 이 시장이 2022년부터 2030년까지 연간 약 34%~52% 사이로 꾸준한 성장을 예측한다. 메타버스 유통 분야는 몰입형 기술의 발전으로 메타버스 기반 가상 쇼핑몰 및 쇼룸 플랫폼 증가, 사용자의 디지털 아바타 활용 증가, 개인 맞춤형·상호 작용 경험 증가하고 있다. 이러한 성장요인을 바탕으로 시장조사기관들은 향후 이 시장이 2022년부터 2030년까지 연간 약 35%~46% 사이로 꾸준히 성장할 것을 예측한다.   마지막으로 메타버스 금융 분야에 대한 시장 규모 및 전망은 암호화폐 시장의 성장, 탈중앙화 금융(Decentralized Finance, DeFi) 플랫폼 확대, 몰입형 가상 뱅킹 수요 증가 등 성장요인을 기반으로 시장 기반 확대가 예측되며, 시장조사기관들은 향후 이 시장의 연평균 성장률이 2022년부터 2030년까지 연간 약 35%~48% 사이에 이를 것으로 예상된다.   권역별 메타버스 시장 규모 및 전망 본 연구에서는 전 세계를 크게 5개 권역으로 나누어 살펴보았다. 북미 지역은 메타버스 기술 개발 및 혁신 분야의 선두 주자이며, 주요 기술 기업의 개발 및 투자 확대로 지속하여 성장 중이다. 주요 시장조사기관들은 향후 이 지역이 2022년부터 2030년까지 연간 약 35%~45% 사이의 고성장을 할 것으로 예측한다. 유럽지역은 독일, 영국, 프랑스 등 기술 개발 분야의 선도 국가들은 제조 산업 응용 분야의 오랜 전통과 창의성을 바탕으로 메타버스 시장에서 강세를 보이고 있으며, 시장조사 기관들은 향후 해당 지역의 CAGR이 2022년부터 2030년까지 연간 약 36%~46%의 고성장을 예측한다. 한국을 비롯한 중국, 일본, 인도 등 아시아 태평양 지역은 적극적인 정부 지원, 주요 제조업체를 비롯한 메타버스 관련 기업 활동의 증가, 소비자의 높은 신기술 수용도, 안정적인 인터넷 인프라 등의 성장 동인을 기반으로 높은 성장률을 보일 것으로 예측된다. 주요 시장조사 기관들은 향후 해당 지역의 CAGR이 2022년부터 2030년까지 연간 약 43%~49%의 고성장을 예측한다 한편, 북미 및 아시아에 비해 상대적으로 중남미 지역의 시장 규모는 아직 작지만, 높은 젊은 인구 비중, 현지 기업의 투자 및 파트너십 확대, 인터넷 보급률 증가, 정부의 다양한 지원 등 시장 촉진 요인으로 인해 2030년까지 연평균 34~43% 사이의 성장을 예측한다. 또한, 아랍에미리트, 사우디아라비아 등 중동 및 아프리카 지역은 국가의 주도로 메타버스 정책 및 투자 확대, 높은 젊은 인구의 비중, 인터넷 보급률 증가, XR 기술 수용도 증가 등의 성장 동인을 기반으로 2030년까지 연평균 36~45% 사이의 성장을 예측한다. 국내의 메타버스 시장 규모 및 전망으로는 글로벌 IT 인프라 및 기술, 정부의 국제 경쟁력 확보를 위한 신기술 개발 지원 정책, 주요 기업 및 스타트업의 메타버스 관련 기술 투자, 소비자의 XR 기술에 대한 높은 관심 등이 성장 동력으로 작용하여 국내 지역의 CAGR은 2022년부터 2030년까지 연간 약 36%~52% 성장할 것이다.   메타버스 기업 동향 본 연구에서는 국내외 메타버스 주요 기업의 2023년 동향에 대해서 살펴보았다. 올해에는 다양한 XR 기기 공개 및 출시, 메타버스와 생성 AI와의 융합, 산업메타버스 추진 등 미래 시장 선도를 위한 투자를 지속 중이다. 한편, 국내 주요 메타버스 기업들은 소셜, 교육, 제조업 등 메타버스 플랫폼 도입, 메타버스 크리에이터 육성, 메타버스x생성AI 접목 등 고객 경험 고도화 및 수익모델 모색 중이다.     주요국 메타버스 정책 동향 주요 국가들은 XR 등의 메타버스 구현을 위한 핵심 기술에 중장기적 투자를 진행 중이며, 메타버스 시대에 대비한 산업 육성 지원을 위한 다양한 정책을 추진하여 사업환경 조성을 지원 중이다.  
작성일 : 2024-08-08
한국컴퓨터그래픽스학회, 하계학술대회 및 여름학교 개최
한국컴퓨터그래픽스학회가 지난 7월 9일부터 12일까지 소노벨 경주에서 ‘Generative Imagination’을 주제로 학술대회와 여름학교를 개최했다고 밝혔다.  한국컴퓨터그래픽스학회(KCGS)는 1993년 11월 설립된 이래 국내 컴퓨터그래픽스 연구의 질적, 양적 수준을 세계 정상과 견줄 수 있는 단계로 끌어올리는데 기여하고 있으며, 컴퓨터그래픽스 관련 기술을 발전 보급시키고, 연구 수월성 추구와 연구자들 간의 긴밀한 소통을 위한 전문적인 학술 교류 기회 확대를 목적으로 운영되고 있다.      이번 학술대회의 초청강연으로는 2024 Oscar Scientific & Technical Awards를 수상한 클로버추얼패션의 오승우 대표가 클로버추얼패션이 어떻게 패션과 컴퓨터그래픽 산업에서 패션 디자인 프로세스를 혁신시켜왔는지에 대해 소개했다. 오승우 대표는 “클로버추얼패션의 주 목표는 사용자와 함께 성장하는 것이며, 이를 위해 다양한 시도를 하면서 효과적인 제품 개발 방법을 발전시켜 왔다. 이는 최근 사업이나 서비스 개발에 자주 쓰이는 애자일(Agile) 방법론, 린 스타트업(Lean Start-up) 등과 유사하지만 재미있게도 매우 공학적인 방법”이라고 전했다. KAIST 문화기술대학원의 남주한 교수는 ‘인공지능 시대의 음악 창작과 연주’를 주제로 한 강연에서 데이터 사이의 관계를 추론하는 멀티모달 인공지능 기술의 관점에서 음악 인공지능 분야의 최신 기술 동향을 소개했다. 남주한 교수는 “새로운 기술의 등장은 예술가들의 창의력과 감정 표현을 확장시켜 새로운 장르의 음악과 공연 무대를 만들어내고, 대중 음악을 거대 산업으로 발전하는데 중추적인 역할을 해왔다”면서, “최근 급격히 발전하고 있는 인공지능은 인간을 대신 하는 다양한 지능적 음악 기술을 통해 혁신적 변화를 기대하게 하면서도, 기존 창작 및 유통 질서 파괴에 대한 여러 가지 우려도 불러일으키고 있다”고 짚었다. 포항공대 컴퓨터공학과의 최승문 교수는 ‘햅틱 효과 저작’에 대한 강연에서 햅틱스에 대한 소개 및 현황을 짚고, 햅틱 효과 저작 기술에 관한 연구 내용을 소개했다. 최승문 교수는 “햅틱 효과 저작 기술이란 다양한 상황에서 사용자에게 적절한 햅틱 효과를 제공하기 위하여 햅틱 장치에 보낼 명령을 컴퓨터를 사용하여 계산하는 것”이라면서, “전통적인 그래픽 렌더링과 대응되는 햅틱 렌더링, 인간-컴퓨터 상호작용을 위한 햅틱 효과 수동 설계, 멀티미디어의 다중감각 확장을 위한 햅틱 효과 자동 추출 및 계산 등을 포괄한다”고 전했다. 또한, 고려대학교 김승룡 교수의 ‘Towards High-Fidelity Text- and Image-to-3D Generation’, 서울대학교 박재식 교수의 ‘Recent Trends in Radiance Field Reconstruction Methods’, 서울대학교 김영민 교수의 ‘Vision Foundation Model and Applications’ 등 강연이 진행됐다. 정보통신기획평가원(IITP) 특별 세션에서는 IITP의 이준우 PM이 메타버스/방송·디지털미디어 중장기 연구개발 사업 기획에 관해 설명했고, 숭실대학교 김동호 교수는 메타버스 융합대학원에 대해 소개했다. 또한, 관련된 대학 ICT 연구센터(ITRC) 소개로 한국컴퓨터그래픽스학회장인 세종대학교 최수미 교수의 초실감 XR 연구센터 성과 발표와 이화여자대학교 김영준 교수의 Simulated Reality 연구센터 성과 소개 등이 진행됐다.   ▲ 공로패를 수상한 중앙대학교 윤경현 교수(왼쪽)와 한국컴퓨터그래픽스학회 최수미 학회장(오른쪽)   이번 학술대회에서는 다양한 논문 및 포스터 발표와 함께 우수논문상 시상과 공로상 감사패 시상도 진행됐다. 학회 발전을 위해 열정과 노력으로 기여해 온 중앙대학교 윤경현 교수가 공로패를 수상했고, 오랫동안 학회발전에 기여하고 은퇴한 7명에게 감사패가 증정됐다. 창해신진연구자상은 포항공대 김효민 박사가 최우수상, 카이스트 장덕경 박사가 우수상 수상자로 선정됐으며, 석사 논문상은 포항공대 최은수(최우수상), 포항공대 류누리, 카이스트 윤관(이상 우수상)이 선정됐다.  학술대회에서 발표된 구두 및 포스터 발표 중에서 선정된 우수논문상에서는 논문명 : ‘스토리텔링 기반 장면을 이해하는 다중 인간 동작 생성’(임동근, 배진석, 황인우, 김영민)이 최우수상을 수상했다. 이어 ‘적응형 블러 기반 비디오의 수평적 확장 여부 판별 네트워크’(김민선, 서창욱, 윤현호, 노준용), ‘자율주행 차량 시뮬레이션에서의 강화학습을 위한 상태표현 성능 비교’(안지환, 권태수), ‘강화학습을 이용한 나비의 비행 동작 생성’(정은호, 장이권, 이윤상)이 우수상으로 선정됐다. 또한 클로버추얼패션에서 디지털 패션에 관한 우수 논문을 선발하고, 오스템에서는 기하 모델링에 관한 우수 논문을 선발하여 상금과 함께 클로버추얼패션 논문상, 오스템 논문상을 수여했다.  클로버추얼패션 논문상은 ‘ClothCombo : 여러 겹의 3D 의류 가상피팅을 위한 의류 간 상호작용 모델링’(이도해, 강현, 이인권), 오스템 논문상은 ‘다단계 미세구조 구역화 네트워크를 활용한 3D 의료영상 구역화’(김자연, 김지온, 신병석)가 수상했다. 한편, 학술대회와 함께 진행된 여름학교는 학술대회를 참여하는 연구자들이 컴퓨터 그래픽스의 몇 가지 주제들에 대하여 심도 있는 지식을 습득할 수 있는 자리로 마련됐다. 여름학교의 연사로는 고려대학교 김승룡 교수, 서울대학교 박재식 교수, 서울대학교 김영민 교수가 참여했다.  
작성일 : 2024-08-05
[케이스 스터디] 아울케미 랩스와 함께 살펴보는 공간 컴퓨팅의 미래
XR 콘텐츠 개발 과정에서 발견한 가능성과 교훈   공간 컴퓨팅의 새로운 시대가 열리고 있다. 개발자는 강력한 XR(확장 현실) 툴과 유연한 워크플로를 사용하여 상호작용을 추가하고, 그래픽스를 확장하거나 축소하고, 프로토타입을 제작하며, 에디터 내에서 테스트할 수 있다. 유니티는 2024 유니티 게임 업계 보고서에서 밝힌 바와 같이 XR 게임에 대한 수요가 늘어날 것으로 예상하고 있으며, 보고서 작성에 도움을 제공한 많은 스튜디오 또한 이러한 전망에 동의한다. ■ 자료 제공 : 유니티 코리아   유니티의 시니어 애드보킷 앤토니아 포스터는 아울케미 랩스(Owlchemy Labs)의 CEO 앤드루 아이헤와 만나 공간 컴퓨팅의 미래에 대한 전망과 애플 비전 프로(Apple Vision Pro)용 앱 개발에 대한 실용적인 팁을 듣는 시간을 가졌다.   VR과 공간 컴퓨팅의 미래 앤토니아 포스터 : 미래에 대한 전망부터 이야기해 보겠다. VR과 공간 컴퓨팅의 미래를 어떻게 내다보고 있나?  앤드루 아이헤 : 우선 가장 큰 변화를 꼽자면, 도메인별 작업을 위한 일반적인 공간 컴퓨팅 환경으로 XR(확장현실) 기기를 사용하기 시작했다는 점이 있다. 애플 비전 프로 및 메타(Meta)의 운영체제 변화가 그러한 방향성을 선도하고 있다. 우리는 현재 매우 특수한 워크로드가 아닌 일반적인 워크로드에서 VR(가상현실)을 활용하는 패러다임의 변화를 적극적으로 수용하기 위해 노력하고 있다.  실제로 XR에서 작업하려면 어떻게 해야 할까? 우리는 기존 작업을 공간 환경 내의 동일한 패러다임으로 이전하려는 작업을 하고 있다. 아마 개발자들은 빠르게 적응할 것이며, 우리도 이러한 미디어의 범위와 깊이를 파악할 수 있을 것이다.  이 작업은 XR 기술의 유용성과 직관성을 발견할 수 있다는 점에서 매우 중요하다. 이 업계에서 플랫폼은 이러한 지표 스펙트럼에 따라 분류되며, 채택 가능성이 가장 높은 플랫폼은 유용성과 직관성이 모두 높은 부류에 속한다. 우리는 VR을 통해 스마트폰과 PC, 스마트 TV처럼 매우 유용하고 직관적인 방향으로 발전해 나가고자 한다. 미래를 전망할 때 공간 컴퓨팅에 관한 아이디어는 VR을 더 유용하게 만드는 데 도움이 되지만, 아직은 실현 가능성을 더 높여야 할 필요가 있다. 어떻게 하면 될까? 플레이어가 가장 집중하는 플랫폼인 모바일에 맞춰 기본 입력 벡터를 변경해야 한다. 그런 다음 핸드 트래킹을 구현하고, 헤드셋의 무게를 줄이고, 광학 장치를 개선하여 사용성을 향상하는 데 집중해야 한다.   ▲ 아울케미 랩스의 직업 시뮬레이터(Job Simulator)   XR 기술 트렌드에 대한 전망 포스터 : 향후 몇 년 동안 XR에 영향을 줄 수 있는 다른 기술 트렌드는 무엇이라고 생각하는지?  아이헤 : 가우시안 스플래팅(gaussian splatting)이 인상적이다. 앞으로는 캡처와 애니메이션을 이해하는 수준이 더 높아질 것이라고 생각한다. 우리는 3차원 캡처와 관련하여 잘못된 문제를 해결했다. 공간과 카메라를 덮거나 광원 필드를 사용하면 된다고 생각했는데, 투명 가우시안(transparent gaussian)처럼 더 뛰어난 기술이 있다. 앞으로는 이 기술에 대한 연구와 최적화 방법을 찾는 데 많은 노력을 기울이게 될 것이다. AI도 큰 영향을 미치게 될 것 같다. 내가 기대하는 흥미로운 사용 사례 중 하나는 전체 프레임을 렌더링할 필요 없이 일부만 렌더링하는 것이다. 만약에 30% 정도만 렌더링하고 TPU(텐서 프로세싱 유닛)에 넘겨서 모든 이전 및 이후 데이터를 기반으로 나머지 부분을 채우도록 할 수 있다면 어떨까? 헤드셋에 탑재된 그래픽스 칩이 PC처럼 작동할 수 있을 것이다. 엔비디아 RTX에서 실제로 반사를 그렇게 구현한다는 점에서 이미 그러한 방향으로 나아가고 있다고 볼 수 있다.  또한 AI가 웨이트 페인팅의 공백을 메울 수도 있고, 생성형 AI가 트위닝(tweening)으로 가장 적합한 알고리즘을 대체할 수도 있다. 최적의 알고리즘에 구성 가능한 부분이 있고 각 부분 사이에 최적의 지점이 있다고 했을 때, 생성형 AI를 사용하여 중간에서 슬라이더를 움직이는 방식은 흥미롭고 유용하며 아티스트의 제어도 가능하다. 이러한 방식은 주요 포즈를 만드는 데 집중하고 트위닝에 시간을 낭비하고 싶지 않은 애니메이터에게 유용할 것이다. AI가 도와줄 것이며, 애니메이터는 결과물을 보고 정리하기만 하면 된다.   공간 컴퓨팅 개발자를 위한 조언 포스터 : XR 분야의 현재 트렌드를 바탕으로, 공간 컴퓨팅의 시대를 향해 나아가는 개발자에게 조언을 준다면? 아이헤 : 상호작용 디자인 관점에서 무언가와 상호작용하는 방식을 세분화해야 한다. 둥근 구멍에 네모난 못을 끼우느라 애쓰는 상황이 발생하면 안 된다. 개발자로서 곧바로 공간 컴퓨팅 분야에 뛰어들고 연구하고 싶겠지만, 나는 초보 개발자의 태도로 천천히 접근할 것을 권장한다. 시간을 충분히 들여 단계별로 올바른 기초를 구축하기를 바란다.  직업 시뮬레이터(Job Simulator)를 포팅할 때를 예로 들면, 우리는 먼저 운영체제 수준의 상호작용을 사용할 적절한 시점부터 고려했다. 비전 프로 버전에서는 스위프트UI(SwiftUI) 창을 띄울 때 핀치를 사용할 시점을 논의했다. 애플은 핀치의 사용 시점과 용도에 대해 매우 구체적인 가이드라인을 제공하기 때문에, 그 방식을 그대로 따랐다.  창과 상호작용하고 있지 않은 경우에는 3D 오브젝트와 상호작용하고 있는 것이다. 이때는 2D 모니터에서 보는 앱이라는 생각을 버리고 실제 오브젝트를 만드는 물리적인 제품 디자인처럼 생각해야 한다. 현실의 오브젝트 디자인 원칙을 따라 직관적인 방식으로 오브젝트를 디자인해야 한다는 말이다. 사용자 경험을 계속 테스트해야 한다는 점을 잊지 말고, 중요한 것은 현실의 공간에서 실제 사용자가 기기를 사용해 실제로 게임을 테스트할 때라는 사실을 염두에 두기를 바란다. 직접 해 보는 것이 중요하다. 핵심은 직접 기기를 들고 다른 사람과 상호작용해 보는 것이다. 시간을 충분히 투자하여 수정 작업을 진행하는 것이 좋다. 그리고 플랫폼에 따라 경험이 다르게 느껴질 수 있다. 사양이 다를 수도 있으므로 유연하게 대처해야 한다. 끝으로, VR의 특징이 탐색 방식에 있다는 점을 기억하기를 바란다. 우리 버전에서는 서랍이 닫혀 있는 책상에 앉아 서랍을 뒤지는 동작도 탐색에 포함된다. 각 오브젝트를 집어서 어떻게 작동하고 상호작용하는지 살펴보는 것도 흥미롭다. 플레이어가 이런 상호작용을 선호하는 주요 이유는 직접 사물을 집을 수 있고, 주변의 월드와 실제로 상호작용할 수 있으며, 월드가 어떤 느낌인지 확인해 볼 수 있기 때문이다. 멀리 떨어져 있거나 손에 쥐고 있지 않은 물건과는 상호작용하도록 구현하지 않는다.   ▲ 아울케미 랩스의 직업 시뮬레이터   포스터 : 공간 컴퓨팅에 관한 팁을 조금 더 세분화해서, 비전 프로용 게임을 개발하거나 포팅하려는 개발자에게는 어떤 조언을 해 줄 수 있는지? 작업 시뮬레이터를 포팅하며 이용 중인 유니티의 비전OS(visionOS) 지원에 대해서는 어떻게 생각하는지? 아이헤 : 우리는 유니티 및 애플과 긴밀하게 협력하며, 희망과 비전을 실현할 수 있는 최선의 방법을 찾기 위해 노력했다. 그 결과 직업 시뮬레이터를 비전 프로에서 매우 빨리 실행하게 되었고, iOS에서 빌드하는 작업과 유사하게 사용했다. 시간이 오래 걸렸던 작업은 완전한 몰입형 게임으로 만드는 일이었다. 유니티에서 함수를 호출해 원하는 출력을 애플 운영체제에 전달해야 했다. 그렇게 하기 전에는 평평한 창이 계속 나타났고, 창을 닫으면 게임이 종료되는 문제가 반복되었다.  우리는 완전한 몰입형 게임을 개발하는 중이었고, 일반적인 컴퓨팅 운영체제에서는 게임을 벗어난다는 개념이 생소했다. PC용으로 개발할 때는 플레이어가 X를 누르기만 하면 되기 때문에, 애플리케이션을 종료하는 두 번째 단계를 구현한 적이 없다. 메타 퀘스트(Quest)에 적용할 때도 게임은 실제로 실행 중이거나 그렇지 않은 두 가지 상태 중 하나였다. 그런데 비전 프로 기기에서는 게임이 백그라운드에서도 실행될 수 있었고, 따라서 애플리케이션을 실질적으로 종료하는 방법을 고안해야만 했다. 조언을 하자면, 항상 협조적이고 개방적인 태도를 유지할 필요가 있다. 지금 내가 겪는 병목 현상을 나중에 누군가가 해결해 줄 수도 있다. 당사자뿐만 아니라 커뮤니티 전체에 좋은 일이다. 우리는 토론 포럼에 활발하게 참여하고 있으며, 적극적으로 유니티에 지원을 요청하거나 유니티와 소통하고 있다. 이를 통해 커뮤니티의 다른 구성원에게도 도움이 되는 솔루션을 찾을 수 있다. 포럼에 버그 리포트를 제출하면서 비슷한 상황을 겪고 있는 다른 개발자들과 함께 작업하는 기회도 얻었다. 덕분에 학습 속도를 빠르게 높일 수 있었고, 개발에도 많은 도움을 받고 있다.   다음 프로젝트를 위한 교훈 포스터 : 마지막으로, 비전OS 개발과 관련해 얻은 교훈 중에서 다음 비전 프로 프로젝트에 적용할 수 있는 가장 가치 있는 교훈은 무엇인지? 아이헤 : 우리는 수년 동안 윈도우 PC와 안드로이드의 두 생태계에 있었다. 다른 애플 운영체제와 비슷한 점이 많은 비전OS용 앱 개발을 시작하며, 우리가 어떤 부분에서 잘못된 가정을 하고 잘못된 방식으로 운영체제에 의존했는지 알게 되었다. 더 잘할 수 있었던 부분도 알 수 있었다.  한 가지 더 명심해야 할 것은 페이스타임(Facetime)과 화면 공유로 디버깅 등을 비롯해 현재 겪고 있는 상황을 다른 사람에게 공유하는 기능의 가치이다. 애플리케이션이나 코드를 실행 중인 화면을 공유하면 다른 사람들이 상황을 정확하게 볼 수 있다. 다른 헤드셋을 사용할 때는 이 기능을 사용하기 어렵지만, 비전 프로를 사용하면 손쉽게 공유할 수 있다. 이것이 내가 줄 수 있는 가장 유용한 팁이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-08-02
모벤시스, 'AI 활용 AMR 통합 제어 플랫폼 개발' 국책 과제 수주
모벤시스가 AI를 활용해 자율주행로봇(AMR) 통합 제어 소프트웨어의 정확성과 호환성을 높이는 플랫폼 개발 국책 과제를 컨소시엄 형태로 수주했다고 밝혔다. 모벤시스와 자회사 스카일라(Skylla), 고려대학교로 구성된 컨소시엄은 산업통상자원부가 주관하는 국제공동기술개발 X&D 사업에 ‘생성형 AI를 활용한 자율주행로봇의 실시간 통합 제어 SW 플랫폼 개발’ 과제를 지원하여 최종 선정됐다. 미국 보스턴에 소재한 스카일라는 자율주행로봇의 최적 경로 주행, 충돌회피, AI에 관한 기술력을 갖고 있으며, 고려대 HRI 랩과 민트(Mint) 랩은 각각 인간과 로봇의 상호작용 및 다중 로봇관리 분야에서 전문 연구 역량을 갖추고 있다. 산자부는 컨소시엄에 2027년 6월까지 3년간 30억원을 지원한다. 자율주행로봇은 사람의 직접적인 조작 없이 로봇이 인지, 판단 및 제어하는 기술로 물류, 유통, 제조, 방산 등 다양한 산업에 활용 가치가 높은 것으로 평가받고 있다. 시장조사기관 Nextmsc에 따르면 글로벌 자율주행로봇 시장규모는 2020년 약 12억 달러에서 2026년 70억 달러 이상으로 연평균 34% 성장하고 있다. 모벤시스의 로봇 제어 기술은 다양한 시스템에 통합적으로 적용 가능하고, 로봇의 동작과 이동을 고속 실시간성 기반에서 정교하게 통제할 수 있다는 점을 핵심 경쟁력으로 내세운다. 컨소시엄은 국책 과제를 통해 실시간 센서 융합이 가능하고 자율주행, 바퀴 모터 및 6축 협동 로봇을 하나의 소프트웨어로 동시에 제어하는 올인원 제어 솔루션을 개발한다는 목표다. 특히, 생성형 AI 및 비전 AI 기술을 적용해 자율주행로봇이 공정 작업자와 대화하며 요구조건을 인식하고 작업자의 업무 수행 정도를 파악할 수 있도록 할 계획이다. 모벤시스는 이번 개발을 통해 AMR 내 자율주행, 6축 로봇 및 바퀴 각각의 이종 제어기를 하나의 소프트웨어 솔루션으로 통합하여 동작 성능 및 배터리와 전장 공간 효율을 극대화하고, LLM(대규모 언어 모델)을 활용하여 작업자와 협업이 가능하도록 하겠다고 밝혔다. 또한 단계적 제품화를 통해 빠르면 연내 고객 사이트 검증과 라이선스 판매를 목표로 추진 중이며, 향후 5년 내 글로벌 AMR 제어기 시장의 5% 점유율을 확보하여 연간 1000억 이상의 매출을 기대하고 있다. 특히, 좁은 통로 내 정확한 이동 및 동작이 요구되는 반도체 패키징 산업을 대상으로 AMR 시장을 넓혀갈 것이라고 밝혔다. 모벤시스의 양부호 회장은 “모벤시스는 그 동안 순수 소프트웨어 기반 모션 제어 플랫폼인 WMX를 다양한 국내외 기업과 산업에 적용한 성공사례를 높게 평가받았으며 AMR 통합 제어 기술 가능성과 시장성을 인정받아 이번 국책 사업에 선정됐다”면서, “스카일라 및 고려대 연구진과 함께 더욱 정교하고 스마트한 통합 제어 플랫폼을 개발해 우리나라가 글로벌 자율주행로봇 시장을 선도할 수 있도록 노력하겠다”고 말했다.
작성일 : 2024-07-22
유니티 6 프리뷰 : 게임 및 비주얼 콘텐츠 제작 전반의 기능과 편의성 강화
개발 및 공급 : 유니티 주요 특징 : 렌더링을 위한 URP와 HDRP의 성능 향상, 조명 기능 개선, 풍부한 환경 렌더링의 정확성 향상, 멀티 플랫폼 지원 개선, XR 입력 및 상호작용 간소화, AI를 활용한 동적 런타임 경험 제공 등     유니티 6(Unity 6) 프리뷰 버전(이전 명칭은 2023.3 테크 스트림)은 2024년 출시되는 유니티 6 정식 버전의 개발 사이클에서 마지막 릴리스에 해당하며, 유니티 2023.1과 2023.2 버전에서 릴리스된 기능을 포함한다. 유니티는 2023년 11월 진행된 ‘유나이트’ 이벤트에서 명명 규칙을 업데이트한다고 발표한 바 있다. 유니티 6 프리뷰는 테크 스트림 릴리스처럼 구성되어 있으며, 지원되는 릴리스이므로 탐색 중이거나 프로토타이핑 단계에 있는 프로젝트에서 최신 기능과 업데이트된 기능을 미리 사용해 볼 수 있다. 정식 제작 중인 프로젝트에는 향상된 안정성과 지원이 제공되는 유니티 2022 LTS릴리스를 사용하는 것이 좋다.   렌더링 성능 향상 유니티 6 프리뷰에서는 URP(유니버설 렌더 파이프라인)와 HDRP(고해상도 렌더 파이프라인)의 성능이 향상되어 여러 플랫폼 전반에서 제작 속도를 높일 수 있다. 콘텐츠에 따라 다르지만, CPU 워크로드를 30~50%까지 줄이는 동시에 다양한 플랫폼 전반에서 더 원활하고 빠르게 렌더링할 수 있다. 새로운 GPU 상주 드로어를 사용하면 복잡한 수동 최적화를 거치지 않고도 규모가 크고 풍부한 월드를 효율적으로 렌더링할 수 있다. 고사양 모바일 기기, PC, 콘솔 등의 플랫폼에서 복잡한 대형 신(scene)을 렌더링할 때 게임 오브젝트에 사용되는 CPU 프레임 시간을 50%까지 단축하여 게임을 최적화할 수 있다.   ▲ 복잡한 대형 신을 렌더링할 때 게임 오브젝트에 사용되는 CPU 프레임 시간을 50%까지 단축하여 게임을 최적화한다.   GPU 상주 드로어와 함께 GPU 오클루전 컬링 또한 프레임마다 오버드로되는 양을 줄여 게임 오브젝트의 성능을 향상시킨다. 즉, 렌더러가 보이지 않는 오브젝트를 드로하느라 리소스를 낭비하지 않게 한다. GPU 오클루전 컬링은 GPU 기반 접근 방식을 통해 신에서 보이지 않는 오브젝트를 렌더링하지 않게 한다.  STP(시공간 포스트 프로세싱)로 GPU 성능을 최적화하고 시각적 품질과 런타임 성능을 높일 수 있다. STP는 저해상도에서 렌더링된 프레임을 정확도 손실 없이 업스케일링하도록 설계되어, 플랫폼에 다양한 성능 수준과 화면 해상도로 일관적인 고품질 콘텐츠를 제공할 수 있다. STP는 데스크톱과 콘솔 전반에서, 무엇보다도 컴퓨팅 가능한 모바일 기기에서 URP 및 HDRP 모두와 호환된다.   ▲ STP는 GPU 성능을 최적화하고 시각적 품질과 런타임 성능을 높인다.   URP용 렌더 그래프(Render Graph)는 새로운 렌더링 프레임워크 및 API로, 렌더 파이프라인의 유지 관리와 확장을 간소화하고 렌더링 효율성과 성능을 높인다. 최신 시스템에는 특히 타일 기반(모바일) GPU에서 메모리 대역폭 사용량과 에너지 소비를 줄이기 위한 네이티브 렌더 패스의 자동 병합 및 생성 같은 핵심 최적화 기능이 다양하게 추가되었다. 또한 새로운 렌더 그래프 API를 통해 커스텀 패스 추가 워크플로를 간소화할 수 있기 때문에, 사용자는 커스텀 래스터와 커스텀 패스로 렌더 파이프라인을 확장하고 새로운 컨텍스트 컨테이너를 사용하여 필요한 파이프라인 리소스에 모두 안전하게 액세스할 수 있다. 마지막으로, 새로운 렌더 그래프 뷰(Render Graph Viewer) 툴을 사용해 엔진의 렌더 패스 생성과 프레임 리소스 사용량을 에디터 내에서 직접 분석하고, 렌더 파이프라인 디버깅과 최적화 과정을 간소화할 수 있다.   ▲ 렌더 그래프 뷰를 사용하여 렌더 파이프라인, 패스, 리소스를 분석한다.   URP의 포비티드 렌더링(Foveated Rendering) API를 사용하면 포비티드 렌더링 수준을 설정하여 사용자 주변의 중거리/원거리 정확도를 낮추는 대신 GPU 성능을 높일 수 있다. 유니티 6 프리뷰에서는 두 가지 새로운 포비티드 렌더링 모드를 사용할 수 있다. 고정 포비티드 렌더링(Fixed Foveated Rendering)의 경우 스크린 공간 중앙 영역의 품질이 높아지고, 시선 추적 포비티드 렌더링(Gazed Foveated Rendering)에서는 시선 추적을 통해 스크린 공간에서 품질을 높여야 할 영역을 결정한다. 포비티드 렌더링 API는 오큘러스 XR(Oculus XR) 플러그인을 사용하는 메타 퀘스트(Meta Quest), 그리고 소니 플레이스테이션 VR2(Sony PlayStation VR2) 플러그인과 호환되며, OpenXR 플러그인에 대한 지원이 곧 추가될 예정이다.   ▲ 시선이 집중되는 영역의 품질을 높이는 방법으로 GPU 성능을 향상하여, VR에서 시각적 품질을 높이고 프레임 속도를 개선한다.   HDRP 및 URP에서의 볼륨 프레임워크 향상으로 모든 플랫폼에서 CPU 성능이 최적화되어 저사양 하드웨어에서도 실행이 가능하다. 이제 URP에서도 HDRP처럼 전반적으로 향상된 사용자 인터페이스를 사용하여 전역 볼륨과 품질 수준별 볼륨을 설정할 수 있다. 또한 이제 손쉽게 URP용 커스텀 포스트 프로세싱 효과와 함께 볼륨 프레임워크를 사용하여 커스텀 안개와 같은 효과를 직접 제작할 수 있다.    ▲ URP 커스텀 포스트 프로세싱   조명 개선 사항 APV(적응적 프로브 볼륨)는 유니티에서 전역 조명을 구현하는 새로운 방법을 제공한다. 라이트 프로브를 통해 빛을 받는 오브젝트의 저작(authoring) 및 반복 작업(iteration)을 더 간소화했으며, 시간대 시나리오나 스트리밍 등의 새로운 작업을 수행할 수 있다. 유니티 2023.1 및 2023.2 테크 스트림 릴리스에서 제공된 APV의 개발을 기반으로, 유니티 6 프리뷰에서는 탁월한 조명 전환을 구현하기 위해 저작 워크플로 개선, 스트리밍 기능 확장, 제어 및 플랫폼 도달률(Reach) 확장 등의 개선이 이루어졌다.  APV 시나리오 블렌딩을 URP로 확장하여, 낮과 밤을 전환하거나 방에서 불을 켜고 끄는 상황에 대한 베이크된 프로브 볼륨 데이터를 손쉽게 블렌딩할 수 있도록 더 광범위한 플랫폼을 지원한다. 여러 조명 시나리오를 베이크한 다음 런타임에 블렌딩할 수 있다. 이 기능은 프로브 볼륨 데이터에만 적용된다. 반사 프로브, 라이트맵, 광원 위치 또는 강도와 같은 기타 요소는 직접 조정해야 한다.  URP와 HDRP에서 모두 지원하는 APV 스카이 오클루전을 사용하면 가상 환경에 시간대별 조명 시나리오를 적용하여 APV 시나리오 블렌딩에 비해 다양한 컬러 배리에이션으로 하늘의 정적 간접 조명을 구현할 수 있다. 스카이 오클루전을 사용하면 APV 시나리오 블렌딩에 비해 다양한 컬러 배리에이션으로 하늘의 정적 간접 조명을 구현할 수 있다.  이제 APV 디스크 스트리밍이 URP에서 비컴퓨트(non-compute) 경로를 지원하며, AssetBundles 및 Addressables 지원 또한 활성화되었다.  Probe Adjustment Volumes 툴을 활용하여 APV 콘텐츠를 미세 조정하고 빛 번짐 효과를 해결할 수 있다. 이러한 볼륨 내부의 프로브에 대해 샘플 카운트 오버라이드 및 프로브 무효화 등을 조정할 수 있다. 조정 볼륨의 영향을 받지 않는 라이트 프로브는 숨길 수 있고, 이제 영향을 받는 프로브의 프로브 조명 데이터만 미리 확인할 수 있으며, Probe Volume 및 Probe Adjustment Volume 컴포넌트에서 곧바로 베이크할 수 있다. 마지막으로, C# Light Probe Baking API가 추가되어 이제 한 번에 베이크할 프로브의 개수를 제어하여 실행 시간과 메모리 사용량 간의 균형을 맞출 수 있다.    더 정확하고 풍부한 환경 유니티 6 프리뷰는 HDRP에서 프로젝트의 시간대 시나리오를 더 사실적으로 구현할 수 있도록 일몰과 일출의 하늘 렌더링을 개선하였다. 또한 먼 거리의 안개를 보완하기 위해 오존층 지원과 대기 산란이 추가되었다. 커스틱을 샘플링하여 볼류메트릭 광원의 빛줄기를 생성하는수중 볼류메트릭 포그 지원이 추가되어 물의 표현도 개선되었다. 성능 최적화 측면에서는 CPU로 시뮬레이션을 모사하는 대신, 몇 프레임이 지연되며 GPU에서 시뮬레이션을 다시 읽어 오는 옵션이 추가되었다. 혼합 트레이싱 모드가 포함된 투명한 표면 지원도 추가되어, 물과 같은 표면을 터레인이나 초목과 함께 렌더링할 때 레이트레이싱과 스크린 공간 효과를 혼합할 수 있다. 대규모의 동적인 월드를 렌더링하려면 무엇보다 성능이 중요하므로 URP와 HDRP의 SpeedTree 초목 렌더링을 최적화했으며, 앞에서 언급한 새로운 GPU 상주 드로어를 활용한다.   VFX 그래프 아티스트 워크플로 유니티 프리뷰 6에서는 VFX 아티스트가 더 많은 플랫폼에 효율적으로 도달할 수 있도록 툴과 URP 지원을 개선했다. VFX 그래프 프로파일링 툴을 사용하면 VFX 아티스트는 메모리와 성능에 대한 피드백을 받고, 그래프 내에서 최적화할 부분을 찾아서 특정 효과를 미세 조정하고 성능을 극대화할 수 있다.   ▲ VFX 그래프 프로파일링 툴   셰이더 그래프 키워드의 지원을 받아 VFX 셰이더를 제작할 수 있으며, URP 뎁스 및 컬러 버퍼를 사용하여 빠른 충돌이나 월드 내 파티클 생성을 위해 URP로 더 복잡한 효과를 만들 수 있다. VFX 그래프의 개념과 기능을 학습할 수 있도록 제작된 VFX 애셋 모음인 신규 학습 템플릿으로 VFX 그래프를 빠르게 시작할 수 있다.   셰이더 그래프 아티스트 워크플로 유니티 6 프리뷰에는 셰이더 그래프 사용자들이 많이 겪는 고충을 해결하기 위해 편집이 가능한 키보드 단축키, 그래프에서 가장 GPU 사용량이 많은 노드를 빠르게 식별할 수 있는 히트맵 컬러 모드를 추가하였으며, 실행 취소/재실행 또한 더 빨라졌다.   ▲ 노드의 상대적 GPU 비용을 보여 주는 히트맵 컬러 모드   여러 셰이더 그래프 애셋이 담긴 신규 노드레퍼런스 플을 사용할 수 있다. 샘플에 포함된 각 그래프는 하나의 노드를 설명하고, 내부적으로 작동하는 수학을 요약하며, 가능한 노드 사용 방법에 대한 예시를 포함한다.    멀티 플랫폼 개선 사항 유니티 6 프리뷰는 멀티 플랫폼 개발 워크플로를 최적화하고 인기 있는 플랫폼 전반에서 도달률을 향상하는 것을 목표로 데스크톱과 모바일, 웹 및 XR에서 향상된 멀티 플랫폼 기능을 제공한다.   빌드 창 편의성 향상 및 새로운 빌드 프로필 새로운 빌드 프로필 기능을 통해 더욱 유연하고 효율적으로 빌드를 관리할 수 있다. 각 프로필에서 빌드 설정을 구성하는 것 외에 이제 서로 다른 신 목록을 넣어 빌드의 콘텐츠를 커스터마이즈할 수 있어, 게임에서 가장 선보이고 싶은 신이 사용된 고유의 플레이 가능한 데모를 여러 개 만들 수 있다. 또한 플레이어 설정에서 볼 수 있는 스크립팅에 더해 어떤 프로필이든 정의하는 커스텀 스크립팅을 설정할 수 있으며, 이를 통해 빌드와 에디터 플레이 모드의 기능과 동작을 미세 조정할 수 있다. 버티컬 슬라이스(시연 버전)를 만들거나 플랫폼별로 동작을 다르게 설정하려 할 때 이 기능을 활용할 수 있다. 프로필마다 플레이어 설정 오버라이드를 추가하여 플랫폼 모듈에 맞게 설정을 커스터마이즈할 수 있다. 이 기능을 이용하면 프로필마다 다른 퍼블리싱 설정을 손쉽게 구성할 수 있다. 전반적으로 이 최신 기능을 사용하면 에디터에서의 빌드 관리 방식을 커스터마이즈하기 위해 커스텀 빌드 스크립트를 사용해야 하는 빈도를 낮출 수 있다. 마지막으로, 에디터에서 플랫폼을 쉽게 확인할 수 있도록 플랫폼 브라우저를 추가했다. 플랫폼 브라우저에서 Unity가 지원하는 모든 플랫폼을 확인하고 원하는 플랫폼의 빌드 프로필을 생성할 수 있다.   ▲ 유니티 6의 새로운 빌드 프로필 창   웹 런타임으로 모바일 게임 도달률 향상 안드로이드 및 iOS 브라우저 지원이 유니티 6 프리뷰에 추가되었다. 이제 모든 웹에서 유니티 게임을 실행할 수 있으며, 브라우저 게임을 데스크톱 플랫폼으로 제한해 개발하지 않아도 된다. 또한 게임을 네이티브 앱의 웹 뷰에 임베드하거나, 유니티의 프로그레시브 웹 앱 템플릿을 사용해 고유한 바로 가기와 오프라인 기능을 가진 네이티브 앱처럼 게임이 작동하도록 구현할 수 있다. 모바일 기기 컴파스 지원과 GPS 위치 트래킹 같은 기능이 추가되어, 게이머가 플레이하는 플랫폼에 맞게 대응하도록 웹 게임을 구현할 수 있다. Emscripten 3.1.38 툴체인 업데이트와 부호 확장 명령 코드, 트랩 없는 부동 소수점-정수 변환, 벌크 메모리, BigInt, Wasm 테이블, 네이티브 Wasm 예외, Wasm SIMD와 같은 새로운 WebAssembly 언어 기능 모음을 통한 최신 WebAssembly 2023 지원을 통해 웹 게임을 미세 조정할 수 있다. 또한 WebAssembly 2023은 힙 메모리를 4GB까지 지원하므로 최신 하드웨어에서 더 많은 RAM을 사용할 수 있다.   ▲ 아이폰 15 프로의 사파리에서 실행되는 유니티의 2D 샘플 프로젝트 해피 하비스트(Happy Harvest)   유니티 6 프리뷰에는 최신 안드로이드 툴, 즉시 사용 가능한 자바(Java) 17 지원, 안드로이드 앱 번들에 디버그 심볼을 추가하는 기능 등을 비롯한 더 많은 모바일 개선 사항이 포함된다. 이를 통해 구글 플레이 스토어(Google Play Store)에 제출하는 시간을 절약하고 플레이 콘솔(Play Console)에서 항상 스택트레이스 정보를 확인할 수 있다.   WebGPU 백엔드 얼리 액세스 WebGPU 백엔드의 실험 단계 지원을 도입하는 것은 웹 기반 그래픽스 가속의 중대한 이정표로서, 앞으로 유니티 웹 게임의 그래픽스 렌더링 정확도를 도약시키는 디딤돌이 될 것이다. WebGPU는 컴퓨트 셰이더 지원과 같은 최신 GPU 기능을 웹에 노출하고 활용하려는 목적으로 설계되었다. WebGPU는 새로운 웹 API로서, 다이렉트X 12(DirectX 12), 벌칸(Vulkan), 메탈(Metal)과 같은 네이티브 GPU API를 통해 내부적으로 구현하는 최신 그래픽스 가속 인터페이스를 데스크톱 기기에 따라 제공한다. WebGPU 그래픽스 백엔드는 여전히 실험 단계이므로 정식 제작에 사용하는 것은 권장하지 않는다.   ▲ GPU(컴퓨트) 스키닝의 장점을 활용해 높은 프레임 속도를 유지하면서 로봇들의 골격 위에 스킨을 메시 처리한 데모   유니티 에디터의 ARM 기반 윈도우 기기 지원 유니티는 2023.1에서 ARM 기반 윈도우 기기에 대한 지원을 제공하여 새로운 하드웨어로 타이틀을 가져올 수 있게 했다. 유니티 6 프리뷰를 통해 유니티 6에서 ARM 기반 윈도우 기기에 대한 네이티브 유니티 에디터 지원을 제공한다. 따라서 이제 ARM 기반 기기의 성능과 유연성을 활용하여 유니티 게임을 제작할 수 있다.   다이렉트X 12 백엔드 개선 사항 유니티의 다이렉트X 12 그래픽스 백엔드가 정식으로 제작에 사용 가능하며, DX12를 지원하는 윈도우 플랫폼을 타깃으로 제작할 때 사용할 수 있다. 이번 변경에 앞서 렌더링 안정성과 성능에 대한 포괄적인 향상이 이루어진 바 있다. 유니티 에디터와 유니티 플레이어는 DX12에서 Split Graphics Jobs를 사용하여 향상된 CPU 성능의 혜택을 누릴 수 있다. 성능 향상 수준은 신의 복잡도와 제출되는 드로 콜 횟수에 따라 다를 수 있다.     무엇보다도 DX12 그래픽스 API는 광범위한 최신 그래픽스 성능을 지원할 수 있으므로, 유니티의 레이트레이싱 파이프라인 같은 차세대 렌더링 기법을 사용할 수 있다. 조만간 그래픽스에서 머신러닝에 이르는 DX12의 고급 기능을 활용하여, 높은 수준의 정확도와 성능을 실현할 수 있을 것이다.   마이크로소프트 GDK 패키지로 마이크로소프트 플랫폼 생태계 도입 마이크로소프트와 유니티의 지속적인 파트너십 덕분에 이제 유니티 6 프리뷰와 2022 LTS, 2021 LTS에서 2개의 새로운 마이크로소프트 GDK 패키지를 이용할 수 있다. Microsoft GDK Tools와 Microsoft GDK API 패키지를 동일한 구성 및 코드 베이스로 마이크로소프트 게이밍 플랫폼에서 사용할 수 있다. 이 패키지를 사용하면 사용자 ID, 플레이어 데이터, 소셜, 클라우드 스토리지 등의 엑스박스(Xbox) 서비스를 활용할 때와 같은 코드를 사용하여, 윈도우 및 엑스박스같은 마이크로소프트 게이밍 플랫폼에서 더욱 손쉽게 게임을 빌드할 수 있다. 통합 마이크로소프트 GDK 패키지를 사용하면 공유 코드 베이스와 API를 통한 빌드 프로세스 자동화 기능을 활용하여 마이크로소프트 플랫폼에서 게임을 제작할 수 있다. 패키지에 포함된 다양한 기능을 선보이는 새로운 샘플도 제공된다. 이전에는 엑스박스 콘솔과 윈도우의 마이크로소프트 스토어를 타깃으로 삼는 경우 마이크로소프트와 유니티에서 제공하는 별도의 GDK 패키지를 설치하는 것이 지침이었다. 그렇게 하려면 타깃으로 삼은 각 마이크로소프트 플랫폼별로 다른 코드 브랜치를 관리해야 했다. 새로운 마이크로소프트 GDK 패키지를 사용하면 그럴 필요가 없다. 또한 이제 빌드 서버에서 직접 API로 MicrosoftGame.config 파일을 수정할 수 있다. 유니티 6의 새로운 빌드 프로필 기능과 함께 사용하면 하나의 프로젝트만으로도 손쉽게 마이크로소프트 게이밍 생태계에 게임을 공개할 수 있다.   ▲ 유니티 패키지 관리자의 새로운 마이크로소프트 GDK API(1단계) 및 마이크로소프트 GDK 툴즈(2단계). 유니티 패키지 관리자에서 직접 마이크로소프트 GDK 패키지를 설치하고 마이크로소프트 GDK를 사용해 개발을 시작할 수 있다.   XR 경험 유니티는 AR킷(ARKit), AR코어(ARCore), 비전OS(visionOS), 메타 퀘스트, 플레이스테이션 VR, 윈도우 MR(Windows Mixed Reality) 등 많이 알려진 알려진 XR(확장현실) 플랫폼을 지원한다. 유니티 6 프리뷰는 혼합 현실, 손 및 시선 입력, 개선된 시각적 정확도 같은 최신 크로스 플랫폼 기능을 포함한다. 이제 향상된 템플릿에 이러한 많은 최신 기능이 통합되어 더 빠르게 시작할 수 있다.   현실 세계를 게임에서 구현하기 기존 게임을 혼합 현실로 확장하려 할 때나 아니면 완전히 새로운 게임을 제작하려는 경우에도 AR 파운데이션(AR Foundation)을 사용하면 크로스 플랫폼 방식으로 현실 세계를 플레이어 경험에 통합할 수 있다. 유니티 6 프리뷰에는 AR코어에서의 이미지 안정화 지원을 추가하였으며, 메타 퀘스트(Meta Quest)와 같은 혼합 현실 플랫폼을 대상으로 메시 및 바운딩 박스 기능 등에 대한 지원을 개선했다.   ▲ 최신 AR 파운데이션 메시 기능   XR 입력 및 상호작용 상호작용을 간소화할 수 있도록 XRI(XR Interaction Toolkit) 3.0에 여러 주요 개선 사항이 추가되었다. 그중에서도 Near-Far Interactor라는 새로운 인터랙터는 프로젝트에서 인터랙터의 동작을 커스터마이즈할 때 유연성과 모듈성을 향상시킬 수 있다.  새로운 Input Reader의 추가로 XRI 입력 처리 방식이 개선되었으며, 이를 통해 입력 프로세스가 간소화되고 다양한 입력 유형 전반에서 코드의 복잡도가 줄어든다. 마지막으로, 크로스 플랫폼 방식으로 게임 내 키보드를 구현하고 커스터마이즈할 수 있도록 새로운 가상 키보드 샘플을 출시할 계획이다.   고유의 손 제스처 손을 사용하여 콘텐츠와 상호작용하도록 하는 플랫폼이 점점 더 많아지는 추세이다. 유니티의 XR Hands 패키지를 사용하면 커스텀 손 제스처(예 : 엄지 척, 엄지 다운, 가리키기)나 일반적인 오픈XR 손 제스처를 구현할 수 있다. 샘플이 포함되어 있어 빠르게 작업을 시작할 수 있다. 손 모양과 제스처의 제작, 미세 조정 및 디버깅을 위한 툴이 함께 지원되므로 더 많은 사용자를 대상으로 폭넓은 콘텐츠를 제공할 수 있다.   시각적 정확도 향상 게임의 시각적 정확도를 향상하려는 방법의 하나로 현재 실험 단계 패키지로만 이용할 수 있는 Composition Layers 기능이 있다. 이 기능은 런타임의 합성 레이어에 대한 네이티브 지원을 사용하여 텍스트, 비디오, UI 및 이미지를 더욱 양호한 품질로 렌더링하고, 더 선명한 텍스트, 뚜렷한 윤곽선을 비롯해 전반적으로 더 나은 결과물을 제공하는 동시에 아티팩트도 상당히 줄일 수 있다.   멀티플레이어 제작 간소화 유니티 6 프리뷰는 간단한 엔드 투 엔드 통합 솔루션으로, 멀티플레이어 게임의 제작, 출시, 성장을 가속한다. 실험 단계 멀티플레이어 센터 유니티는 패키지 레지스트리에서 사용할 새로운 실험 단계 멀티플레이어 센터(Experimental Multiplayer Center) 패키지를 제작했다. 멀티플레이어 센터는 멀티플레이어 개발을 시작할 수 있도록 안내하는 간소화된 가이드 툴이다. 에디터의 중심에 있는 이 가이드를 활용하면 프로젝트별 요구 사항에 맞는 유니티 툴과 서비스에 액세스할 수 있다.  멀티플레이어 센터는 프로젝트의 멀티플레이어 사양에 따른 인터랙티브 가이드, 리소스와 교육 자료에 대한 액세스, 그리고 멀티플레이어 기능을 빠르게 배포하고 간단하게 실험할 간편한 방법을 제공한다.   멀티플레이어 플레이 모드 유니티 에디터 내에서 각 프로세스 전반의 멀티플레이어 기능을 테스트해 볼 수 있는 멀티플레이어 플레이 모드(Multiplayer Play Mode) 1.0 버전이 릴리스되었다. 디스크의 동일한 소스 애셋을 사용하면서 하나의 개발 기기에서 최대 4명의 플레이어(기본 에디터 플레이어 및 가상의 플레이어 3명)를 동시에 시뮬레이션할 수 있다. 멀티플레이어 플레이 모드를 사용하면 프로젝트를 빌드하고, 로컬에서 실행하고, 서버-클라이언트 관계를 테스트하는 데 걸리는 시간을 단축하는 멀티플레이어 개발 워크플로를 구축할 수 있다.   ▲ 멀티플레이어 플레이 모드는 개발 과정에서 멀티플레이어 게임을 테스트하기 위한 설정 시간을 단축하고 빠른 반복 루프를 유지한다.   멀티플레이어 툴즈 멀티플레이어 툴즈(Multiplayer Tools) 패키지를 2.1.0 버전으로 업데이트하며, 새로운 디버깅 시각화 툴인 네트워크 신 비주얼라이제이션(Network Scene Visualization)을 추가했다. 네트워크 신 비주얼라이제이션(NetSceneVis)은 멀티플레이어 툴즈 패키지에 포함된 강력한 툴로, 유니티 에디터 신 뷰에서 프로젝트를 보며 메시 셰이딩이나 텍스트 오버레이와 같은 시각화 기능을 통해 오브젝트별 네트워크 커뮤니케이션을 시각화하고 디버깅할 수 있다.   Netcode for GameObjects용 실험 단계 분산형 권한 새로운 Experimental Multiplayer Services SDK 0.4.0 버전(com.unity.services.multiplayer)과 함께 사용할 때의 분산형 권한 모드를 Netcode for GameObjects 2.0.0-exp.2 버전(com.unity.netcode.gameobjects)에 추가했다. 분산형 권한 모드에서는 클라이언트가 게임 세션에서 생성된 넷코드(Netcode) 오브젝트에 대해 분산된 소유권/권한을 가진다. 넷코드 시뮬레이션 워크로드는 클라이언트 전반에 분산되며, 네트워크 상태는 유니티가 제공하는 고성능 클라우드 백엔드를 통해 조율된다.   넷코드 포 엔티티즈 게임 오브젝트가 디버그 바운딩 박스를 렌더링할 수 있도록 지원하여 넷코드 포 엔티티즈(Netcode for Entities) 경험을 개선했다. 또한 코드를 수정할 필요 없이 커스터마이즈할 수 있는 넷코드 설정 변수 대부분이 포함된 NetCodeConfig ScriptableObject를 추가했다.   데디케이디드 서버 패키지 프로젝트를 별도로 만들지 않아도 프로젝트에서 서버와 클라이언트 역할을 전환하도록 허용하는 데디케이디드 서버(Dedicated Server) 패키지를 출시했다. 멀티플레이어 역할을 사용하면 클라이언트 및 서버 전반에 게임 오브젝트와 컴포넌트를 배분할 수 있다.  멀티플레이어 역할로 각 빌드 타깃에서 사용할 멀티플레이어 역할(클라이언트, 서버)을 결정할 수 있다. 이는 다음과 같이 구성된다. 콘텐츠 선택 : 여러 멀티플레이어 역할을 대상으로 포함하거나 제거할 콘텐츠(게임 오브젝트, 컴포넌트)를 선택하는 UI 및 API를 제공한다. 자동 선택 : 여러 멀티플레이어 역할에서 자동으로 제거되어야 할 컴포넌트 유형을 선택하는 UI 및 API를 제공한다. 안전성 확인 : 멀티플레이어 역할에서 오브젝트를 제거하여 발생할 수 있는 잠재적인 널(null) 참조 예외를 감지하기 위한 경고를 활성화한다. 이 패키지에는 데디케이디드 서버 플랫폼 개발에 추가로 필요한 최적화 및 워크플로 개선 사항도 포함된다.   Experimental Multiplayer Services SDK Experimental Multiplayer Services SDK는 유니티 6 프리뷰에서 개발하는 게임에 온라인 멀티플레이어 요소를 한 번에 추가할 수 있는 솔루션이다. UGS(Unity Gaming Services)를 기반으로 릴레이(Relay) 및 로비(Lobby) 서비스의 여러 기능을 새로운 단일 ‘세션’ 시스템으로 결합한 솔루션으로, 빠르게 플레이어 그룹의 연결 방식을 정의할 수 있도록 지원한다. Experimental Multiplayer Services SDK 0.4.0 버전(com.unity.services.multiplayer)을 사용하면 P2P(peer-to-peer) 세션을 생성하고 플레이어가 참여 코드, 활성 세션 목록 검색 또는 ‘빠른 참여’ 기능 등 다양한 방법으로 참여하도록 구현할 수 있다.   유니티 6 프리뷰의 멀티플레이어 유니티 6 프리뷰에 포함된 많은 기능은 아직 실험 단계에 있으며, 아직 정식 제작에 사용할 수는 없다. 유니티 6가 완전한 지원 경험을 갖출 수 있도록 사용자의 피드백을 바탕으로 해당 기능을 빠르게 사전 릴리스 및 릴리스 단계로 전환할 예정이다.   엔티티 워크플로 개선 사항 유니티 6 프리뷰는 ECS 워크플로를 간소화하고 사용자가 흔히 겪는 어려움을 해결한다. 이러한 노력의 하나로, 유니티는 향후 엔티티와 게임 오브젝트 워크플로가 통합되는 상황에 대비하여 엔티티의 저장 방식을 변경했다. 이제 엔티티 ID가 전역적으로 고유의 값을 가지며, 한 엔티티 시스템에서 다른 시스템으로 원활하게 옮길 수 있다. 이러한 변경이 ECS 워크플로에 영향을 주지는 않지만, 항상 정확한 엔티티를 표시하므로 디버깅 시 모호함을 줄일 수 있다. 또한 유니티 2022 LTS에 제공된 최신 ECS 개선 사항이 유니티 6 프리뷰에도 적용되었다. ECS 1.1 : 주요 물리 콜라이더 워크플로 및 성능 개선, ECS 프레임워크 전반에서 80개 이상의 수정 사항 ECS 1.2 : 에디터 워크플로 전반의 편의성 및 성능 개선, 직렬화, 베이킹, 50개 이상의 수정 사항 및 유니티 6 호환성   AI를 활용한 동적 런타임 경험 제공 유니티 6 프리뷰에는 런타임에 AI 모델을 통합하는 뉴럴 엔진인 유니티 센티스(Unity Sentis)가 포함된다. 센티스를 통해 오브젝트 인식, 스마트 NPC, 그래픽스 최적화 같은 새로운 AI 기반 기능을 활용할 수 있다. 센티스는 최근에 성능과 사용 초기 경험 간소화에 집중하여 개선이 이루어졌다.   성능 이제 유니티 에디터에서 AI 모델 가중치 양자화(FP16 또는 UINT8)를 지원하므로 필요한 경우 모델 크기를 최대 75%까지 줄일 수 있다. 모바일 게임을 출시하는 경우 상당한 절약 효과를 볼 수 있다. 모델 스케줄링 속도 또한 2배 향상되었고, 메모리 누수와 가비지 컬렉션은 줄어들었다. 마지막으로, 이제 더 많은 ONNX 연산자를 지원한다.   시작하기 프로젝트에 적합한 AI 모델을 더 쉽게 찾을 수 있도록, 유니티는 대규모 60만 개 이상의 AI 모델을 보유한 AI 모델 허브인 허깅 페이스(Hugging Face)와 협력 관계를 맺었다. 이제 센티스에서 ‘바로 사용할 수 있는’ AI 모델을 즉시 찾을 수 있으므로 손쉬운 연동이 가능하다.  적합한 모델을 찾았으면 이제 게임에 연결해야 한다. 더 쉽게 연결할 수 있도록 유니티는 AI 모델을 제작, 수정, 연결하는 데 활용할 새로운 Functional API를 도입했다. 직관적이고, 안정적이며, 인퍼런스에 최적화된 API이다. 메모리 관리 및 스케줄링 전반을 제어하기 위해 완전히 커스터마이즈할 수 있는 낮은 레벨의 API가 필요하다면 Backend API를 계속 사용할 수 있다.   생산성 및 기능성 향상 유니티 엔진은 비주얼 스크립팅에서부터 UI 툴킷까지 사용자의 생산성과 기능성을 향상하기 위한 다양한 툴을 제공한다. 기존 툴에 더해 유니티 6 프리뷰에서는 특히 프로파일링 툴 포트폴리오에 두 가지 업데이트가 추가되었다.   메모리 프로파일러 유니티 6 프리뷰에서는 메모리 프로파일러(Memory Profiler)와 관련해 두 가지 주요 업데이트가 적용되었다. 우선, 기존에는 분류되지 않았던 그래픽스 메모리가 이제 측정되며 리소스별 보고가 이루어진다.(예 : 렌더 텍스처 및 컴퓨트 셰이더) 그리고, 상주 메모리에 대한 정보가 더 자세히 보고된다. 예를 들어 디스크로 전환되는 메모리는 더 이상 여기에 포함되지 않는다. 이러한 업데이트는 특히 네이티브 메모리 사용량을 파악하기 어렵다는 사용자의 직접적인 피드백을 해결한다.   ▲ 업데이트된 메모리 프로파일러     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-07-03
다쏘시스템, 하노버 산업박람회에서 버추얼 트윈과 자율 로봇 통합 기술 소개
다쏘시스템이 4월 22일~26일 독일 하노버에서 열리는 ‘2024 하노버 산업박람회(Hannover Messe 2024)’에 참가한다고 밝혔다. 다쏘시스템은 박람회에서 버추얼 트윈 기반 혁신과 로봇 기반 자동화 사례를 소개할 예정이다. 이번 하노버 산업박람회는 ‘지속가능한 산업 활성화’를 주제로 진행된다. 세부 주제는 인더스트리 4.0과 제조업-X, 산업용 에너지, 디지털화, 인공지능(AI), 머신러닝, 탄소중립 생산, 수소 연료 전지 등 산업의 고도와 기후 중립과의 상생을 모색하며 약 4000개의 글로벌 기업과 13만 명 이상이 참가할 전망이다. 박람회 기간 중 다쏘시스템은 오므론(OMRON)과 함께 생산성 향상을 위한 자율 모바일 로봇(AMR)과 3D익스피리언스 플랫폼을 통합한 엔드 투 엔드 디지털화의 이점에 대해 시연한다. 이 쇼케이스에서는 제조 분야 표준을 준수하는 데이터 교환을 지원하기 위한 디지털 트윈 협회(IDTA)의 관리 셸인 자산 관리 셸(AAS)을 소개한다. 이에 더해 유연한 생산 공장 현장 예시를 통해 다쏘시스템 3D익스피리언스 플랫폼과의 상호작용 과정을 선보인다. 다쏘시스템은 “3D익스피리언스 플랫폼을 통해 기업이 가치 사슬과 새로운 비즈니스 모델을 창출하고, 디지털 산업 환경의 표준화를 적극적으로 촉진시킬 수 있도록 지원하겠다는 의지를 선보일 것”이라고 밝혔다. 쇼케이스에서는 생산 공정 4개 스테이션을 포함해 이동식 자율 모바일 로봇이 설치된 모습을 직접 볼 수 있다. 특히 부스 내 버추얼 트윈 경험을 통해 ▲사전 판매 단계에서의 시스템 계획 ▲가상 커미셔닝(원활한 통합을 위해 워크플로를 가상으로 미리 시뮬레이션하고 실제 시운전 전에 다양한 시나리오를 테스트하는 프로세스) ▲버추얼 트윈 기반 자동화 운영 ▲애프터 세일즈 서비스 등 제품 제작의 전 단계부터 운영까지 프로세스를 간소화하고, 효율성을 높이며 유연성을 향상시키는 방법을 확인할 수 있다.     3D익스피리언스 플랫폼에서는 생산 라인을 3D로 미리 계획할 수 있다. 이를 통해 새로운 기계와 모바일 로봇을 레이아웃에 맞게 배치하고 전원 공급 및 보행 경로 등의 측면에서 최적의 위치에 배치 가능하다. 아울러 버추얼 트윈을 사용하면 로봇 시뮬레이션과 새로운 워크플로 설계를 통해 유연성과 효율성을 높일 수 있다. 원활한 통합을 위해 워크플로를 미리 시뮬레이션하면 실제 시운전 전에 다양한 시나리오를 테스트할 수 있다. 이를 통해 제어 프로세스의 오류와 병목 현상을 조기에 파악할 수 있으며, 기업은 설치 시간 단축과 효율적인 프로세스의 이점을 누릴 수 있다. 3D익스피리언스 플랫폼이 구현하는 버추얼 트윈은 모바일 로봇의 규모가 커질 수록 운영 모니터링 및 관리가 더욱 복잡해진 상황에서 제어 센터 역할을 한다. 이를 통해 주요 성과 지표 및 자재 정보등의 운영 데이터를 실시간으로 통합하여 종합적인 개요를 제공할 수 있다. 고객 요구 사항에 개별적으로 맞춤화된 버추얼 트윈을 활용하면 데이터 기반의 지속 가능하고 예측 가능한 유지보수가 가능하다. 인공지능과 머신러닝을 사용하여 센서 데이터를 분석하여 잠재적인 장애를 조기에 감지하고 수정하는 것은 물론, 다운타임을 최소화하기 위한 사전 예방적 계획 유지보수가 가능하다. 증강 현실 기술도 통합할 수 있다. 이를 통해 실제 환경을 제한 없이 완벽하게 살펴볼 수 있으며, 태블릿 PC나 스마트폰의 카메라 이미지에 추가적인 가상 정보를 투사할 수 있다. 이를 통해 정확한 진단이 가능한 것은 물론, 수리 시간을 단축할 수 있다. 다쏘시스템 코리아의 정운성 대표이사는 “버추얼 트윈을 로봇 자동화와 결합하면 모든 공정을 가상 공간에서 확인할 수 있어 최소한의 인력과 자원으로 생산성을 향상시키는 것은 물론 기업의 글로벌 경쟁력 제고에도 도움이 된다”면서, “참가자들은 세계 최대 산업기술전인 독일 하노버 산업박람회 2024에서 다쏘시스템의 버추얼 트윈 프로세스의 중요성과 가치를 더욱 생생하게 경험하게 될 것”이라고 전했다.
작성일 : 2024-04-09
[케이스 스터디] 해외 소장 문화재의 ‘디지털 귀향’ 프로젝트
언리얼 엔진과 에픽 에코시스템으로 이뤄낸 문화유산 디지털 경험   문화유산은 우리의 과거를 이해하고, 현재와 미래의 역사와 정체성을 보존하고 전해질 수 있도록 하는 중요한 자산이다. 이러한 대한민국의 문화유산 중 약 23만 점은 합법 또는 부당하게 반출되어, 이를 아카이빙하여 관리하고 가능한 경우 국내에 환수하려는 다양한 노력들이 이어지고 있다. 이런 노력의 일환으로 대한민국 정부는 최근 디지털 기술과 장비들의 발전에 힘입어 복잡하고 어려운 물리적 환수를 대체할 수 있는 ‘디지털 공유’라는 개념을 생각해 냈다. ■ 자료 제공 : 에픽게임즈   ‘디지털 공유’의 개념은 해외 박물관에 소장되어 있는 한국 예술품의 디지털 원형 데이터를 매우 정밀하게 구축하고, 이를 기반으로 실물 예술품을 감상하는 것과 같이 디지털로 실감 나는 콘텐츠를 개발하고 한국과 현지에 동시에 전시해 그 가치를 함께 공유하는 것이다. 이 개념을 처음으로 구체화한 프로젝트가 바로 ‘클리블랜드미술관(CMA) 소장 한국문화재 디지털 귀향 프로젝트’이다.   TRIC 및 CMA 소장 한국문화재 디지털 귀향 프로젝트 소개 이 프로젝트를 수행한 TRIC(문화유산기술연구소)는 문화와 유산을 위한 디지털 기술 R&D와 그 활용 사업을 통해 새로운 가치를 창출하는 기업으로, 지난 10년 동안 인도네시아, 라오스, 튀르키예, 카자흐스탄, 일본, 이집트 등 전 세계의 주요 유산을 대상으로 디지털 아카이빙 및 콘텐츠를 개발해 모두가 누릴 수 있도록 서비스하고 있다. 최근에는 리얼타임 콘텐츠의 발전 덕분에 언리얼 엔진을 중심으로 파이프라인을 구축하며 클리블랜드 미술관의 프로젝트를 진행하고 있다.   ▲ TRIC가 진행한 다양한 프로젝트(이미지 출처 : 언리얼 엔진 홈페이지)   CMA 소장 한국문화재 디지털 귀향 프로젝트는 미국 클리블랜드 미술관이 소장하고 있는 한국 문화유산의 디지털 원형 데이터를 구축하고 디지털 실감 콘텐츠를 제작하여 올 3월부터 한미 양국에서 동시에 전시하는 국제 협력 프로젝트다. 총 3년에 걸쳐 진행되고 있는 이 프로젝트는 1차년도인 2022년에 클리블랜드 미술관이 소장하고 있는 한국 유물 대표 13점을 디지털 아카이빙했고, 2차년도인 2023년에는 13점의 유물 중 대규모 전시 연출에 가장 적합한 칠보산도를 선정해 몰입적인 실감 콘텐츠로 제작했다. 그리고 3차년도인 올해 3월에는 한미 양국에 그 결과물을 선보이는 공동전시를 개최했다.    ▲ CMA 소장 한국문화재 디지털 귀향 프로젝트 : 칠보산도(이미지 출처 : 언리얼 엔진 홈페이지)   언리얼 엔진을 작업 파이프라인에 도입한 이유 예술품 데이터를 활용한 콘텐츠 구축 프로젝트는 디지털 버전의 예술품을 얼마나 실제와 동일하게 구현하는지 그 사실성이 가장 중요하다. 하지만 메시와 텍스처가 정밀할수록, 그리고 단일 예술품이 아닌 건축물을 구현할수록 데이터가 무거워지는 것은 필연적이기 때문에 기존에는 데이터 경량 및 최적화 작업에 많은 리소스를 투입했다. TRIC는 설립 초창기부터 다양한 미디어 기술을 통한 관람객과 예술 사이의 상호작용(인터랙션)을 중요하게 생각해 왔고, 물리적 센싱 기반의 콘텐츠나 VR 및 AR 등 실시간 인터랙티브 콘텐츠 개발을 주로 해 왔기 때문에 이러한 최적화 작업이 반드시 필요했다. 이 때문에 퀄리티를 그대로 보존하면서도 최소한의 작업으로 실시간 구동이 가능한 언리얼 엔진을 도입했다.   ▲ 언리얼 엔진으로 구현한 높은 정밀도의 디지털 유물(이미지 출처 : 언리얼 엔진 홈페이지)   언리얼 엔진 5의 루멘과 나나이트를 활용하면 데이터의 디테일을 높은 비주얼 퀄리티로 구현할 수 있을 뿐만 아니라 리얼타임 제작에 필수였던 장시간의 최적화 작업에 대한 부담을 줄여 주었기 때문에, 적은 인원으로도 목표한 퀄리티의 결과물을 빠르게 도출할 수 있었다. 또한, 언리얼 엔진을 도입한 덕분에 기본 영상부터 복잡한 계산과 시뮬레이션을 요구하는 몰입형 다면 영상, 아나몰픽 영상 등 새로운 출력 방식의 콘텐츠 제작을 위한 작업 파이프라인까지 TRIC가 진행하고 있는 프로젝트 전반의 파이프라인을 단축할 수 있었다.   ▲ TRIC가 제작한 아나몰픽 영상(이미지 출처 : 언리얼 엔진 홈페이지)   최근에 진행한 프로젝트의 파이프라인 CMA 소장 한국문화재 디지털 귀향 프로젝트는 크게 13점의 유물을 스캔하여 디지털화하고, 칠보산도 실감 콘텐츠를 제작하는 2가지 작업으로 진행되었다. 이를 위해 스캔 작업에서는 리얼리티캡처를 전면적으로 활용하였고, 칠보산도 실감 콘텐츠 제작에서는 언리얼 엔진 중심의 파이프라인을 구축했다. 먼저 프로젝트 1차 연도에 진행한 디지털 데이터 구축 작업의 경우, 칠보산도를 포함하여 클리블랜드 박물관이 소장하고 있는 한국 유물 13점에 대한 초정밀 디지털 데이터를 구축했다. 일반적으로 정밀한 3D 스캔은 라이다 또는 구조광 스캐너 등의 전문 장비를 활용해 진행하는 경우가 많은데, 이번에는 유물이 해외에 있어 장비의 반입과 적절한 환경을 조성하기가 어렵다는 점 때문에 사진 측량 기반의 데이터를 생성하는 방식으로 제작했다. 그리고 이를 위해 TRIC가 예술품 데이터 구축 사업에서 대부분의 공간 및 오브젝트의 3D 데이터를 구축할 때 사용하는 리얼리티캡처를 사용했다. 유물마다 수천 장의 사진을 촬영한 후 리얼리티캡처로 메시를 생성했는데, 덕분에 높은 정밀도의 텍스처와 메시가 적용된 애셋을 구축할 수 있었다. 리얼리티캡처는 코로나19 팬데믹으로 독일 국경이 봉쇄된 상황에서 베를린의 건축사진가와 협업을 통해 샤를로텐부르크성 도자기 방 프로젝트를 성공적으로 마무리할 수 있게 해 주었던 핵심 툴이기도 하다.   ▲ 스캔된 13점의 실제 유물(위)과 디지털 버전(아래)(이미지 출처 : 언리얼 엔진 홈페이지)   프로젝트 2차 연도에 진행한 실감 콘텐츠 제작 작업에서는 길게 펼쳐진 병풍 속에 그려진 칠보산을 3면으로 구성된 몰입형 스크린으로 옮겨, 전통 회화의 느낌을 그대로 살리면서 입체적인 공간감을 더하고자 했다. 이를 위해 먼저 카메라 로데이터를 활용해 폭당 수천 장의 이미지를 연결하여 방대한 기가픽셀 데이터를 구축했다. 모든 요소들을 객체별, 색역별, 층별로 분리해 별도의 레이어로 제작하고, 여기에 언리얼 엔진을 활용해 3차원 공간에 재배치한 후 촬영하는 방식을 통해 평면의 전통 회화 유물인 칠보산도에 입체감과 역동감을 부여하여 3D 콘텐츠로 재탄생시켰다.   ▲ 2D 병풍화를 레이어화하여 언리얼 엔진에서 3D 공간에 재배치(이미지 출처 : 언리얼 엔진 홈페이지)   입체감 표현에 무엇보다 중요했던 것은 캐릭터의 윤곽선을 따라 붓 선의 느낌이 나도록 표현하는 것이었다. TRIC는 언리얼 엔진의 머티리얼 에디터를 통해 셰이더를 제작했고, 그 위에 종이 질감의 고퀄리티 텍스처를 메가스캔에서 다운로드 후 가공하여 캐릭터에 포스트 프로세싱 재질을 입혀주는 방식으로 제작했다. 그리고 역동감을 살리기 위해서 필요했던 포그는 언리얼 엔진의 나이아가라 플루이드로 제작했다. 덕분에 다른 오브젝트와 실시간으로 반응하는 시뮬레이션이 가능했고, 원하는 타이밍에 시퀀서를 통해 제어할 수 있었다. 또한, Open VDB를 활용했던 기존 방식보다 가볍고 필요한 수정을 즉시 작업할 수도 있었다. 이렇게 잘 만들어진 캐릭터와 이펙트를 3면으로 구성된 스크린으로 보여주기 위해 세 개의 카메라를 하나로 묶은 카메라 리그를 사용해 애니메이션을 효과적으로 한 번에 처리했고, 렌더링 역시 시퀀서에 배치된 세 개의 카메라를 동시에 렌더링할 수 있는 무비 렌더 큐로 개별 영상을 한 번에 출력했다.   ▲ 3개의 카메라로 동시에 렌더링하는 장면(이미지 출처 : 언리얼 엔진 홈페이지)   언리얼 엔진과 에픽 에코시스템의 역할  칠보산도 실감 콘텐츠처럼 전통 회화 리소스를 활용한 콘텐츠에서는 동양 회화 특유의 심미적 감각과 화풍이 모든 요소와 장면에 일관적으로 유지되어야 하기 때문에, 모든 과정에서 정밀하게 컨트롤할 수 있는 제작 툴이 필요하다. 언리얼 엔진은 퍼포먼스의 제약 없이 콘텐츠 자체의 비주얼 퀄리티를 최대한 올리면서 나이아가라, 시퀀서 등으로 그 구성 애셋을 세밀하면서도 정확하게 컨트롤할 수 있는 환경을 제공했다. 또한, 언리얼 엔진 마켓플레이스와 메가스캔의 라이브러리에서 구름, 달, 안개, 바람, 비 등 다양한 자연 현상을 구현할 때 적합한 리소스를 빠르게 확보할 수 있었고, 리깅된 애니메이션 캐릭터를 전통 회화 스타일로 완전히 새롭게 입체화하는데 반드시 필요한 원화의 캐릭터 질감을 구현하는 데 적합한 고퀄리티의 셰이더, 텍스처 등도 제공하여 작업 시간을 줄일 수 있었다.   ▲ 전통 회화의 붓 선 셰이더 적용 여부 비교. 투명도 0.2(위), 투명도 0.8(아래)(이미지 출처 : 언리얼 엔진 홈페이지)   무엇보다 언리얼 엔진의 리얼타임 렌더링이 프로젝트에 반드시 필요한 핵심 기술이었다. 이번 프로젝트의 경우, 콘텐츠 제작 기간이 2개월도 주어지지 않아 시간이 촉박했다. 그에 반해 3개의 스크린이 사다리꼴 모양으로 배치된 몰입형 스크린에서 콘텐츠를 구현하기 위해 3개의 버추얼 카메라로 촬영하여 매우 높은 해상도로 렌더링해야 했다. 이런 경우 관람객의 위치 및 화각에 따라 몰입도가 확연히 달라지기 때문에, 다양한 변수에 대응하며 반복적이고 섬세한 조정이 필요했다. 특히, 한국과 미국이라는 지구 정 반대편에 있는 양국 전문가들이 참여하다 보니 실시간 컨퍼런스 콜을 통해 세부 의견을 주고받아야 하는 상황이었는데, 언리얼 엔진을 통해 실시간으로 확인하고 조정할 수 있었기 때문에 소통 시간을 줄일 수 있었다. 또한, 최종 결과물의 퀄리티도 이미 제작 과정에서 미리 확인할 수 있었기 때문에 커뮤니케이션의 오류나 재작업 리스크가 거의 없었다. 만약 전통적인 방식으로 제작했다면 회의만 하다 정해진 프로젝트 기간이 다 되거나, 겨우 합의에 이르렀다 해도 퀄리티는 물론 기간 내에 제작하는 것조차 불가능했을 것이다.   ▲ TRIC가 해외 전문가들과 컨퍼런스 콜을 진행하는 모습(이미지 출처 : 언리얼 엔진 홈페이지)   문화유산기술연구소의 향후 목표 및 나아갈 방향 단기적으로는 현재 수행하고 있는 CMA 소장 한국문화재 디지털 귀향 프로젝트와 이집트 문화유산 ODA(공적개발원조) 프로젝트를 성공적으로 마치는 것이 TRIC의 목표다. 장기적으로는 이러한 성과를 바탕으로 확보된 수많은 데이터와 리얼타임 콘텐츠를 연결하는 메타버스와 유사한 개념의 시대별 리얼타임 월드를 구축하는 것을 목표로 하고 있다. 이를 위해서 언리얼 엔진과 에픽 에코시스템을 더욱 적극적으로 활용해 역사적으로 보존할 가치가 높은 도시의 시대별 모습을 입체적으로 복원해 나갈 계획이다. 그 일환으로, 우선 8세기 서라벌 전체를 리얼타임 월드로 구축하는 프로젝트를 언리얼 엔진을 활용하여 진행하고 있다. 신라의 왕경인 서라벌의 지형, 식생 등이 복원된 환경에서 건축, 도로, 사람, 역사적 사건 및 사회 등의 방대한 데이터를 하나의 플랫폼에서 마주하고, 발굴 및 연구 결과를 업데이트할 수 있다. 뿐만 아니라 이를 체험하며 교류할 수 있는 하나의 콘텐츠로서, 실사 수준의 퀄리티로 영화나 다큐멘터리 속의 장면도 그 자리에서 바로 만들어 낼 수 있다.   ▲ 서라벌 리얼타임 월드(위)와 나나이트 트라이앵글 시각화(아래)(이미지 출처 : 언리얼 엔진 홈페이지)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-04-01
[신간] 메타버스 디자인 교과서
오석희 지음 / 35,000원 / 안그라픽스       생성형 AI가 창조하는 무한한 확장 세계 메타버스. 메타버스를 이끄는 새로운 UX 디자인을 위한 지침서   생성형 AI가 창조하는, 상상이 현실이 되는 순간이 ‘메타버스’라면, 메타버스라는 확장 세계를 이끄는 것은 메타버스 UX 디자인이다. 『메타버스 디자인 교과서』는 ‘메타버스’라는 현란한 이름 자체보다 메타버스를 이해하고, 메타버스가 제공하는 무한한 기회를 활용할 실질적인 디자인 기술을 다루고자 했다. 컴퓨터 공학, 게임, 헬스케어, 디지털 교육 등 다양한 분야를 연구해온 융합공학자이자 디지털 교육자인 저자는 혁신적이고 생생하며 실용적인 학습 경험을 제공할 메타버스에서 차세대 디자이너가 사용자 경험을 최적화할 방법을 탐색한다. 생성형 AI 시대 UX 디자인의 새로운 미래 전략이 될 메타버스는 이제 시작이다.   메타버스라는 가상 공유 공간은 코로나 팬데믹으로 일상에 브레이크가 걸린 사람들에게 열린 새로운 소통 공간이었다. 너도나도 메타버스를 말했고, 메타버스의 세계는 곧 다가올 것 같았지만, 팬데믹이 끝나자 이 세계는 황량해졌고 사람들은 현실로 복귀했다. 그 이유는 무엇일까? 낯선 사용자 경험과 현실감 결여, 재미의 부족 혹은 보상의 부재 때문은 아닐까?  메타버스의 비전은 인간 중심의 기술 혁신에 있다. 기술 혁신이란 인공지능, XR 기술 등을 통해 사람들이 더 나은 삶을 영위하는 것을 목표로 한다. 메타버스는 이러한 잠재력을 실현하는 데 필수적인 플랫폼으로서, 사용자가 자신의 삶을 풍요롭게 만들 수 있는 새로운 수단을 제공한다. 즉 메타버스는 단순한 기술적 진보를 넘어 우리가 세상을 경험하고 서로를 이해하는 방식을 재정의한다.  저자는 메타버스와 생성형 AI의 결합이 우리의 삶과 창작, 소통 방식을 변화시키며, 이는 독자가 곧 마주할 미래라고 강조한다. 책에서는 메타버스의 기반이 되는 기술적 측면과 예술, 사회, 문화, 교육에 미치는 영향을 다루며, 메타버스가 어떻게 개인의 삶과 우리의 상호작용 방식을 혁신하고, 창의성과 협업에 새로운 기회를 열며, 교육과 업무 환경을 변화시킬 수 있을지, 메타버스의 기초 이론부터 구체적인 아이디어를 실현하는 UX를 다루고 있다.  
작성일 : 2024-02-22
자율주행 시뮬레이션, Virtual Test Drive(VTD)
자율주행 시뮬레이션, Virtual Test Drive(VTD)   주요 CAE 소프트웨어 소개   ■ 개발 : Forming Technologies, www.forming.com ■ 자료 제공 : 한국엠에스씨소프트웨어/031-719-4466/www.mscsoftware.com/kr 1. VTD : 가상환경 시뮬레이션을 위한 Complete Tool-chain  VTD(Virtual Test Drive)는 ADAS 및 자율 주행 차량의 개발 및 검증을 위한 가상 환경 시뮬레이션 플랫폼으로 도로 네트워크, 시나리오, 차량 동역학, 교통 및 음향 시뮬레이션, 센서 시뮬레이션 등을 위한 모듈화된 시스템으로 실제 환경과 동일한 가상환경을 생성한다. 이런 가상환경에서 생성된 자율주행차량의 데이터는 MiL, SiL, HiL, DiL, ViL 애플리케이션에서 사용할 수 있다. VTD는 20년 동안, 광업, 농업 및 운송 애플리케이션을 통해 전 세계 자동차, 항공우주 및 철도 산업의 수많은 설비에서 서비스되고 있다. 최근 VTD는 MS Azure, AWS와 같은 클라우드 시스템에서 수백만개의 시나리오를 생성하고 Edge Case 시나리오를 검증할 수 있는 서비스를 시작했다. 수백만 개의 시나리오를 분석하여 수십억 개의 가상 테스트가 실시간 시뮬레이션보다 훨씬 더 빠르게 수행되도록 병렬 프로세스를 지원하여 ADAS 및 AV 시스템에 대한 연산 속도를 높인다. VTD는 OpenDRIVE, OpenCRG 및 OpenSCENARIO의 Global Standards를 준수한다.  OpenDRIVE는 도로네트워크, 도로시설물, 노면, 표지판등 가상환경 도로 구성을 위한 Global stand-ards이다.  OpenCRG는 도로 표면의 굴곡, 거칠기등 상세한 표현을 위한 규격으로, 도로 표면의 생성, 관리, 평가를 위한 기준 및 툴이다. OpenSCENARIO는 시뮬레이션 도로 네트워크상에서 움직이는 모든 동적 요인을 정의하고 구성하기 위한 Global Standards이다.  VTD의 ROD(Road Designer)는 가상의 도로 네트워크를 생성하기 위한 3D 편집 도구로 OpenDRIVE, OpenCRG 등의 편집이 가능한 도구이다. 사용자의 편의성을 위해 다양한 국가의 3D Modeling 및 도로 형태의 데이터를 라이브러리로 구성, 데이터베이스화 하여 제공한다.   2. 주요 기능 (1) Sensors ■ Simplified perfect sensors는 감지된 오브젝트 정보 및 포인트 클라우드(Point Clouds) 같은 센서의 원시데이터를 고속(Real-time)으로 출력 ■ 노면상 Road Mark를 검지할 수 있는 수준의 고해상도 감지 기능 ■ Sensor Model 커스터마이징을 위한 SDK 제공 (2) Traffic & Pedestrian ■ 사전 정의된 이벤트 혹은 시나리오 경로를 따라 자동차 및 보행자의 행동범위 정의 ■ 다가오는 차량을 주시하는 등의 차량-보행자 상호작용 가능 ■ 도로네트워크 상 수많은 자동차 및 보행자의 개별 움직임 기반 시나리오 구성  ■ 중장비, 보행자, 자전거, 세그웨이, 동물 등 다양한 객체 생성 지원 ■ SCP 명령을 통한 실시간 객체 위치, 행동, 제스처 변경   (3) Scenarios ■ 시나리오 내 200대 이상의 차량, 보행자 생성 및 동시 주행 가능 ■ 실제 차량 및 보행자 궤적을 적용한 시나리오 구성, 혹은 사용자 연구목적에 따른 이상적인 이동 궤적 생성 및 적용   (4) Vehicle Model ■ 고정밀도 기반의 차량 모델 생성(스쿠터, 자전거, 세그웨이, 기차, UAM등 적용) ■ 실사정보를 기반으로 측정 및 모델 메시 정보를 적용한 차량 모델 제작   (5) Weather ■ 다양한 기상현상 표현 및 감지(time-of-day, clouds, visibility, Rain, Snow)   (6) Massive Scaling ■ Edge Case Scenario를 효율적으로 추출하기 위한 수천개의 시나리오 병렬 Computing 기능 지원  ■ PROSTEP OpenPDM 기술을 활용한 PDM 통합 ■ 모든 트랜잭션 데이터 자동 저장 지원 ■ 웹브라우저 기반의 빠른 개발 및 배포 기능 지원  ■ 다중 접속 기술지원 및 실험 환경 구성 가능   3. 적용 효과 ■ Native support for OpenDRIVE, OpenCRG, OpenSCENARIO ■ 영상, 다이나믹, 센서 등 모듈화된 운영 방식(내부 네트워크망을 통한 통합) ■ MiL, SiL, DiL, ViL, HiL 등 다양한 실험구성과 연동 및 통합 가능 ■ 고정밀 센서 모델 제공(object-list 기반 센서 및 physics-based 기반 센서); 사용자화 가능한 SDK 제공 ■ 물질 및 물리현상이 적용된 고해상도 이미지 생성(PBR 기술적용) : 사용자화 가능한 SDK 제공 ■ 다양한 3D Model 라이브러리 및 국가별 표지판, 신호등 데이터 베이스 제공 ■ 매우 복잡한 교통상환 시나리오 구성 가능(3rd party Traffic Simulation Tool 통합 가능 : Vissim, SUMO) ■ 손쉬운 데이터 모니터링 기능 지원, 실시간 SCP 명령을 통한 시뮬레이션 조건 변경 기능 지원 ■ 단일 Workstation에서 풀 스케일 HPC 환경까지 운영 가능(사용자 목적에 따라 변경 가능) ■ 정확한 차량 동역학 기반의 센서모델링을 위해 Adams Real-Time과 같은 Hexagon AB solutions 내 솔루션도구와 통합 ■ Hexagon’s LeicaGeosystems의 솔루션을 통한 정밀지리정보 취득 및 VTD 적용(OpenDRIVE format)      좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-02-12
해양 시뮬레이션 구조 해석 소프트웨어, MOSES 
해양 시뮬레이션 구조 해석 소프트웨어, MOSES   주요 CAE 소프트웨어 소개 ■ 개발 : 벤틀리시스템즈, www.bentley.com ■ 자료 제공 : 벤틀리시스템즈코리아, 02-557-0555, www.bentley.com/ko 1. 적용 분야 MOSES(모제스)는 통합 해양 시뮬레이션 소프트웨어로, 검증된 유체 정역학, 유체 동역학 및 계류 기능으로 해양 프로젝트 내의 모든 주요 활동 영역에서 사용이 가능하다. 수송, 진수, 리프팅, 전체적 성능을 포함한 시뮬레이션을 생성하는 자동화된 워크플로우를 통해 해석을 간소화한다. 2. 주요 특징 MOSES를 사용하여 복잡한 해양 엔지니어링 문제를 해결하고 향후 재사용이 가능한 정확한 고품질 모델 및 플랫폼 설계를 생성할 수 있다. 프로젝트 요구에 맞는 버전을 선택해 적용할 수 있다. MOSES – 주파수 영역에서의 안정성 평가 및 운동 해석 기능을 통해 일반적인 수송 요구 사항을 충족한다. MOSES Advanced – MOSES에 리프팅, 부유, 전체적 성능을 해석하는 기능을 추가하여 해상 운영 위험을 완화한다. 스트립 이론 또는 방사-회절판 방법을 적용하여 주파수 영역에서의 응답을 계산하고 시간 영역에서 비선형 선박 운동을 예측한다. MOSES Enterprise – 통합 해양 전용 시스템에서 설치 및 전체적 성능 요구 사항을 평가하여 시간을 절약한다. 선체 모델링과 안정성 계산부터 운동 예측, 계류 및 라이저 해석, 배관, 재킷 진수에 이르기까지 완비된 기능으로 MOSES Advanced를 확장한다. 3. 주요 기능 ■ 플로팅 시스템 해석: 시뮬레이션 언어를 사용하여 환경 조건을 정의하고 계류 구성을 지정하며 통합 환경에서 통합 솔루션을 실행하여 전체적 성능 해석을 자동화한다. 운영 조건 범위에서 시스템 응답이 정의된 한계를 벗어나지 않도록 보장한다. ■ 해양 선박 및 플랫폼 모델링: 신규 또는 기존 선체의 모델을 간편하게 생성하고 이를 프로젝트 요구 사항에 맞게 변환시킨다. 상호작용 적인 해양 전용 그래픽 도구를 사용하여 선박 또는 부유 시스템의 모델을 생성한다. 수정 중에 탱크 및 객실 모델을 시각화 하여 정확한 하중 정의를 보장한다. ■ 해양 운영 시뮬레이션: 종합적이고 맞춤 설정이 가능한 스크립트 도구를 사용하여 복잡한 설치 순서를 관리하고 설계 대안을 체계적으로 탐색한다. 과거 프로젝트를 기반으로 사전 정의된 매크로를 사용하여 계획된 활동을 시뮬레이션, 시각화 및 평가함으로써 해양 엔지니어링 과제를 해결할 수 있다. 4. 도입 효과 MOSES 통합 시뮬레이션 소프트웨어를 사용하여 설계를 최적화함으로써 해양 프로젝트 위험을 최소화한다. 설치 및 설계 순서에 관한 업계 모범 사례를 적용하며, 효율적이고 유연한 통합 모델링 환경에서 설계 대안들을 탐색한다. 유체 정역학, 유체 동역학, 계류, 구조 거동에 대한 고급 통합 솔루션을 사용하여 완전한 시스템 응답을 시뮬레이션한다. SACS와 통합을 통해 구조 팀과 협업함으로써 재작업과 프로젝트 지연을 줄인다. 5. 주요 고객 사이트 KRISO, 대우조선해양, 현대건설, KOMERI, 현대중공업, 삼성중공업, 젠텍엔지니어링 외 다수   좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-25