• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "불러오기"에 대한 통합 검색 내용이 149개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
지더블유캐드 2025 : 기계/제조 분야의 활용성 높인 2D CAD
개발 : ZWSOFT 주요 특징 : 2D CAD 전용 소프트웨어, 대용량 도면 파일 처리 속도 개선, STEP 파일 호환 지원, PDF 불러오기 편의성 강화, 플롯 기능 개선, 기계 설계 특화 모듈 출시 등 공급 : 지더블유캐드코리아   지더블유캐드코리아가 기계/제조 분야에서 다방면으로 활용할 수 있는 2D CAD 전용 소프트웨어 지더블유캐드 2025(ZWCAD 2025)를 출시했다. ZWCAD는 지더블유소프트(ZWSOFT)에서 지속적으로 개발 및 업데이트를 진행하고 있으며, 국내 공급 및 지원을 담당하고 있는 지더블유캐드코리아는 제조 분야에서 2D CAD, 3D CAD/CAE/CAM 라인업을 확장시키고 있다. 특히 모든 제품군이 영구 라이선스로 보급되어, 타 소프트웨어의 라이선스 정책 및 고가의 소프트웨어를 대체할 수 있는 제품군으로 주목받고 있다. 이번에 출시된 ZWCAD 2025는 본격적으로 3D 기능에 대한 퍼포먼스가 향상됐다. STEP 파일에 대한 호환이 가능해지면서, 기계 부품 및 전기/전자, 장비를 포함한 플랜트 설비까지 대용량 데이터에 대한 불러오기 기능이 강화되었다. 또한 PDF 불러오기 기능에 대한 편의성 강화와 플롯(Plot) 기능이 개선되었다. 기계 설계 특화 모듈인 ZWCAD MFG 2025가 함께 출시됐다. 범용적인 2D 설계 기능 뿐만 아니라 특화 제품에 대한 신기능으로 템플릿 설정을 위한 프레임 셋업, 레이아웃, 그리고 조립도를 위한 BOM 및 기계기호 설정 등 다양한 설계 기능이 향상됐다. 그리고 국제 규격에 알맞은 부품 라이브러리 뿐만 아니라 KS규격을 추가적으로 선보인다. 이를 통해 기존 대비 효율성을 약 40% 이상 확보할 수 있다.   ZWCAD 2025의 신기능 ZWCAD 2025는 2D/3D 기능, 인터페이스, API, 인더스트리 모듈 등 여러 개선된 내용을 포함한다. 2025 버전부터는 32비트 환경에 대한 업데이트가 더 이상 지원되지 않고, 64비트 환경의 제품만 업데이트 및 지원한다. 앞으로 ZWCAD는 2~3개월마다 새로운 업데이트 패키지가 출시되며, 관련 패치는 자동 업데이트로 처리할 수 있다. 신규 버전의 주요 업데이트 사항은 다음과 같다.   향상된 2D/3D 기능 PDF 파일을 ZWCAD 상에서 첨부하거나 삽입하여 사용할 수 있다. 또한 PDF 언더레이가 포함된 도면의 이동, 확대/축소, 가져오기 속도, PDF에서 문자 가져오기의 최적화 등 다양한 기능의 효율이 개선되었다. 이 부분에 대해 타 소프트웨어와 비교한 사항은 다음과 같다.   ▲ 도면의 PDF 언더레이를 이용한 이동 속도 비교   출력(Plot)의 경우, PDF 및 물리적 프린터를 사용하는 부분에서 효율성을 향상시키고, 출력된 PDF 파일의 크기를 대폭 감소시킨다.  연관 배열 생성 및 편집에서 일부 오류가 있는 경우, 별도의 ZRX 도구가 제공된다. 이 도구를 사용하려면 ‘AuditArray.zrx’ 파일을 첨부 파일로 로드하고, AUDITARY 명령을 실행할 수 있다.  도면 검토를 위해 구름 수정 기호를 편리하게 사용할 수 있도록 별도 객체가 추가되었다. 사용자는 해당 그립을 드래그하여 모양을 편집하고 길이를 수정할 수 있다.   ▲ 그립을 통한 구름 수정 기호 편집   표준 LISP(리스프) 파일을 FAS 및 VLX 형식으로 직접 로드할 수 있도록 지원하고, LISP 호환성을 향상시키고 포맷 변환을 제거하여 개발 효율성을 높일 수 있다.   ▲ FAS/VLX 애플리케이션 로드   기계 부품 및 다양한 3D 데이터를 가져오기 위한 STEP 파일 가져오기 기능과 더불어 객체에 대한 시각화 스타일 등 여러 부가 옵션이 추가되었다. 지원되는 STEP 형식은 AP203과 AP214이며, 일반적인 설계 데이터뿐만 아니라 설비 및 플랜트에서 사용되는 대용량 데이터도 가져올 수 있는 디스플레이 최적화를 탑재했다. 이 밖에도 3D 모델링의 작업 공간과 편의 기능이 강화되었다.   ▲ ZWCAD 2025에서 불러온 플랜트 설비 데이터   ▲ 새로운 3D 객체 시각화 스타일   인터페이스 최적화 전반적인 리본 메뉴에서 슬라이드 아웃, 드래그, 플로팅과 같은 추가 패널 기능을 제공한다. CUI와 결합된 인터페이스는 사용자의 커스터마이징 수준을 향상시킬 수 있어, 더욱 빠른 드로잉을 가능하게 한다.    ▲ 슬라이드 아웃 패널   또한 특성, 도면층 관리자, 외부 참조, 디자인 센터, 도구 팔레트, 계산기 등 사용자가 자유롭게 개별 패널을 자동으로 병합하고 숨길 수 있어, 설계를 위한 작업 공간을 확장하도록 지원한다. 여러 도면을 열 때 다른 모니터에 참조 도면으로 표시하도록, 개별적인 탭을 프로그램 밖으로 드래그할 수 있는 기능도 추가된다.   ▲ 특정 도면을 새 창으로 이동     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-07-03
지더블유캐드코리아, 3D 기능 대폭 확대한 ZWCAD 2025 신버전 출시
  지더블유캐드코리아가 기계/제조 분야 및 건설 분야 등 다방면에서 활용할 수 있는 2D CAD 전용 소프트웨어인 지더블유캐드 2025(ZWCAD 2025)를 공식 출시했다고 밝혔다. ZWCAD 2025는 3D 기능의 퍼포먼스를 강화한 것이 특징이다. STEP 파일 호환이 가능해짐에 따라 기계 부품, 전기/전자, 장비를 포함한 플랜트 설비 등의 대용량 데이터 불러오기 기능이 대폭 강화되었다. STEP 파일 불러오기는 AP203, AP214 형식을 지원하며, 일반적인 설계 데이터뿐만 아니라 설비 및 플랜트에서 사용되는 대용량의 설비 데이터도 가져올 수 있도록 디스플레이 최적화가 이뤄졌다. 또한, ZWCAD 2025는 기존 ArcGIS 모듈을 대체하는 새로운 GIS 모듈을 추가하여 Bing Maps를 포함한 여러 지도 서비스를 통해 맵 서비스를 가져올 수 있으며, 사용자는 OGC 표준 지도 서비스를 추가할 수 있다. 또한 도면 내 지정된 삽입점에 지리적 표식기를 추가할 수 있는 기능이 포함되어 있다. 이로써 ZWCAD 2025 사용자는 더 이상 외부 GIS 소프트웨어에 의존하지 않고도 다양한 지도 데이터를 CAD 도면에 직접 통합할 수 있게 되었다. 이는 설계 작업의 효율성을 향상시킬뿐만 아니라, 정확한 지리 정보를 바탕으로 한 설계 작업을 가능하게 한다. ZWCAD 2025 신제품에는 다양한 3D 기능, 인터페이스, API, 인더스트리 모듈 등 여러 면에서 개선된 내용을 포함하고 있다. ▲리본 및 패널 인터페이스 개선 ▲래스터 이미지 벡터화 ▲구름 수정기호 추가 ▲새로운 3D 시각화 스타일 ▲포인트 클라우드 모듈 추가 등의 기능이 탑재되었다. 이외에도 패널 재설계와 같은 인터페이스 최적화로 속성 패널, 도면층 관리자, 외부 참조 패널, 디자인 센터, 도구 팔레트, 계산기 등 여러 패널을 병합하거나 숨길 수 있어 도면 작업 영역을 확장할 수 있으며, 이는 패널 간 병합 기능을 통해 작업 효율성을 높였다. 한편, 지더블유캐드코리아는 “6월 21일까지 ZWCAD 풀 버전과 LT 버전을 최대 50만원까지 할인하는 출시 기념 특가 프로모션을 진행한다”면서, “프로모션을 통해 3D 관련 기능과 GIS 모듈, 개선된 포인트 클라우드 모듈을 탑재한 ZWCAD 2025를 가장 저렴한 가격에 구매할 수 있다”고 전했다.
작성일 : 2024-06-04
사용성을 강화하는 QPro 및 LANDY 연동
복잡한 모델에서 인사이트를 얻고 설계 의사결정을 돕는 직스캐드 (3)   국내 기술로 개발한 국산 CAD인 직스캐드(ZYXCAD)는 서드파티와 연동해 사용 편의성을 높일 수 있다. 이번 호에서는 SHP 파일 가져오기/내보내기 기능을 제공하는 큐프로(QPro)와 조경 설계 지원 프로그램인 랜디(LANDY)를 직스캐드와 연동하는 과정을 소개한다.   ■ 이소연  직스테크놀로지 기술지원팀의 대리로 직스캐드의 기술지원 및 교육을 맡고 있다. 홈페이지 | https://zyx.co.kr   직스캐드 2024 × 큐프로 직스캐드 2024와 큐프로를 연동하면 사용자는 보다 쉽게 SHP 파일을 불러오거나 내보내고, 2D 데이터를 간단한 3D로 구현할 수 있다.   큐프로 설치하기 직스캐드 홈페이지 → 3rd party 다운로드 → QPro 다운로드 경로를 통해 설치할 수 있다.   그림 1. 직스캐드 홈페이지 내 다운로드 화면   데이터 불러오기 사용자가 가지고 있는 SHP 파일을 활용하거나 공공 데이터 포털(data.go.kr)에서 SHP 파일을 다운로드받아 사용할 수 있다. 행정동이 분리된 레이어를 색상별로 구분할 수 있으며, 작업한 데이터를 내보내 문서화하거나 공유할 수 있다.   그림 2. 큐프로를 활용한 행정도 구분 화면   2D 데이터를 활용하여 3D로 작성하기   그림 3. 2D 데이터를 활용한 3D 건축물 만들기   큐프로의 기능 중 하나인 QSI 기능을 통해 간편하고 빠르게 3D로 건축물을 생성할 수 있다. 공공 데이터 포털에서 건축물 연령정보를 통해 건축물의 높이와 층수를 알 수 있다. 직스캐드는 공공 데이터 포털의 데이터를 레이어별로 구분해 불러온다. 사용자는 불러온 데이터를 기반으로 레이어별 3D 모델을 생성하는 등 간단한 3D 건축물을 만들 수 있다. 현재 직스캐드 2024 × 큐프로는 무료로 이용 가능하며, 인증 및 자세한 사항은 큐프로 블로그에서 확인할 수 있다.(https://blog.naver.com/m0useb)     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-06-03
[포커스] 폼랩, “제조산업에서 3D 프린팅의 가능성 넓힌다”
폼랩이 레진 소재의 3D 프린터 신제품인 ‘폼 4(From 4)’를 국내 출시했다. 폼 4는 장비와 소재 가격을 낮추고 신뢰성과 편의성을 높인 것이 특징이다. 폼랩은 생산 효율을 강화한 신제품을 통해 다품종 소량생산 분야에서 3D 프린팅의 경쟁력을 높일 수 있을 것으로 기대하고 있다. ■ 정수진 편집장   ▲ 폼랩이 새롭게 출시한 폼 4 3D 프린터   3D 프린팅 시간 줄여 제품 개발 사이클 단축 지난 2011년 설립한 폼랩은 레진 소재를 사용하는 SLA (Stereolithography)와 파우더 소재 기반의 SLS(Selective Laser Sintering) 3D 프린팅 기술을 개발해 왔으며, 다양한 크기의 3D 프린터와 후처리 장비를 공급하고 있다. 지금까지 13만 대의 장비를 공급했고 3억 개 이상의 3D 프린팅 부품이 폼랩의 3D 프린터로 만들어졌다.  폼랩은 5월 13일 기자간담회를 갖고, 최근 국내에도 출시된 폼 4(Form 4) 3D 프린터를 소개했다. 폼 4는 폼랩의 기존 제품에 비해 속도와 신뢰성을 높이고 비용을 줄일 수 있도록 한 것이 특징이다. 폼랩의 다비드 라카토스(David Lakatos) 최고제품책임자(CPO)는 폼 4가 대부분의 조형물을 2시간 안에 출력할 수 있다고 소개했다. 폼랩에 따르면 치과 분야에서는 40~50분 정도 걸리던 출력을 9분 안에 마친 사례가 있고, 큰 사이즈의 부품의 제작 시간도 줄였다. 라카토스 CPO는 “3D 프린팅 시간을 2시간으로 줄였다는 것은 2시간마다 새로운 시제품을 출력해 설계를 검토하고 변경할 수 있다는 뜻이다. 그만큼 전반적인 제품 개발 기간을 줄일 수 있게 된다”고 설명했다.   ▲ 폼랩의 다비드 라카토스 최고제품책임자   장비, 소재, 소프트웨어까지 편의성과 효율 향상 3D 프린팅 워크플로는 모델 데이터 불러오기 및 출력 준비 . 소재 로드 및 출력 . 파트 세척 및 경화 . 서포트 제거 및 마무리 작업의 순서로 진행된다. 폼랩은 이 과정에서 편의성과 생산성을 높일 수 있는 다양한 기술을 폼 4에 적용했다고 설명했다. SLA 방식의 3D 프린터는 트레이에 담긴 레진 소재에 빛을 쏘아 굳히고, 이 작업을 한 층씩 반복하면서 입체를 조형한다. 폼 4는 백라이트에서 나오는 빛이 퍼지지 않고 일관되게 소재까지 도달할 수 있도록 설계돼 3D 프린팅의 품질을 높였다. 내부에는 카메라와 팬을 탑재했는데, 카메라는 출력이 잘 진행되고 있는지를 실시간으로 확인할 수 있고, 팬은 출력 후에 빠르게 냉각할 수 있도록 한다. 3D 프린팅 작업물이 놓이는 빌드 플랫폼에는 네 개의 포인트가 있어서 포인트를 잡아당기면 출력물이 쉽게 떨어질 수 있도록 했다. 이 플랫폼은 3D 프린터에서 꺼내 세척 장비에 바로 세팅할 수 있기 때문에 사용 편의성이 높아졌다. 한편, 3D 프린팅을 위한 소프트웨어로는 3D 프린터 세팅과 데이터 준비를 위한 프리폼(PreForm)과 다수 장비의 상태를 파악하고 관리할 수 있는 플릿 컨트롤(Fleet Control) 등이 있다.  라카토스 CPO는 3D 프린팅 소재를 개발하는 데에도 노력을 기울였다고 설명했다. 폼랩은 범용 레진 소재뿐 아니라 230℃까지 견딜 수 있는 내열 레진, 정전기를 막는 레진, 내화성 레진, 생체 적합성을 갖춘 레진, 탄성을 가진 레진 등 다양한 소재를 제공하고 있다. 라카토스 CPO는 “이번 폼 4의 출시와 함께 재료 비용을 낮추고, 레진 탱크의 수명을 늘렸으며, 재료 카트리지에 쓰이는 플라스틱을 줄여 친환경성을 강화하는 등의 개선을 진행했다. 또한 올해 말에는 타사의 재료를 활용할 수 있는 플랫폼도 내놓을 것”이라고 전했다.   ▲ 폼랩은 기자간담회에서 15분 동안 9개의 부품을 생산하는 시연을 진행했다.   다품종 소량생산에서 3D 프린팅의 경쟁력 내세워 폼랩은 폼 4를 통해 시제품 제작뿐 아니라 최종 부품의 제조 영역에서도 3D 프린팅의 입지를 넓힐 수 있을 것으로 기대하고 있다. 라카토스 CPO는 5만 달러(약 6800만 원)의 사출성형기와 네 대의 폼 4 3D 프린터가 1000개의 부품을 제작하는 테스트 과정을 소개했다. 그는 “폼 4 3D 프린터는 부품 제작 시간에서는 큰 차이가 나지 않으면서, 사출성형기보다 싸고 적은 공간을 차지하며 공구의 리드타임이 없다”고 설명했다. 제조 시장에서 폼랩은 고객의 주된 관심사인 생산 비용 절감을 겨냥해 가격 경쟁력을 갖춘 3D 프린팅 장비와 재료를 공급하고, 자동화 프로세스를 통해 노동력을 줄일 수 있도록 지원하겠다는 전략을 내세운다. 특히 수천 개 규모의 다품종 소량생산 영역에서 3D 프린팅의 경쟁력을 확보할 수 있을 것으로 기대하고 있다. 제조 분야에서는 프로토타입이나 치공구의 3D 프린팅 활용 비중이 높은데, 폼랩은 최종 부품의 생산에 3D 프린팅이 더 많이 쓰일 수 있도록 노력을 기울일 예정이다. 폼랩코리아의 이경준 지사장은 “폼랩은 비싸고 무거웠던 3D 프린터를 혁신해 왔으며 장비, 소재, 서비스의 경쟁력을 꾸준히 강화하고 있다. 국내에서도 대기업뿐 아니라 대학교, 공공기관 등에서 폼랩의 3D 프린터를 사용하는 등 시장을 넓히고 있다”면서 덴탈, 제조, 메디컬 등의 시장을 중점 공략하면서 올해 30% 성장이 목표라고 소개했다. 국내에서 폼 4의 실제 구입 가격은 500만원 대 초반이 될 전망이다.   ▲ 폼랩코리아의 이경준 지사장     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-06-03
Visual Crash Studio : 충돌 구조물의 설계 해석 및 최적화 프로그램
개발 : Impact Design Europe 주요 특징 : 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화 지원, SFE 및 SBE 기반으로 충돌하중을 받는 박판구조물의 설계/해석/최적화, 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과 도출, 사용자 친화적인 통합 작업 환경 등 사용 환경 : 윈도우 PC/랩톱 자료 제공 : 브이에스텍   그림 1. 유한요소 모델   그림 2. VCS 모델   차량 충돌 안전 법규 및 상품성 평가는 실제 충돌 상황을 최대한 반영하고 승객의 사망 및 심각한 상해를 줄이기 위하여 지속적으로 강화되고 있고, 자동차 제조업체는 이러한 평가 프로토콜에 따라 차량의 안전 등급을 높이기 위해 노력하고 있다. 다양한 충돌 테스트는 제품 설계 및 개발 프로세스를 가속화하기 위해 가상 엔지니어링 모델링 및 시뮬레이션 기술에 크게 의존하는 차량 제조업체에 상당한 부담을 주고 있다. 일반적으로 각 설계 단계에서 CAD 모델 준비, 각 하중 케이스/물리적 테스트에 대한 유한요소(FE) 모델 생성, 평가 및 개선 작업이 필요하므로 복잡하고 많은 시간이 소비되어, 간편하고 빠르게 차량의 충돌 성능을 평가하고 개선하는 것이 큰 관심사이다. 특히, 프로토타입 제작 및 개발 프로세스 후반의 설계 변경으로 인한 시간과 비용을 줄이기 위해서는 초기 콘셉트 단계에서부터 다양한 설계에 대한 충돌 성능의 평가 및 개선을 통한 충돌 성능의 최적화가 필요하다. 매크로요소법(Macro Element Method)을 사용하는 Visual Crash Studio(VCS)는 비전형적 모델링 및 시뮬레이션 접근 방식으로 단순한 설계 환경에서 빠르고 신뢰할 수 있는 결과를 제공하며, 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화가 가능한 CAE 소프트웨어이다.   그림 3   VCS의 주요 특징 매크로요소법, 수퍼폴딩요소(SFE : Super-folding Element) 및 수퍼빔요소(SBE : Super-beam Element) 개념을 기반으로 객체지향유한요소(OOEF : Object Oriented Finite Element) 정식화와 결합된 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화가 가능 다양한 재료의 박판구조물의 대변형 붕괴 거동의 예측에 성공적으로 적용이 가능하며, 유한요소 솔버와 경쟁이 아닌 보완 관계 매크로요소법에 기반한 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과의 도출을 통해 설계 초기 단계에서부터 충돌 부재의 충돌 성능 분석 및 최적화 가능 사용자 친화적인 통합(all-in-one) 작업 환경 주요 기능 : Material Editor, Cross Section Editor, 3D environment, Cross Section Optimizer, Chart Wizard 단면 수준에서 부재의 충돌 특성 파악 및 설계를 위한 2D 환경 제공 부재, 어셈블리 및 전체 구조물 등의 복잡한 충돌 해석 및 설계를 위한 3D 환경 제공 2D 및 3D 환경에서 독립적으로 설계 수정 및 계산이 가능하며, 각 환경에서의 수정 및 계산 결과는 자동으로 전 모델에 반영 통합 전/후처리 도구 : 솔버와 통합된 전/후처리 프로세스로 모델링 및 설계 변경이 간단하여 다양한 설계안의 충돌 성능 평가가 빠른 시간에 가능하고 챗 위저드(Chart Wizard) 등으로 다양한 결과의 비교 분석이 용이   그림 4. VCS의 일반적 설계 및 계산 프로세스   VCS의 작업 프로세스 박판 충돌구조물의 설계, 해석 및 최적화는 통합 환경에서 수행되며, 일반적인 작업 프로세스는 <그림 4>와 같다. <그림 5>는 VCS의 메인 뷰(Main View) 화면이며, 메인 툴바(Main Toolbar)는 작업 프로세스에 따른 툴 그룹(File, Model, Calculate and Results, Analysis, View 및 Help Tool)으로 구성된다. ‘Model Tool’은 모델 생성 프로세스에 필요한 모든 도구(Select, Nodes, Beams, Spine-line, Rigid, Contact, Group, Special, Measure 등)를 제공하며, ‘Calculate and Results Tool’은 계산 및 결과 비교에 유용한 처리 장치(Processing Unit), Chart Wizard, 애니메이션 도구 모음 등의 기능이 있다. ‘Analysis Tool’은 단면자동분석(Cross Section Analyzer) 기능 전용이며 ‘View Tool’은 추가 3D 보기 도구를 제공한다. ‘Help Tool’에서는 VCS 소프트웨어의 모든 기능에 대한 최신 설명서와 도움말 정보를 찾을 수 있다. 또한 개발사 홈페이지에서도 모든 사용 매뉴얼과 따라하기 매뉴얼을 다운로드할 수 있다.   그림 5. VCS의 메인 뷰 화면   VCS의 작업 프로세스의 순서에 따른 주요 기능은 다음과 같다.   FE Mesh/Initial geometry import 다양한 FE 데이터 및 CAD 지오메트리(geometry) 불러오기 기능을 제공한다.   재료 정의(Material Editor) 재료상수(Material Constraint) : Hardening Factor, Mass Density, Poisson Ratio, Proof Strain, Proof Stress, Young Modulus 응력-변형률(Stress-Strain) 특성 : Array, Power Law, Polynomial, User Function-2D, Array 3D 변형률속도(strain rate) 특성 : Cowper Symonds, Modified Cowper Symonds, User defined function-3D, Johnson Cook   Fracture Indicator : Surface strains, Cockcroft-Latham/Norris LS-DYNA MAT24(MAT_PIECEWISE_LINEAR_PLASTICITY) 호환 Material & Characteristic Repository 기능   2D Structure(Cross Section Editor) : Cross Sections & Cross Section analysis Cross Section Editor는 단면의 충돌 성능 최대화를 위한 설계, 계산 및 최적화를 위한 편집기이다. 여기서 처리된 단면은 3D 수퍼빔요소(SBE)에 사용되며, Cross Section Editor의 이론적 배경의 핵심은 수퍼폴딩요소(SFE)이다. Point, plate, segment, SFE 및 connection으로 모든 단면을 생성할 수 있으며, 쉽고 편리한 단면 형상 및 재료 특성의 변경으로 다양한 디자인의 빠른 변경이 가능하다. Cross Section 계산 결과 단면 상태에서는 7가지의 충돌 거동(Axial Response, Design Recommendations, Bending Response, Lateral Response, Denting Response, Torsion Response, Elastic Properties-축/굽힘/전단 강성 등)을 결과로 표시 각 결과는 주어진 붕괴 응답 모드에 대한 특성 파라미터((최대 하중 및 모멘트, 에너지 흡수 능력, 굽힘힌지의 총 회전 등과 같은 변형제한 값)의 정보 표시 Design Recommendations   효과적인 축방향 붕괴를 위한 단면 최적화 프로세스 : 결함이 있는 단면은 점진적 붕괴가 발생하지 않고 불규칙한 접힘으로 인해 많은 에너지 흡수가 적음 상세 단면 형상 근사화를 위한 단순화 모델링 과정을 통한 결함 제거 : 단면 수준에서 허용 가능한 접힘 모드를 선택하면 다음단계로 단면에 대한 각 SFE에 대해 결함 제거 과정을 수동으로 진행 단면 계산 결과 비교 툴 제공 및 결과 report 생성   3D Structure : Super Beams 3D 가상 설계 공간은 SBE를 기반으로 한 부재 및 박판구조물의 모델링과 계산에 사용 유한요소 모델로부터 SFE를 바로 생성할 수 있는 도구 제공 VCS 3D 모델을 구성하는 모든 객체는 빔(beam)과 강체(rigid body)를 정의할 수 있는 노드(node)로 구성되며, 노드는 VCS 객체에 대한 공간 참조 point로 사용 노드 속성 : 형상(CoG, Origine), 질량(mass, Concentrated Mass) 및 관성(Concentrated Inertia, Principal Moments, Transformed Moments) SBE는 두개의 노드로 구성되고 2D 계산에서 사용된 단면 형상이 적용되며, 하나의 노드에 다수의 SBE가 연결될 수 있다. 또한 동적 해석(초기/구속 조건 등)을 위해 필요한 많은 데이터를 포함한다. 3차원 공간에서 구조물(부재, 어셈블리, 전체 차량)의 생성을 위해서는 Node, Beam, Rigid body 등이 사용되며, 매크로요소법에 기반한 SFE가 포함된 SBE의 생성으로 시작 다양한 충돌 하중조건에 대한 풀 카(full car)의 해석을 위해 VCS 전용 배리어가 제공 차량 충돌 설계를 위해 매크로요소법을 사용하는 데 있어 유한요소법 대비 주요 장벽은 구조물 조인트의 강성을 정확하게 모델링하는 것이다. VCS는 구조적 조인트에 대해 교차하는 하중 전달 빔의 기하학적 중심에서 연결되며, X, Y 및 Z 오프셋은 위치와 길이를 수정하기 위해 교차하는 빔의 시작과 끝에 적용할 수 있어 구조물의 실제 형상과 조인트의 강체 코어를 보다 사실적으로 근사화할 수 있다.   3D : Additional elements & Mass distribution 엔진 및 기어박스와 같이 충격 하중 동안 거의 변형되지 않는 부품은 강체로 모델링 강체를 생성하기 위해 부품의 무게 중심에 있는 노드가 정의되고 이 노드에 총 질량 및 관성 행렬(inertia matrix)이 할당 노드는 나머지 구조물에 직접 연결되는 반면, 여러 장착 위치의 경우 간단한 원형 단면을 갖는 SBE를 사용할 수 있음 3D 환경에서 생성된 각 객체의 질량 정보는 해당 요소가 정의된 노드에 위치하며, 추가 질량은 노드에 집중질량으로 정의하거나 정의된 질량/또는 밀도로 새로운 강체를 생성하여 추가   Initial & Boundary conditions 및 Contact settings 초기 및 경계조건(Kinematic Constraints-Angular Velocities & Linear Velocities, Concentrated Loadings- Forces & Moments)은 모두 노드에 정의 전체 모델이 구축되면 접촉을 정의하며, 접촉 정의에 필요한 부품의 부피를 나타내기 위해 질량이 없는 강체(sphere, cone, cylinder and box 형상)가 이 절점에서 생성되고, 모델의 형상에 따라 배치한 후 접촉 정의 - 전용 접촉 감지 루틴으로 물리적 접촉 메커니즘을 구현 변형체의 접촉 정의를 위해 변형가능 배리어(Deformable barrier) 툴 제공   Solution Settings Solution Explorer tree에서 자세한 솔루션 파라미터를 정의 : Attributes, Animation Progress, Time Stepping Routine, Fields and global parameters, Settings 및 Statistics section 특히, Statistics section은 모델 확인의 마지막 단계에서 유용하며, 모델의 요소 수, 질량 및 무게중심에 대한 정보 제공   Calculations & Animation 계산 프로세스는 Process Unit에서 한번의 클릭으로 진행되며, Process Unit 창에서 시각적으로 진행 상황을 모니터링 전체 차량 충돌 해석은 일반 데스크탑 PC/노트북에서 1분 내외로 계산이 완료되며, 다중 계산이 가능하여 계산시간 추가 단축 가능 계산 프로세스가 완료된 후 하중 조건에 따른 해석 결과를 애니메이션으로 확인할 수 있으며, SBE를 색깔 별로 간단히 구분하여 SBE의 순간 변형 상태를 쉽게 분석   Results : Chart Wizard 애니메이션과 함께 다양한 결과를 그래프로 생성하며, 사용자는 VCS 결과 파일 내에서 어느 객체든 선택 후 결과를 볼 수 있음 3D view에서 선택한 VCS 모델의 각 객체는 Selection Window에 자동으로 추가   VCS의 도입 효과 설계 초기 콘셉트 안으로 충돌 부재 단면 최적화가 가능하여 제품 개발 프로세스 촉진 장비 도입/운영 비용 절감 : 매크로 요소법에 기반한 빠른 계산으로 랩톱에서도 수초 또는 수분내에 계산이 가능 단순한 작업 환경에서 간편한 설계 변경이 가능하여, 해석 엔지니어가 아닌 설계 엔지니어도 쉽게 활용 가능   VCS의 주요 적용 분야 자동차 산업 및 조선산업 등에서 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화 충돌/충격 부재의 단면 충돌 특성 평가/개선 및 최적화 컴포넌트(에너지 흡수 구조 부품, bumper back beam, FR Side 멤버, Fillar component 등)의 충돌 특성 평가 및 개선 부분 충돌 모델 및 풀 카 충돌 모델의 충돌 성능 평가 및 개선   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-02-01
프론트 라이트 스캔 데이터의 역설계 작업 과정
포인트셰이프 디자인을 사용한 역설계 사례   포인트셰이프 디자인(PointShape Design)은 드림티엔에스에서 자체 개발한 3D CAD 기반의 역설계 소프트웨어로 CGM(CATIA) 커널이 적용되었으며, 사용자에게 친숙한 디자인 프로세스 및 사용자 인터페이스를 제공한다. 이번 호에서는 포인트셰이프 디자인을 활용해 프론트 라이트 부품의 3D CAD 모델을 쉽게 생성하는 방법에 대해 소개한다.   ■ 자료 제공 : 드림티엔에스, www.pointshape.com   이번 호에서 소개할 역설계 프로세스는 다음과 같다. 스캔 데이터 불러오기 및 정렬 스캔 데이터 단면 추출 및 스케치 모델링 툴과 편집 툴을 사용하여 3D 모델 작업  Analyzing 기능을 통한 설계 데이터 편차 확인  최종 설계 데이터 완성    스캔 데이터 불러오기 및 정렬(Import & Alignment) 3D 스캐너를 통해 취득한 스캔 데이터를 <그림 1>과 같이 프로그램에서 불러온다.  스캔 데이터의 좌표 정렬 상태는 스캔 당시 스캐너의 좌표를 기준으로 정렬되어 있는 상대좌표 상태이기 때문에, 스캔 데이터를 절대 좌표에 정렬한 후 역설계를 진행한다. 3-2-1 Alignment 기능을 사용하여 좌표 정렬할 스캔 데이터를 선택하고 평면, 벡터, 점을 순서대로 선택하여 스캔 데이터를 절대 좌표에 정렬한다.   그림 1   그림 2   스캔 데이터 단면 추출 및 스케치(Plane(Offset) - 2D Sketch) Ref. Plane의 오프셋(Offset) 기능을 사용하여 해당 위치에 2개의 평면을 생성한 후, 해당 평면을 스케치 평면으로 사용하여 단면 폴리라인(Polyline)을 각각 추출하고 추출된 단면 폴리라인을 따라 스케치한다. 스케치를 한 후 트림(Trim)을 하고 필렛(Fillet) 기능을 이용하여 라인을 다듬는다.    그림 3   그림 4   모델링 툴을 사용하여 3D 모델 작업 해당 부분을 스케치한 후 <그림 5~6>과 같이 익스트루드(Extrude) 기능을 사용하여 형상을 만든다.    그림 5   그림 6   스케치를 통해 해당 평면을 생성하고 폴리라인을 따라 스케치를 한 후, 트림 기능을 사용하여 라인을 다듬고 익스트루드 기능을 사용하여 형상을 만든다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-01-04
제너레이티브 설계 솔루션, MSC Apex
제너레이티브 설계 솔루션, MSC Apex   주요 CAE 소프트웨어 소개    ■ 개발 : MSC Software, www.mscsoftware.com/kr ■ 자료 제공 : 한국엠에스씨소프트웨어, 031-719-4466, www.mscsoftware.com/kr 1. MSC Apex Generative Design - 자동화된 경량 설계 최적화 MSC Apex(에이펙스) Generative Design은 직관적인 CAE 환경, MSC Apex를 기반으로 제작된 완전 자동화된 제너레이티브 설계 솔루션이다. 이 제품은 기본적으로 혁신적인 제너레이티브 설계 엔진을 사용하고 있으며, 또한 MSC Apex의 사용하기 쉽고 배우기 쉬운 기능을 활용한다. 따라서 설계 최적화 워크플로에 필요한 노력과 비용을 크게 줄일 수 있다. MSC Apex Generative Design은 적층 공정으로만 제조할 수 있는 세밀하고 매우 복잡한 구조를 생성하도록 특별히 개발되었다. 혁신적인 응력 기반 알고리즘은 무게를 최소화하고 기존의 사고방식으로는 상상할 수 없는 독특한 형상을 안정적으로 이끌어낼 수 있다. ■ 편리하고 쉬운 사용법 : 사용자 중심 소프트웨어 디자인을 통해 별도의 전문 지식 없이도 최적화를 쉽게 수행할 수 있다. ■ 자동화된 디자인 : 무게는 최소화하면서 디자인 기준을 모두 만족하는 여러 개의 디자인 후보를 자동으로 생성할 수 있다 ■ 가져오기 및 검증 : 단일 CAE 환경에서 기존 형상 또는 메시를 가져와서 최적화된 디자인 후보를 찾고, 디자인 검증을 수행할 수 있다. ■ 직접 출력 : 수동 재작업 없이 직접 제조하여 즉시 사용할 수 있는 형상을 내보낼 수 있다. ■ 단일 프로세스 : Simufact Additive 또는 Digimat AM으로 결과 형상을 가져와서 모든 부품에 대해 비용 효율적이며 최초의 적정한 결과를 얻을 수 있다. (1) 주요 기능  ■ CAD 파일 불러오기  ■ 다양한 설계 형상 제공  ■ 선형 해석의 하중 케이스를 이용한 자동화된 최적화 프로세스  ■ 정확하고 부드러운 표면으로의 효율적 전환 & 스트럿 및 쉘 구조 요소 사이에 완벽한 전환  ■ 응력 기반 알고리즘을 통한 많은 무게 감소  ■ 짧은 시간 안에 다양한 설계 형상을 제공하는 제너레이티브 디자인 연구  ■ CPU, Nvidia GPU를 이용한 해석 기능과 Windows & Linux 환경에서의 원격 작업  ■ 로컬 좌표계, 압력, 중력 고려  (2) 적용 효과  ■ 수동 작업이 필요하지 않은 새롭고 혁신적인 설계 구조  ■ 별도의 사용법을 배우지 않아도 사용하기 쉬운 소프트웨어  ■ 효율적이고 혁신적인 제품 설계를 통한 비용 절감  ■ 최적화 설정을 토대로 여러 개의 설계 후보 생성  ■ 실현 가능한 부품 설계 생성  ■ 적층 제조 생산에 적합  ■ 기계적 무결성 및 제조 능력 검증을 위한 상호 호환성  ■ 유기 형태의 설계를 통한 경량화 및 생산 및 운영 비용 절감 2. MSC Apex | Modeler - 직접 모델링, CAD&메시 솔루션 MSC Apex Modeler는 CAD 형상 정리, 메시 생성, 물성 및 하중 부여 작업의 워크플로를 간소화고 CAE에 특화된 직접 모델링이 가능한 CAD와 메시가 상호 작용하는 솔루션이다 ■ 스마트 도구 : MSC Apex는 매우 빠르고 효율적인 방식으로 CAD 형상 정리를 수행할 수 있는 직접 모델링 도구를 제공한다. 형상 수정이 필요한 대상을 선택하고 마우스를 이용해서 밀거나 당기거나 드래그하여 수정할 수 있다. 이러한 도구를 통해 사용자는 CAD를 정리할 수 있으며, 작업량을 10분의 1까지 줄일 수 있다. ■ 제품 워크플로 : MSC Apex는 스마트한 FEA/CAE 워크플로를 목표로 설계되었다. 대표적인 예로 3D 모델을 2D 모델로 빠르게 만들어주는 미드 서피스 추출 기능이 있다. 사용자는 MSC Apex에서 제공하는 워크플로를 통해 일반적인 CAD에서 해석이 가능한 FEA 모델까지 10배 이상의 생산성을 높일 수 있다. ■ 기반 기술 : MSC Apex는 제너레이티브 프레임워크를 통해서 CAD와 해석 데이터 간의 완전한 연관성을 가능하게 한다. 어셈블리 모델의 경우 일부 파트 변경이나, CAE 모델을 수정할 경우에 유용하다. 상위 모델이 수정되면 메시, 물성, 하중 등을 포함하여 수정된 사항이 하위 모델에 자동으로 동기화된다. 이러한 직접 모델링은 사용자에게 많은 이점을 제공한다. ■ 사용하기 쉽고 배우기 쉬움 : MSC Apex는 다양한 목적의 도구를 쉽게 사용할 수 있도록 설계되었다. 설치 시 내장된 튜토리얼, 비디오 기반 문서, 마우스 커서에 자동으로 나타나는 사용 방법과 같은 다양한 학습 도구를 제공한다 (1) 주요 기능 1) 스케치 ■ 선, 사각형, 원, 타원, Fillet, Chamfer 그리고 복잡한 형상을 스케치 평면 위에 직접 스케치 ■ 기존 스케치의 형상을 Project, split, 수정 가능 2) CAD 수정 ■ 점이나 선을 마우스 드래그를 이용해서 서피스 수정(Vertex/Edge drag) ■ 서피스를 마우스 드래그를 이용해서 솔리드 형상의 수정(Push/Pull) ■ 서피스의 자르기(Split), 채우기(Fill) ■ 메시에 영향을 주는 점을 추가/삭제, 선(curve)을 억제/억제 해제 ■ 어셈블리에서 특정 파트만 교체 가능(Part Replace) 2) 미드 서피스 생성 및 수정 ■ 오프셋 옵션(자동, 일정한 두께, 사용자 입력 등)에 따라 미드 서피스 추출 ■ 평면 또는 곡면 솔리드의 균일 또는 불균일한 두께의 중간면을 점진적으로 생성(Incremental mid-surface) ■ FEA 모델로부터 CAD 생성 ■ FEA 모델로부터 Facet 형상과 Nurbs 형상 생성, 수정, remesh ■ 일부 FEA만 Facet 형상 생성 후에 메시 수정하면 기존 FEA의 물성, 두께, connector 등도 자동 업데이트 ■ 2D, 3D FEA 모델로부터 2D, 3D CAD 생성 ■ 생성된 CAD 내보내기 가능 3) 메시 및 메시 수정 ■ curve, surface, solid에 메시 ■ Beam, Quad, Tria, Tet, Hex 메시 ■ CAD가 수정될 때 자동으로 메시 재 생성  ■ Feature Base Meshing, mesh Seeding, mesh control curve를 통한 메시 개선 ■ 부품 연결을 용이하게 하는 Hard Point ■ 다양한 map mesh 옵션 ■ 시각적인 element quality 확인 및 편리한 수정 4) 모델 특성 ■ 물성 생성 및 할당 ■ 자동 두께 할당(균일하지 않은 단면 및 오프셋 특성 고려 가능) ■ 부품 연결 : 접촉(Mesh Independent Die), RBE2/RBE3 요소(Discrete Tie)  ■ 중력, 하중, 강제 변위, 구속, 압력 하중  5) MSC Nastran과 상호 운용성 ■ MSC Nastran 데이터(bdf,op2,h5) 지원, 가져오기 및 내보내기  ■ Adams/Car 모델 및 결과 데이터 확인 가능  ■ 단일 환경에서 Adams/Car 결과 데이터를 구조 FEA 모델에 연결 및 하중 매핑 가능 6) 후처리  ■ 이미지 캡처/동영상 녹화 기능 포함 ■ 멀티뷰를 통한 결과 탐색 환경 지원 7) Python 기반의 API를 통한 자동화 ■ 반복적인 작업을 자동화하고 사내 워크플로를 개발할 수 있는 사용자 정의 도구 ■ 완벽한 통합 개발 환경(IDE) 지원 ■ 코딩 없이 Micro Record/Play로 간편한 사용 3. MSC Apex | Structures - Computational parts 기반의 구조 해석 MSC Apex Structures는 유한 요소 해석 솔버가 통합된 모듈로 사용자에게 선형(비선형 기능 지원 예정) 구조 해석에 대한 접근을 제공한다. 현재 MSC Apex는 선형 정적, 선형 좌굴, 노말 모드 및 주파수 응답 해석을 포함한 4가지 유형의 선형 해석을 지원한다. MSC Apex Structures는 시나리오 정의, 해석 준비 상태 확인 및 통합 솔버를 위한 직관적인 사용자 인터페이스가 포함된 패키지이다. 사용자 인터페이스와 솔버의 통합은 사용자에게 FEA 모델을 대화식으로 그리고 점진적으로 검증하고 해결할 수 있는 고유한 기능을 제공한다. 이 점진적인 검증 및 해석은 전처리/후처리 프로세스와 솔버가 분리되어 매우 시간이 많이 소요되는 기존 FEA 워크플로에 대한 창의적이고 지능적인 방식의 변화이다. MSC Apex - MSC Nastran - MSC Apex의 워크플로를 지속적으로 확장하여 사용자는 다양한 설계 단계 및 작업에 따라 최상의 시나리오를 선택할 수 있다. ■ 시나리오 1 - MSC Nastran 솔버 사용 : 기존의 MSC Nastran 솔버 사용자는 MSC Nastran 솔버를 사용한다. ■ 시나리오 2 - MSC Nastran 솔버를 지원하는 내장된 MSC Apex Structures : 통합된 솔버는 해석 사전 검증 기능을 이용해서 FEA 모델을 생성한다. 생성된 FEA 모델을 MSC Nastran으로 외부에서 해석할 수 있으며 MSC Apex를 통해서 후처리 작업이 가능하다. ■ 시나리오 3 - 내장된 MSC Apex Structures 솔버 사용 : 내장된 MSC Apex 솔버의 모든 기능을 할 수 있다.
작성일 : 2023-12-25
구조 해석 소프트웨어, midas MeshFree
주요 CAE 소프트웨어 소개 ■ 개발 및 자료 제공 : 마이다스아이티, 031-789-2000, www.midasit.com 수년에 걸쳐 CAD(Computer-Aided Design) 시스템은 와이어 프레임 또는 면 기반의 모델에서 솔리드 모델과 파라메트릭 기반 모델까지 개발되었으며, 생산성 및 기하 형상의 완성도가 비약적으로 발전해 왔다.  midas MeshFree(마이다스 메시프리)는 설계 엔지니어에 의해서 완성된 CAD 모델 원형을 그대로 활용하여, 사용자가 요소망 생성 없이 시뮬레이션을 할 수 있는 기법으로 개발된 구조해석용 소프트웨어이다. midas MeshFree는 간략화 작업과 노동 집약적인 요소망 생성 작업 없이 빠르고 직관적으로 해석을 수행할 수 있다. 요소망을 생성하지 않는 작지만 새로운 변화는 시뮬레이션의 환경을 크게 변화시키고 있다. 개념 및 초기 설계 단계에서 설계 엔지니어를 중심으로 설계한 원본 CAD 형상을 그대로 활용하여 빠르고 효율적으로 분석할 수 있으며, 성능 검토 후 빠른 의사 결정으로 통해 설계에 보다 개선된 사항을 반영할 수 있다.  1. 설계 단계 CAE와 MeshFree CAE의 목표는 제품의 제반 성능을 정략적으로 예측하고, 설계에 적용하여 최적설계를 달성하는 것이다. 설계 단계 CAE는 설계 초기 단계인 기획 및 기본 설계 단계에서 성능을 분석하여, 양산 후 발생 가능한 문제점을 사전에 찾아내고, 이를 개선하는 것을 목적으로 한다.  midas MeshFree는 기존 FEM 기반의 해석 프로세서에서 가장 많은 노동력과 경험이 필요했던 부분인 간략화 과정 및 요소망 생성 작업을 제거함으로써 설계 엔지니어가 직관적으로 사용할 수 있도록 개발되었다. midas MeshFree의 개발 개념은 설계단계 CAE를 적극적으로 지원하고, 설계 엔지니어가 빠르게 제품을 학습하여 설계 과정 중에서 자신이 설계한 제품을 성능을 빠르게 파악하는 것으로 다음과 같은 원칙을 기반으로 개발하였다. ■ No geometry cleanup and simplifications ■ No mesh generation by user ■ No failed analysis ■ Performance and accuracy comparable to finite element method   midas MeshFree는 CAD 모델을 직접 이용하며 해석을 수행하기 위해서는 3D CAD 불러오기, 하중/경계조건 정의, 마지막으로 해석 실행 및 결과 분석인 3단계의 프로세스만으로 해석 결과를 도출할 수 있는 사용 편의성을 제공한다. 또한, 상용 CAD와의 연계성을 강화하여 CAD에서 정의한 재료 정보를 자동으로 불러올 수 있으며, 설계 변경된 모델도 최소한의 작업으로 해석을 수행하여 결과를 확인할 수 있는 Auto-Update 기능을 제공하고 있다. 단순히 설계 엔지니어가 간단하게 시뮬레이션을 수행하는 것을 목적으로 하는 것이 아니라, 결과를 분석하고 이를 빠르게 설계에 반영하여 변경된 성능을 빠르게 분석할 수 있도록 개발하였으며, 기업 내에서 최소의 노력으로 설계 단계 CAE 프로세스를 구축할 수 있도록 개발하였다.  2. MeshFree 주요 해석 기능 midas MeshFree 솔버는 강성 및 강도를 검토할 수 있는 선형 및 비선형 정적 해석, 진동 특성을 분석할 수 있는 모드 및 동해석(과도, 주파수, 랜덤진동, 응답 스펙트럼), 온도 하중에 대한 영향을 파악할 수 있는 정상/비정상 상태 열전달 해석을 제공하고 있으며, 설계 제품의 수명을 검토할 수 있는 피로해석과 최적 설계 안을 도출할 수 있는 위상 최적 설계 기능까지 제공하고 있으며, 주요 해석 기능은 다음과 같다. 현재 상용적으로 사용하는 무요소 방법들은 공통적으로 경계조건을 만족시키는 어려움과 비선형성에 의해 강성을 갱신하여 해석에 반복적으로 반영해야 하는 방식에 어려움을 겪고 있다. MeshFree는 체적 적분 기법을 통해 해석 대상의 강성을 계산하며, Update Lagrangian 기법을 이용하여 다양한 비선형성에 의해 갱신되는 강성을 반영할 수 있도록 개발하였다.  midas MeshFree에서 제공하는 비선형성은 대변형, 대회전이 유발되는 기하학적 비선형 문제, 탄소성 모델의 항복 이후 성능과 고무와 같은 초탄성 재료의 성능을 검토할 수 있는 재료 비선형, 그리고 공간상의 두 물체가 서로 맞닿을 수는 있으나, 관통할 수 없다는 조건을 기본 가정으로 하는 접촉 비선형 문제를 검토할 수 있다. midas MeshFree의 정렬격자 기반의 최신 해석 기술은 모델 간략화 및 이상화 없이 3D CAD 원형을 그대로 해석할 수 있는 기술이며, 강성, 강도, 진동, 열전달 및 열응력, 내구수명 그리고 최적화 기술까지 제공하고 있어 초기 설계단계에서 다양한 설계 안에 대한 제품의 성능을 설계 엔지니어를 중심을 검토할 수 있는 혁신적인 해석 기술이다. midas MeshFree는 설계 초기 단계에서 제품의 제반 성능을 정략적으로 예측하고 최적 설계를 달성할 수 있도록 지원하여 설계 시간 및 비용을 절감하고 혁신적인 설계안을 도출할 수 있도록 개발된 제품이다.   좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-25
[무료다운로드] 플라스틱 병 스캔 데이터의 역설계 작업 과정
포인트셰이프 디자인을 사용한 역설계 사례   포인트셰이프 디자인(PointShape Design)은 드림티엔에스에서 자체 개발한 3D CAD 기반의 역설계 소프트웨어로 CGM(CATIA) 커널이 적용됐으며, 사용자에게 친숙한 디자인 프로세스 및 사용자 인터페이스를 제공한다. 이번 호에서는 플라스틱 병의 스캔 데이터에서 3D CAD 모델을 쉽게 생성하는 방법을 소개한다.   ■ 자료 제공 : 드림티엔에스, www.pointshape.com   이번 호에서 살펴볼 역설계 프로세스는 다음과 같다. 스캔 데이터 불러오기 및 정렬 스캔 데이터 단면 추출 및 스케치 모델링 툴과 편집 툴을 사용하여 3D 모델 작업  Analyzing 기능을 통한 설계 데이터 편차 확인  최종 설계 데이터 완성    스캔 데이터 불러오기 및 정렬(Import & Alignment) 3D 스캐너를 통해 취득한 스캔 데이터를 <그림 1>과 같이 프로그램에서 불러온다.  스캔 데이터의 좌표 정렬 상태는 스캔 당시 스캐너의 좌표를 기준으로 정렬되어 있는 상대좌표 상태이기 때문에, 스캔 데이터를 절대 좌표에 정렬한 후 역설계를 진행한다. 3-2-1 Alignment 기능을 사용하여 좌표 정렬할 스캔 데이터를 선택하고 평면, 벡터, 점을 순서대로 선택하여 스캔 데이터를 절대 좌표에 정렬한다.   그림 1   그림 2   스캔 데이터 단면 추출 및 스케치(Plane(Offset) - 2D Sketch) Ref. Plane의 오프셋(Offset) 기능을 사용하여 해당 위치에 2개의 평면을 생성한 후, 해당 평면을 스케치 평면으로 사용하여 단면 폴리라인(Polyline)을 각각 추출하고 추출된 단면 폴리라인을 따라 스케치한다. 스케치를 한 후 트림(Trim)을 한 후에 필렛(Fillet) 기능을 이용하여 라인을 다듬는다.    그림 3   그림 4   모델링 툴을 사용하여 3D 모델 작업 해당 부분을 스케치한 후 <그림 5~6>과 같이 익스트루드(Extrude) 기능을 사용하여 형상을 만든다.    그림 5   그림 6   스케치를 통해 해당 평면을 생성하고 폴리라인을 따라 스케치를 한 후 트림 기능을 사용하여 라인을 다듬고 익스트루드 기능을 사용하여 형상을 만든다.    그림 7   그림 8     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2023-12-04
전열 해석 자동화 프로그램 BeHAP의 소개 및 사용법
버스바의 최적 설계 프로세스 단축하기   파워서플라이나 전기차 배터리와 같은 고전력 장치에 사용되는 버스바(BusBar)는 최적 설계 도출을 위해 다수의 전열 해석이 동반되어 수많은 워크플로를 진행해야 한다. 태성에스엔이가 자체 개발한 전열 해석 자동화 프로그램인 BeHAP을 이용하면 단일 환경에서 전열 해석을 한 번에 진행 가능하다. 이번 호에서는 버스바 전열 해석 자동화 프로그램에 대한 소개와 사용 방법을 설명하고자 한다.   ■ 김재원 태성에스엔이 구조 2팀 매니저로 구조해석 및 자동화 프로그램에 대한 기술 지원을 담당하고 있다. 이메일 | jwkim21@tsne.co.kr 홈페이지 | www.tsne.co.kr   파워 서플라이나 전기차 배터리와 같은 고전력이 필요한 장치에 많이 사용되는 버스바는 전선과 동일한 기능을 가지면서 형상적으로 단단하고 정밀한 제작이 가능하기 때문에, 보다 효율적인 공간 활용이 가능하다.  그에 따라 형상 최적 설계에 대한 연구가 많이 진행되고 있으나 최적 설계 도출을 위해서 다수의 전열 해석을 수행해야 하기 때문에, 수많은 워크플로 생성으로 인해 업무 효율성이 떨어지는 어려움이 있다. 태성에스엔이에서 제작한 버스바 전열 해석 자동화 프로그램인 BeHAP을 사용하면 다수의 전열 해석이 필요 없이 단일 환경에서 다양한 전열 해석 수행이 가능하다.    BeHAP 소개 전열 해석은 전기 해석과 발열 해석의 연성 해석이 필요하기 때문에, 다양한 환경에서 해석이 진행된다.(그림 1)   (a) 해석 시스템 생성   (b) 물성 추가   (c) 형상 수정   (d) 격자 생성 및 경계 조건 부여   (e) 결과 확인 그림 1. 앤시스 환경에서의 전열 해석 프로세스   <그림 1>과 같이 앤시스의 전열 해석 프로세스는 워크벤치(그림 1-a~b), SCDM(그림 1-c), 메커니컬(그림 1-d~e) 환경을 거쳐 전/후처리를 진행하기 때문에, 워크플로가 매우 복잡해진다. 이러한 경우 BeHAP을 사용하여 이러한 문제를 해결할 수 있다. BeHAP은 <그림 2>와 같이 하나의 환경에서 전/후처리를 한 번에 수행할 수 있다. 또한, 해석 워크플로의 단순화로 해석 숙련도가 낮은 설계 엔지니어도 쉽게 사용할 수 있다는 장점이 있다.   (a) 모델 불러오기   (b) 물성 추가 및 적용   (c) 경계 조건 부여   (d) 결과 확인 그림 2. BeHAP에서의 전열 해석 프로세스     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2023-12-04