• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "보고서"에 대한 통합 검색 내용이 2,095개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
팀뷰어, 디지털 워크플레이스 플랫폼 ‘팀뷰어 원’ 출시
팀뷰어가 인공지능(AI) 기능을 탑재한 통합 디지털 워크플레이스 관리 플랫폼인 ‘팀뷰어 원(TeamViewer ONE)’을 출시했다. 기업은 팀뷰어 원을 이용해 다운타임을 줄이고 IT 지원을 최적화하며, 직원 경험을 향상시킬 수 있다. 많은 기업에서 연결되지 않은 다양한 IT 도구를 개별 관리하면서 복잡성 증가, 비용 상승, 비효율적인 운영과 같은 문제에 직면하고 있다. 이러한 부담을 줄이고 운영을 간소화하기 위해 많은 IT 리더가 공급업체 통합을 최우선 과제로 삼고 있다. 최근 테크 미디어 CIO가 실시한 설문조사에 따르면, IT 임원의 95%가 향후 1년 내 공급업체 통합을 계획 중이며, 80%는 포인트 설루션(단일 목적의 개별 도구)의 수를 줄일 필요가 있다고 응답했다. 이러한 흐름은 IT 운영을 간소화하면서도 성능과 보안, 확장성을 동시에 강화할 수 있는 통합 플랫폼에 대한 수요가 커지고 있음을 보여준다. 팀뷰어 원은 이러한 수요에 대응하기 위해 설계된 통합 디지털 워크플레이스 설루션으로 ▲실시간 디바이스 모니터링 ▲지능형 자동화 ▲보안 원격 액세스 ▲컨텍스트 기반 진단 기능을 하나의 확장 가능한 설루션에 통합했다. 글로벌 대기업부터 중소기업까지 다양한 규모의 조직이 복잡하게 흩어진 IT 도구를 통합하고, 운영을 효율화하며, 전사적인 디지털 경험을 향상시킬 수 있도록 지원한다.  이는 기존의 IT 엔드포인트는 물론, 산업용 장비 및 연결된 운영 기술(OT) 디바이스까지 아우르는 분산된 근무 환경 전반에 향상된 디지털 경험을 제공할 수 있다.     팀뷰어 원은 ▲원격 모니터링 및 관리(RMM) ▲원격 연결 ▲디지털 직원 경험(DEX) ▲AI 기반 기능을 하나의 통합 설루션에 통합해 단일 라이선스로 제공한다. 기업 규모에 관계 없이 이러한 모든 기능을 원활하고 효율적으로 제공할 수 있는 플랫폼이라는 점을 내세운다. 팀뷰어 RMM(TeamViewer RMM)은 엔드포인트 보안, 모바일 디바이스 관리(MDM), 패치 관리 기능이 내장된 사전 예방적 디바이스 모니터링 및 관리 설루션이다. 팀뷰어 인텔리전스(TeamViewer Intelligence)는 AI 기반 지원 도구인 코파일럿(CoPilot)이 실시간 진단과 컨텍스트 기반 문제 해결 가이드를 제공하며, 세션 인사이트(Session Insights) 기능은 자동으로 구조화된 보고서를 생성해 IT 팀이 문제 현황을 분석하고 성과를 개선할 수 있도록 돕는다. 팀뷰어 원격 연결(TeamViewer Remote Connectivity)은 높은 수준의 보안성과 안정성을 갖춘 원격 액세스 및 제어 기능으로, IT 팀은 시간 및 장소에 구애받지 않고 분산된 인력과 다양한 디바이스에 걸쳐 원활한 지원을 제공할 수 있다. 팀뷰어 DEX(TeamViewer DEX)는 디지털 직원 경험(DEX)의 모니터링 및 향상을 위해 설계된 설루션으로 엔드포인트 상태, 성능 트렌드, 사용자에게 영향을 미치는 문제를 실시간으로 파악하여 생산성을 높이고 다운타임을 줄인다.   이러한 기능이 결합된 팀뷰어 원은 기업이 더욱 연결되고 효율적이며 생산적인 근무 환경을 조성할 수 있어 직원들은 최소한의 방해 요소 속에서 지속적으로 몰입과 안정적인 지원을 받을 수 있는 업무 환경을 경험할 수 있다. 팀뷰어 원은 비즈니스(Business) 및 엔터프라이즈(Enterprise) 맞춤형 패키지로 제공되며, 단일 에이전트 라이선스를 통해 모든 기능을 통합 제공함으로써, 하이브리드 근무 환경의 변화하는 요구사항을 유연하게 대응할 수 있다. 팀뷰어의 메이 덴트(Mei Dent) 최고 제품 및 기술 책임자는 “흩어져 있는 기술 스택을 통합하고 보안을 강화하며 변화하는 컴플라이언스 기준을 충족해야 한다는 부담이 커지고 있는 가운데, 팀뷰어 원은 인텔리전스, 자동화, 가시성을 하나의 플랫폼으로 통합해 IT 팀이 여러 개의 단절된 도구들을 사용하는 대신 AI 기반의 통합된 경험으로 전환할 수 있도록 지원한다. 이에 따라 IT 팀은 반복 업무나 수작업 문제 해결에서 벗어나, 비즈니스에 실질적 가치를 더하는 보다 중요한 과제에 집중할 수 있는 여건이 마련되는 것”이라고 말했다. 팀뷰어코리아 이혜영 대표이사는 “오늘날 업무 환경이 디지털화되면서, 사무실, 재택, 생산 현장, 현장 업무, 원격 협업 등 어떤 장소에서 일하든 직원을 효과적으로 지원해야 하는데 사용되는 도구와 기술의 수가 폭발적으로 증가함에 따라 IT팀과 직원들의 복잡성 또한 함께 증가했다”고 말하며, “팀뷰어 원은 IT 팀이 반복적인 업무에서 벗어나 전략적 업무에 집중할 수 있도록 돕는 통합 디지털 워크플레이스 관리 플랫폼으로 AI 기반 자동화, 원격 연결, 디지털 직원 경험, RMM 기능을 함께 제공해 국내 기업이 오늘날의 복잡한 IT 환경을 더욱 스마트하고 효율적으로 관리할 수 있도록 지원할 것”이라고 덧붙였다.
작성일 : 2025-05-22
마이크로소프트, “비즈니스 전반에서 AI 에이전트가 활약하는 시대가 온다”
마이크로소프트가 ‘마이크로소프트 빌드 2025(Microsoft Build 2025)’를 개최하고 AI 에이전트, 개발자 도구, 오픈 플랫폼 등 신규 기능과 주요 업데이트를 발표했다.   AI는 추론 능력과 메모리 기술의 고도화로 인해 스스로 학습하고 결정을 내리는 에이전트로 진화하고 있다. 이번 행사에서 마이크로소프트는 이러한 AI 에이전트가 개인, 조직, 팀은 물론 전체 비즈니스 전반에 작동하는 인터넷 환경을 ‘오픈 에이전틱 웹(Open Agentic Web)’으로 정의하며, AI가 사용자나 조직을 대신해 결정을 내리고 작업을 수행하는 시대가 도래했다고 강조했다.  전 세계 수십만 조직이 마이크로소프트 365 코파일럿(Microsoft 365 Copilot)을 활용해 리서치, 아이디어 브레인스토밍 등 다양한 업무에 특화된 AI 에이전트를 구축하고 있다. 이 중 포춘 500대 기업 90%를 포함한 23만 개 이상 조직은 코파일럿 스튜디오(Copilot Studio)를 통해 AI 에이전트와 자동화 앱을 개발하고 있다. 또한, 전 세계 약 1500만 명의 개발자가 깃허브 코파일럿(GitHub Copilot)을 통해 코드 작성, 검토, 배포, 디버깅 등 개발 전 과정을 효율화하고 있다.     이번 빌드 2025에서는 AI 에이전트 개발을 돕는 플랫폼과 도구가 집중 소개됐다. 먼저 깃허브(GitHub), 애저 AI 파운드리(Azure AI Foundry), 윈도우(Windows) 등 주요 개발 플랫폼에서 활용할 수 있는 다양한 기능과 업데이트가 발표됐다. 이번 업데이트는 개발 생애 주기의 변화에 따라 개발자가 보다 효율적으로 작업하고, 대규모 개발 환경에서도 유연하게 대응할 수 있도록 설계됐다.  깃허브 코파일럿에는 비동기화(asynchronous) 방식의 코딩 에이전트 기능이 새롭게 도입됐다. 또한, 깃허브 모델(GitHub Models)에는 프롬프트 관리, 경량평가(LightEval), 엔터프라이즈 제어 기능이 추가돼, 개발자는 깃허브 내에서 다양한 AI 모델을 실험할 수 있게 됐다. 이와 함께 깃허브 코파일럿 챗(GitHub Copilot Chat) 또한 비주얼 스튜디오 코드(Visual Studio Code)에서 오픈소스로 공개됐다. 깃허브 코파일럿 확장 기능의 AI 기능은 이제 개발 도구를 구동하는 오픈소스 저장소의 일부가 됐다.  윈도우 AI 파운드리(Windows AI Foundry)도 새롭게 공개됐다. 개발자에게 개방적이고 널리 사용되는 플랫폼 중 하나로서 윈도우가 확장성, 유연성, 그리고 성장 기회를 제공함에 따라, 윈도우 AI 파운드리는 학습부터 추론까지 AI 개발자 라이프사이클을 지원하는 통합되고 신뢰할 수 있는 플랫폼을 제공한다. 이를 통해 개발자는 시각 및 언어 작업에 특화된 간단한 모델 API를 활용해 오픈소스 대규모 언어 모델(LLM)을 파운드리 로컬(Foundry Local) 환경에서 실행하거나, 자체 개발한 모델을 가져와 변환·미세조정한 뒤 클라이언트 또는 클라우드 환경에 배포할 수 있다.  애저 AI 파운드리도 주요 업데이트를 진행했다. 애저 AI 파운드리는 개발자가 AI 애플리케이션과 에이전트를 설계·맞춤화·관리할 수 있도록 지원하는 통합 플랫폼으로, 이번 애저 파운드리 모델(Azure Foundry Models) 업데이트를 통해 AI 기업 xAI의 그록3(Grok 3) 및 그록3 미니(Grok 3 Mini) 모델이 마이크로소프트 생태계에 추가됐다. 두 모델은 마이크로소프트가 직접 제공하며 과금한다. 이로써 개발자가 선택할 수 있는 AI 모델의 범위는 파트너사 및 마이크로소프트 제공 모델을 포함해 1900개 이상으로 확대됐다. 이와 함께, 안전한 데이터 통합, 모델 맞춤화, 엔터프라이즈급 관리 기능도 제공돼 보다 정밀한 AI 운영이 가능해졌다.   AI 모델을 항목별로 비교해 순위를 보여주는 모델 리더보드(Model Leaderboard)와 특정 쿼리나 작업에 따라 최적의 모델을 실시간으로 선택할 수 있도록 설계된 모델 라우터(Model Router) 등 신규 도구도 함께 공개됐다.   AI 에이전트 개발과 배포를 보다 안전하고 효율적으로 수행하도록 지원하는 기능도 선보였다. 사전 구축된 에이전트(pre-built agents), 맞춤형 에이전트 설계 도구, 멀티 에이전트 기능, 새로운 모델 등으로 구성된 이번 업데이트는 개발자와 조직이 보다 유연하게 AI 에이전트를 구축하고 생산성을 높이는 데 활용할 수 있도록 지원한다.  애저 AI 파운드리 에이전트 서비스(Azure AI Foundry Agent Service)는 여러 전문 에이전트를 조율해 복잡한 작업을 처리할 수 있도록 지원한다. 이번 업데이트에서는 시맨틱 커널(Semantic Kernel)과 오토젠(AutoGen)을 통합 제공하는 단일 SDK와, 에이전트 간 상호작용을 가능하게 하는 A2A(Agent-to-Agent) 기능 및 모델 컨텍스트 프로토콜(Model Context Protocol, 이하 MCP) 지원 기능도 포함한다.  애저 AI 파운드리 옵저버빌리티(Azure AI Foundry Observability)에는 AI 에이전트의 신뢰도를 높일 수 있도록 성능, 품질, 비용, 안전성 등의 지표들을 모니터링할 수 있는 기능이 탑재됐다. 모든 지표는 통합 대시보드를 통해 시각적으로 추적할 수 있어, 운영 현황을 직관적으로 파악할 수 있다.  보안과 거버넌스 측면에서도 기능이 강화됐다. 프리뷰로 제공되는 엔트라 에이전트 ID(Microsoft Entra Agent ID)를 활용하면, 애저 AI 파운드리나 코파일럿 스튜디오에서 생성한 에이전트에 고유 ID가 자동으로 부여된다. 이를 통해 에이전트를 초기 단계부터 안전하게 관리하고, 무분별한 생성을 방지해 보안 사각지대를 방지할 수 있다. 또한, 애저 AI 파운드리로 구축된 애플리케이션과 에이전트는 퍼뷰(Microsoft Purview)의 데이터 보안 및 컴플라이언스 제어 기능과 통합된다. 여기에 위험 파라미터 설정, 자동 평가 수행, 상세 보고서 제공 등 고도화된 거버넌스 도구도 함께 제공돼 정밀한 보안 및 운영 관리가 가능해졌다.  마이크로소프트 365 코파일럿 튜닝(Microsoft 365 Copilot Tuning)은 기업 고유의 데이터, 워크플로, 업무 프로세스를 기반으로 로코드 방식의 AI 모델 학습과 에이전트 생성을 돕는다. 생성된 에이전트는 마이크로소프트 365 환경 내에서 안전하게 실행되며, 조직별 업무에 특화된 작업을 높은 정확도로 수행할 수 있다. 예를 들어, 로펌은 자사의 전문성과 양식에 맞춰 문서를 작성하는 에이전트를 구축할 수 있다.  멀티 에이전트 오케스트레이션 기능도 코파일럿 스튜디오(Copilot Studio)에 새롭게 도입됐다. 이를 통해 다양한 에이전트를 상호 연결하고 기능을 결합함으로써 복잡하고 광범위한 업무를 처리할 수 있다.  이와 함께 마이크로소프트는 AI 에이전트의 미래를 위해 개방형 표준과 공유 인프라를 발전시키는 MCP 생태계 지원 업데이트와 새로운 개방형 프로젝트인 ‘NLWeb’을 발표했다. 마이크로소프트는 깃허브, 코파일럿 스튜디오, 다이나믹스 365(Dynamics 365), 애저 AI 파운드리, 시맨틱 커널, 윈도우 11 등 자사가 보유한 주요 에이전트 및 프레임워크 전반에서 MCP를 지원한다. 마이크로소프트와 깃허브는 MCP 운영 위원회(MCP Steering Committee)에 새롭게 합류해, 개방형 프로토콜의 보안성과 확장성을 높이기 위한 공동 노력을 이어갈 예정이다.  또한 MCP 생태계 확장을 위한 두 가지 업데이트도 공개했다. 첫 번째는 사용자가 기존 로그인 방식을 그대로 활용해 에이전트 및 LLM 기반 애플리케이션에게 개인 저장소나 구독 서비스와 같은 다양한 데이터에 대한 안전한 접근 권한을 부여할 수 있도록 인증 체계를 개선했다. 두 번째는 MCP 서버 항목을 누구나 최신 공용 또는 사설 저장소에서 중앙화해 관리할 수 있도록 지원하는 MCP 서버 등록 서비스를 설계했다.   NLWeb은 에이전틱 웹 환경을 위한 개방형 프로젝트로, 마이크로소프트는 NLWeb이 에이전틱 웹에서 HTML과 유사한 역할을 할 수 있을 것으로 기대한다. NLWeb은 웹사이트 운영자가 원하는 AI 모델과 자체 데이터를 연결해 대화형 인터페이스를 구축함으로써 사용자가 웹 콘텐츠와 직접 상호작용하며 풍부하고 의미 있는 정보를 얻도록 돕는다. 또한 모든 NLWeb 엔드포인트는 MCP 서버이기도 하기 때문에 웹사이트 운영자는 필요시 AI 에이전트들이 해당 사이트의 콘텐츠를 쉽게 검색하고 접근하도록 설정할 수 있다.  한편, 마이크로소프트는 과학 연구를 가속화하기 위한 AI 에이전트 기반 플랫폼 마이크로소프트 디스커버리(Microsoft Discovery)도 선보였다. 이 플랫폼은 연구자가 AI 에이전트를 활용해 과학적 발견 과정 전반을 혁신할 수 있도록 지원한다. 마이크로소프트는 이를 통해 제약, 환경 등 다양한 산업 분야의 연구개발 부서가 신제품 출시 기간을 단축하고, 연구 전반의 속도와 범위를 확장할 수 있을 것으로 기대하고 있다. 
작성일 : 2025-05-20
[칼럼] 대한민국 산업의 미래와 산업데이터 인프라
산업데이터 스페이스와 제조업의 미래   우리나라가 새로운 성장동력을 만들기 위해서는 산업데이터에 주목할 필요가 있다. 우리나라의 산업데이터 활용 잠재력은 매우 크다. 국내에는 이미 다양한 산업분야의 데이터 플랫폼이 구축되어 운영 중이다. 산업데이터의 잠재력을 성장 동력으로 연결하려면 공공기관과 기업 내부에 쌓여 있는 방대한 데이터를 끄집어내고 기관 간에 데이터의 공유와 연계를 이루는 데이터인프라 구축이 무엇보다 필요하다.    (이미지 출처 : 123RF) 기업은 물론 한 국가의 산업경쟁력도 디지털 전환(DX)을 빼놓고는 얘기할 수 없는 시대가 되었다. 디지털 전환은 인공지능, 사물인터넷(IoT), 클라우드 등 디지털 기술을 모든 사업영역에 적용함으로써 조직문화, 비즈니스 모델과 프로세스 등에 근본적인 변화를 일으켜서 새로운 가치를 만들어내는 것을 의미한다. 디지털 전환을 통해 재화나 서비스의 생산부터 소비에 이르는 일련의 경제활동들이 지능화되고 효율화되고 있다.  보스톤 컨설팅 그룹(Boston Consulting Group)의 연구조사에 따르면 디지털 선도기업들은 디지털 후발기업들에 비해 수익성장률(earnings growth)이 1.8배 더 높고 총 기업가치(total enterprise value) 성장률은 2배 이상이라고 한다. 또한, 세계적 시장조사기관인 Statista에 따르면 전세계 디지털전환기업의 생산액은 2018년 13.5조 달러에서 2023년 53.3조 달러로 증가하면서 전세계 GDP의 절반을 넘어섰다. 한편, 디지털기업은 글로벌 시장을 주도하고 있다. 지난 2008년 전세계 시가총액 10대 기업의 절반은 CNPC, 엑손모빌 등과 같은 에너지기업이었으나 지금은 애플, 마이크로소프트, 아마존, 알파벳(구글), 테슬라, 엔비디아, 메타(페이스북) 등 7개의 디지털기업이 그 자리를 차지하고 있다.  데이터의 90%는 산업데이터이나 60∼80%가 활용되지 못하고 사장 디지털 전환의 중심에는 데이터가 자리잡고 있다. 디지털기술을 적용하여 분산된 데이터를 가치 있게 변환시키는 것이 디지털 전환의 핵심이기 때문이다. 기업내부에 쌓여 있는 경험과 노하우를 데이터화하고 이러한 데이터를 분석하면 비즈니스를 효율적으로 운영하거나 새로운 비즈니스를 만들어낼 수 있다. 구글, 페이스북, 아마존 등은 방대한 데이터를 모을 수 있는 고유 플랫폼을 보유하고 있다. 이들은 플랫폼 이용자들의 거래방식, 소비패턴 등의 데이터를 인공지능으로 분석하여 고객의 요구를 확인하거나 새로운 비즈니스기회를 찾아가며 물류, 금융, 헬스케어, 클라우딩 등으로 사업영역을 확장해왔다. 데이터는 크게 개인정보데이터와 산업데이터로 구분해볼 수 있다. 개인정보데이터는 개인의 취향, 동선, 사회관계, 소비행동 등으로 검색, SNS, 간편지불 등의 과정에서 생성된다.  GAFA(Google, Amazon, Facebook, Apple)는 개인정보 데이터를 활용하여 오늘날 시가총액 기준 글로벌 10대 기업으로 성장할 수 있었다. 한편, 산업데이터는 제품개발, 생산, 유통, 소비 등 산업활동 전과정에서 생성되며 전체 데이터의 90%를 차지하고 있다.  산업데이터는 연구개발(R&D)에서 생산, 유통‧마케팅에 이르는 모든 밸류체인에서 생산성과 부가가치를 높이고, 새로운 제품과 서비스를 창출하며, 더 나아가 새로운 산업을 만드는 데 활용될 수 있다. 그러나 아직까지 세계적으로 산업데이터는 활용도가 높지 않으며 산업데이터 분야에 GAFA와 같은 지배적 사업자도 나타나고 있지 않다.  시장조사기관인 forrester research에 따르면 기업내 축적된 데이터중 60∼73%는 사용되지 않고 있다고 한다. EU 집행위원회도 산업데이터의 80%가 전혀 사용되고 있지 않다고 한다. 산업 데이터가 기업의 영업비밀을 포함하고 있는 데다, 각 기업 간의 데이터 형식과 호환성이 없어 데이터를 공유하고 협력하는 데 어려움이 있기 때문이다. 그러나 한편으로 보면 그 만큼 성장잠재력은 크다. 2022년 EU 집행위원회에 따르면 데이터법(Data Act)으로 산업데이터 활용이 제도적으로 보완되면 2028년까지 2,700억 유로(407조원)의 추가 GDP 창출을 기대할 수 있다고 한다.  미국과 중국이 세계 데이터 과점, EU와 일본은 산업데이터에 주력 현재 세계 데이터시장은 개인정보를 중심으로 GAFA가 장악해가고 있다. 미국 정부는 GAFA 등 플랫폼기업이 글로벌 시장에서 데이터를 지속적으로 수집하고 활용할 수 있도록 디지털 통상(Digital Trade)에 발 벗고 나서고 있다.  2017년 미무역대표부(USTR)가 매년 발간하는 국별 무역장벽보고서에 별도의 디지털무역장벽분야가 새롭게 만들어진다. 2018년 11월 체결된 미국·멕시코·캐나다협정(USMCA)에는 처음으로 디지털통상 챕터가 신설되고 데이터이전 자유화, 데이터지역화 금지, 소스코드 공개금지 등의 규범이 담긴다. 2019년 10월에는 최초의 독자적인 국제조약이면서 USMCA보다 더욱 개방된 모습으로 미일간 디지털통상협정(USJDTA)이 체결되었다. 한편, 2019년부터 시작된 WTO 디지털통상협상 과정에서 미국은 모든 서비스에서 데이터이동 자유화를 강력하게 주장하고 있다.  세계의 공장이자 14억 인구를 가진 중국에서는 전세계 데이터의 1/4 이상이 생성되고 있으며 알리바바, 텐센트, 바이두 등이 중국내 데이터시장을 주도해 가고 있다. 중국 정부는 2019년 데이터를 토지, 노동, 자본, 기술과 함께 새로운 국가 생산요소로 규정하고 데이터 활용에 적극적으로 개입하고 있다. 지난 2023년 10월에는 데이터의 유통과 개인정보, 보안 등을 위해 국가데이터국을 설치하여 데이터 통제를 강화한 바 있다. 여기에 네트워크안전법, 개인정보보호법, 데이터안전법 등 법률을 제정하여 자국내 데이터의 해외반출을 엄격하게 규제하고 있다. EU는 미중 IT기업의 데이터 과점에 대응하고 산업의 경쟁력을 확보하기 위한 데이터정책에 집중한다. 특히, 아마존, 구글 등 거대 미국 클라우드 기업으로부터 자신들의 기술 노하우를 지키고 자율성을 확보하는 것을 목표로 삼는다. 이를 위해, EU는 2020년 EU 데이터전략을 발표하고 여기서 유럽 공통 데이터 스페이스(European Common Data Spaces)를 제시한다. 데이터 스페이스는 데이터들이 원래 있던 곳에 있으면서 필요할 때마다 공유될 수 있도록 하는 공간을 의미한다. 구체적으로 가이아-X, 카테나-X, 매뉴팩처링-X 프로젝트 등이 추진되고 있다. 가이아-X는 각 산업 분야를 연결하는 가장 포괄적인 데이터 스페이스이고, 카테나-X는 가이아-X 중 자동차산업의 공급망간에 데이터를 교환·공유함으로써 경쟁력을 높이는데 목표를 두고 있다. 일본은 세계 최고수준 로봇, 센서를 바탕으로 공장자동화 등의 제조현장에서 데이터를 충분히 확보하고 있다. 이에 애플이나 구글 등 미국 디지털기업의 개인정보데이터에는 못 따라가지만, 강력한 제조업을 기반으로 한 산업데이터 경쟁력을 키우기 위해 역량을 집중하고 있다. 2016년 관민 데이터활용 기본법, 2017년 데이터 거래규정, 2018년 생산성향상 특별조치법 등의 제정을 추진하였으며, 지난해 4월 우라노스 에코시스템(Ouranos Ecosystem)을 출범시켜 산업계 전반에 데이터공유와 연계를 꾀하고 있다.  산업데이터의 공유와 활용을 늘리기 위한 인프라 구축 나서야 우리나라는 세계가 주목하는 경제성장을 이룩했다. 1960∼1980년대 정부주도로 철강, 석유화학 등의 산업을 육성하고 1990∼2000년대 세계화와 중국성장을 수출 확대로 연결시켰다. 그러나 최근 대외적 여건을 보면 산업의 성장엔진은 식어가고 수년 내 수출 절벽이 현실화될 수도 있어 우려스럽다. 외적으로는 미중 패권경쟁 격화, 선진국의 산업정책 부활, 보호무역 확산 등으로 글로벌가치사슬(GVC)이 급속하게 파편화, 블럭화되면서 우리의 미래 먹거리와 수출시장을 위협하고 있다. 중국은 첨단산업에서 자급률을 높이고 있고, 미국, 일본, EU 등 선진국들도 반도체, 배터리 등 첨단산업 육성에 열을 올리면서 우리산업이 설자리를 점점 좁혀오고 있다. 대내적으로도 활로가 보이지 않는다. 지난 20년간 주력 수출품목의 변화가 없는 등 산업 역동성이 사라지고 있다. OECD 최하위 출산율과 고령화로 생산가능인구가 줄어드는 가운데, 학생들은 공대를 포기하고 의대로 진로를 바꾸고 있다. 심각한 데이터 규제로 인공지능, 메타버스와 같은 미래 새로운 산업의 발전 기반도 취약한 상태다. 국제경영개발원(IMD)에 따르면 우리나라 기업의 빅데이터 활용순위는 26위로 한참 뒤져 있다. 새로운 성장동력을 만들기 위해서는 산업데이터에 주목할 필요가 있다. 우리나라의 산업데이터 활용 잠재력은 매우 크다. 반도체‧조선 세계 1위, 석유화학‧철강‧로봇 세계 5위, 자동차 세계 7위의 세계적인 제조기반에 5G 등 세계 최고 수준의 ICT 인프라를 보유하고 있어 디지털 기술을 제조업에 접목하기가 수월하다. 연구개발-조달-생산-유통-소비에 이르는 가치사슬(Value chain) 전반에 디지털 전환(DX)을 확산시키면 디지털 제조강국으로 도약할 수 있다.  한편, 우리나라 의료기술과 정보 또한 세계 최고 수준이다. 데이터, 개인정보에 대한 과감한 규제완화가 이루어진다면 원격의료, 디지털 헬스케어 분야에서 제2의 반도체신화를 기대해 볼 수도 있다. 여기에 세계 최고 수준의 ICT 인프라에 혁신역량을 집중한다면 스마트제조, 스마트팜과 같은 새로운 혁신서비스가 수출의 중심이 될 수도 있을 것이다.   국내에는 이미 다양한 산업분야의 데이터 플랫폼이 구축되어 운영 중이다 그러나 플랫폼 참여자는 개인정보, 영업비밀 보호 등 데이터 공유나 거래시 발생할 수 있는 위험부담으로 양질의 데이터 제공에 소극적일 뿐 아니라 표준화, 상호운용성 등 데이터 공유·활용을 위한 토대도 부족한 실정하다. 데이터는 크기가 클수록 그리고 서로 다른 데이터가 융합될수록 더욱 큰 가치를 창출하는 네트워크 효과가 있다. 산업데이터의 잠재력을 성장 동력으로 연결하려면 공공기관과 기업 내부에 쌓여 있는 방대한 데이터를 끄집어내고 기관 간에 데이터의 공유와 연계를 이루는 데이터인프라 구축이 무엇보다 필요하다. 그리고 구축된 인프라가 제대로 작동하기 위해서는 수익을 창출하고 창출된 수익이 모든 참여자에게 돌아갈 수 있고 참여자들이 안전하게 데이터를 공유·거래할 수 있으며 개방적이고 투명한 표준방식으로 데이터가 연계될 수 있어야 할 것이다. 미국과 중국이 거대 플랫폼 기업을 앞세워 세계 데이터 시장을 장악하고 있다. EU는 2014년부터 산업데이터를 중심으로 공유와 연계 플랫폼 구축에 나서고 있으며 일본이 그 뒤를 잇고 있다. 우리나라는 2022년 산업디지털전환촉진법이 제정되고서야 산업데이터 활용기반 구축이 본격화된다. 이 법에 따라 지난 2023년 1월 제1차 산업디지털전환 종합계획이 수립되었고 산업전반에 인공지능(AI)을 내재화시키는 프로젝트가 진행되고 있다. 그러나 다른 나라들에 비해 많이 뒤져 있다. 산업데이터의 공유·활용을 위한 프로젝트를 서둘러야 할 것이다. 이를 통해 대한민국의 산업이 한층 더 도약하고, GAFA를 뛰어 넘는 산업데이터 거인이 우리나라에서 탄생할 수 있기를 기대해 본다.   김용래 교수 경희대학교 첨단기술비즈니스학과 전 특허정장  
작성일 : 2025-05-13
제조기업 디지털 트윈 기반 협업 플랫폼, CP(Collaboration Platform) 
주요 디지털 트윈 소프트웨어   제조기업 디지털 트윈기반 협업 플랫폼, CP(Collaboration Platform)    개발 및 자료 제공 : 디엑스티, contact@dxt.co.kr, https://dxt.co.kr, www.youtube.com/@DXTKoreaInc   클라우드 기반 솔루션 기업인 디엑스티(DXT)는 제조 및 엔지니어링 기업들이 디지털 트윈(Digital Twin) 개념을 기반으로 실험 데이터와 품질 관리 데이터, 엔지니어링 업무 데이터의 통합적 협업 및 관리를 가능하게 하는 클라우드 기반 협업 솔루션, CP(Collaboration Portal)를 제공한다. CP는 엔지니어링 업무, 품질 관리, 연구 및 실험 데이터를 통합적으로 관리하고 축적하여 향후 디지털 트윈(Digital Twin) 환경에서 정확한 가상 검증과 데이터 기반 예측을 수행할 수 있는 기반을 마련한다. 1. 주요 특징 CP는 엔지니어링 업무(CP Eng'r Work), 품질 관리(CP Quality), 연구 및 실험 관리(CP Experiment) 기능을 통합하여 기업이 다양한 업무 프로세스를 하나의 플랫폼에서 효율적으로 관리할 수 있도록 지원한다.  또한 기업의 기준 정보 관리를 통해 데이터 일관성을 유지하고, 업무에 필수적인 워크플로우를 맞춤형으로 제공하여 효율성을 극대화한다. 또한 '협업'을 중심으로 한 업무 프로세스를 설계하고 관리할 수 있는 유연한 협업 플랫폼으로서, 기업의 다양한 비즈니스 환경에 최적화된 협업 체계를 구축할 수 있도록 지원한다. CP는 프로젝트 기반으로 내·외부 협업을 위한 데이터 및 문서 관리 기능을 지원하고, 솔루션 단독으로 사용 가능한 경우와 기 개발된 다양한 Enterprise Legacy 시스템 (PLM, QMS, MES, ERP)과 연동하는 경우 모두를 지원하는 유연한 환경을 제공한다. 2. 주요 기능 (1) CP(Collaboration Platform) 클라우드 기반 협업 및 프로젝트 관리 솔루션으로 제조기업에서 진행되는 협업관련 업무를 명확하고 실행 근거를 확보하면서 진행 할 수 있는 협업 환경을 제공한다. (예: 협업 File 관리, 문의/답변, 협업 기반의 권한 관리 등) CP는 협업 중심의 프로젝트 관리 기능을 통해 내·외부 이해관계자들이 실시간으로 데이터를 공유하며 업무 진행을 관리할 수 있도록 한다 (2) CP Eng'r Work 효율적인 엔지니어링 업무 진행하기 위한 기능을 제공 한다. (예: 업무의뢰 /답변, 도면 배포의뢰/배포, 원격 시스템 연동 등) CP Eng'r Work는 엔지니어링 업무의 정의, 할당, 진행률 추적, 실시간 협업을 지원 하여 엔지니어링 업무의 효율성을 극대화한다. (3) CP Quality 부품 승인원 관리, 수입/출고 검사 및 부적합 관리 기능을 제공한다.  CP Quality는 품질 데이터를 표준화하고 중복 없이 관리하고, 검사 실행 데이터 연계를 통한 부적합 처리를 진행한다. 특히, 고객의 고유한 비즈니스 프로세스에 따라 최적의 업무 워크플로우를 맞춤형으로 설계하고 제공할 수 있다. (4) CP Experiment 연구 및 실험 데이터 관리, AI 기반 데이터 분석 및 최적화 솔루션 연계를 지원한다. CP Experiment는 실험 과제 생성 및 과제별 세부 실험 관리, 기본 실험 조건 표준화 및 데이터베이스 관리 기능을 제공한다. 또한 사용자가 입력한 실험 데이터를 분석 및 시각화하여 연구자들이 손쉽게 결과를 해석하고 전략적 결정을 내릴 수 있도록 지원한다. 보고서 자동 생성 기능과 외부 파일 연계 기능을 제공하여 연구 업무의 효율성을 극대화하며, 연구자들이 입력한 데이터를 지속적으로 활용하여 기업 내 지식으로 축적할 수 있는 환경을 제공한다.  3. 도입 효과 ■ 데이터 기반의 협업 환경을 구축하여 기업 내 실시간 데이터 공유 및 협업 강화, 품질 및 연구 데이터의 효율적 축적, 데이터 분석과 예측 기반의 전략적 의사결정을 실현함으로써 향후 디지털 트윈을 통한 정밀한 가상 검증과 예측 능력을 확보한다. ■ 업무 생산성 향상, 업무 프로세스 자동화, 프로젝트 진행의 투명성 확보, 협력사 및 내부 부서 간 효율적인 실시간 협업 가능, 데이터 기반 의사결정 및 AI 기반 업무 최적화를 통해 기업의 연구개발 및 제조 경쟁력을 강화한다. ■ 부품 및 품질 데이터 관리 효율성 증가, 검사 기준의 일관성 유지, 품질 데이터의 체계적인 축적을 통해 향후 AI 기반 품질 분석 및 예측 활용 가능성 확보, 고객 맞춤형 업무 프로세스 제공을 통한 품질 업무의 신속한 대응과 효율성 극대화를 실현한다. ■ 실험 데이터 관리의 효율성 향상, 연구 프로세스의 투명성 및 신뢰성 강화, 데이터 기반의 의사결정 지원, 체계적으로 축적된 데이터를 활용한 향후 AI 기반의 연구 최적화 가능성을 확보하여 연구 및 실험 업무의 생산성과 정확성을 극대화한다.  4. 주요 고객 국내와 반도체, 자동차, 바이오 산업의 제조 기업들과 제품 개발 End-to-End 프로세스 상에서 연구개발(R&D) 업무, 엔지니어링 업무, 협력사 협업 업무를 진행 하면서 발생하는 데이터를 체계적으로 관리하고, AI 기반 학습이 가능한 정보 구조체를 생성하는 프로젝트를 진행중이다.     상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-13
AI 마케팅 시대, ‘실전형 생성형 AI 지형도 3.0’ 공개
PR 및 마케팅 전문가 위한 ‘실전형 생성형 AI 지형도 3.0’ 소개    생성형 AI 지형도 3.0 (이미지 제공 : 함샤우트 글로벌) 함샤우트 글로벌이 급변하는 생성형 AI 시장의 흐름을 반영한 ‘생성형 AI 지형도 3.0’을 새롭게 선보였다. 지난해 3월과 9월에 이은 세 번째 업데이트를 통해 공개된 이번 지형도는 단순한 정보 나열을 넘어, 마케팅 실무자들이 실제 업무에 적용 가능한 ‘실행형 가이드’로서 AI 도구 선택의 기준을 제시하고 AI 시대의 전략적 도구 역할을 할 것으로 보인다. 마케팅 업무 42% 대체 전망…실무 중심 ‘실행형 AI 지형도’로 진화   IDC의 연구에 따르면 2026년까지 생성형 AI가 전통적인 마케팅 업무의 42%를 대체하고, 2029년까지 전체 마케팅 생산성을 40% 향상시킬 것으로 예측된다. 이미 79%의 마케터들이 콘텐츠 제작에 생성형 AI를 활용하고 있으며, 기업들의 30%는 AI 투자에서 2배의 투자수익률(ROI)을, 40%는 3배 이상의 ROI를 기대하고 있는 상황이다. 이러한 변화는 마케터의 업무 방식을 근본적으로 변화시키고 있다. 단순한 보조 도구를 넘어, 생성형 AI는 마케터가 전략 수립부터 실행까지 주도적으로 이끌어갈 수 있도록 돕는 ‘필수 업무 파트너’로 그 중요성이 커지고 있다. 함샤우트 글로벌은 이러한 시장의 흐름을 반영하여 이번 ‘생성형 AI 지형도 3.0’을 단편적인 AI 툴 분류를 넘어 실제 업무에 즉시 활용 가능한 실행형 가이드로 기획했다. 업무 목적별 AI 툴 정보 제공…클릭 한 번으로 상세 정보 확인   함샤우트 글로벌이 공개한 ‘생성형 AI 지형도 3.0’은 마케팅 및 PR 업무에 필수적인 △범용 생성형 AI, △콘텐츠 제작 및 편집, △데이터 분석 및 보고, △마케팅 및 프로모션 자동화, △업무 관리 영역에 특화된 AI 툴 정보를 제공한다. 특히 기존의 AI 지형도들이 단순히 AI 툴의 카테고리만 보여주는 것과 달리, 각 툴에 대한 자세한 정보를 확인할 수 있는 페이지로 연결되도록 제작된 것이 특징이다. PDF 형태로 제공되는 ‘생성형 AI 지형도 3.0’에서 툴 로고를 클릭하면 AI 전문 정보 플랫폼 ‘AI 매터스(AI Matters)’에서 제공하는 상세 정보를 확인하고 실제 업무에 바로 활용할 수 있도록 편의성을 높였다.   웹 탐색 기반 AI 툴 확산, 멀티모달 기능 통합 등 핵심 변화 주목   생성형 AI 시장이 빠르게 변화하는 만큼, 함샤우트 글로벌이 지난해 9월 발표한 2.0 버전과 비교했을 때 이번 ‘생성형 AI 지형도 3.0’에서는 다음과 같은 핵심적인 변화들을 확인할 수 있다. 가장 눈에 띄는 변화는 실시간 정보 검색 기능을 탑재한 웹 탐색 기반 AI 툴의 확산이다. 챗GPT나 퍼플렉시티(Perplexity)와 같이 뉴스 기사, SNS 트렌드, 업계 보고서 등 외부 정보를 실시간으로 검색하고 활용할 수 있는 기능이 적용된 툴이 크게 증가하여, 마케터들은 하나의 도구만으로 정보 조사부터 콘텐츠 제작까지 통합적으로 처리할 수 있게 되었다. 특히 마누스(Manus)나 젠스파크(Genspark)와 같은 AI 에이전트까지 등장하며 더욱 포괄적인 탐색과 심층적인 분석이 가능해졌다. 또한 이미지 생성, 텍스트 작성, 음성 합성, 영상 편집 등 다양한 기능을 하나의 툴에 통합한 ‘올인원 툴’, 즉 멀티모달 기능을 통합한 AI 툴이 급증했다는 점도 중요한 변화다. 전체 AI 툴 중 약 40%가 복합적인 멀티모달 기능을 제공하는 것으로 나타났다. 이와 더불어 한국어를 정식으로 지원하는 AI 툴이 크게 늘어 국내 마케팅 실무자들이 언어 장벽 없이 다양한 글로벌 툴을 활용할 수 있는 기반이 마련되었다. 지형도 2.0 발표 당시보다 한국어 지원 AI 툴이 40% 이상 증가한 것은 국내 사용자들에게 매우 긍정적인 변화라고 할 수 있다. AI 시대, SAO(Search AI Optimization) 전략 중요성 부각   생성형 AI의 대중화로 인해 소비자 행동 양상이 빠르게 변화하면서 함샤우트 글로벌이 연구한 DCA(Desire, Chat, Action) 모델과 같은 새로운 소비자 의사결정 과정이 중요하게 자리 잡고 있다. 소비자들이 AI와의 대화를 통해 정보를 얻고 구매를 결정하는 환경에서는 AI 생성 결과물에 브랜드가 어떻게 노출되는지가 마케팅의 핵심 요소로 떠오르고 있다. 따라서 기업들은 단순한 업무 자동화를 위한 AI 활용뿐만 아니라, SAO(Search AI Optimization), 즉 AI 검색 최적화를 통해 자사의 브랜드가 AI 생성 결과물에 효과적으로 노출될 수 있는 전략 수립에 더욱 심혈을 기울여야 할 것이다. 함샤우트 글로벌 김재희 대표는 “이번 지형도 3.0은 단순한 AI 트렌드 정리를 넘어, 생성형 AI 시대에 마케팅 실무자들에게 실질적으로 필요한 도구와 정보의 길잡이를 제공하는 데 큰 의미가 있다”며 “빠르게 발전하는 AI 생태계 속에서 지형도 3.0은 실전 마케터들의 ‘AI 나침반’이자 전략적 의사결정을 위한 로드맵이 될 것”이라고 강조했다. 이번에 공개된 ‘생성형 AI 지형도 3.0’을 통해 마케터들은 자신의 업무 목적에 따라 필요한 AI 툴을 쉽고 빠르게 선택할 수 있다. 첨부 파일에서 고해상도 파일로 다운 가능하다.
작성일 : 2025-05-10
AutoForm Car Body Planner, 차체 구매 견적 및 비용 산출 프로세스
AutoForm Car Body Planner   개발 : AutoForm, www.autoform.com 자료 제공 : AutoForm, 02-6332-1150, www.autoform.com/kr   AutoForm(오토폼)은 제품 설계부터 차체 조립에 이르기까지 전체 개발 프로세스 체인의 디지털화를 지원하는 통합 플랫폼을 제공한다. 특히, 디지털화 노력이 상대적으로 미진했던 차체 구매 부문의 견적 및 비용 산출 프로세스의 투명성을 확보하기 위해 ‘AutoForm CarBody Planner’를 도입하여 구매 프로세스의 디지털화를 추진하고 있다. 이는 ESG 경영과 맞물려 고객사로부터 큰 주목을 받고 있다. 또한, ESG 경영을 위한 디지털 트랜스포메이션을 통해 지속 가능한 경영을 실현하고, 환경적, 사회적, 거버넌스 측면에서의 책임을 다하기 위해 노력하고 있다. 1. 주요 특징  자동차 차체 개발 프로세스에서 초기 제품 설계 후, OEM 협력사의 구매 부서가 CBP를 통해 자동으로 수율을 검토한다. 이를 통해 빠른 대응과 OEM의 입찰 원가인 수율 보고서 작성이 간소화된다. 또한, OEM 구매 부서는 차종별 수율 이력 관리를 통해 효율성을 높이고, 협력사의 작업 시간을 단축하며, 입찰 정보 계산의 디지털화를 통해 경험에 의한 편차를 줄일 수 있다. 2. 주요 기능 ■ 웹사이트 기반에서 차체 전체 입력 및 각 제품의3D확인 가능 ■ 제품의 소제 및 정보를 차제 제품 입력과 동시에 적용 가능 ■ AutoForm Simulation 기반의 전체 제품 자동 수율 계산   3. 도입 효과 OEM 구매팀의 입찰 결정 시 정합성 확보로 신뢰성이 높아지며, 자동 수율 검토 덕분에 빠르고 효율적인 대응이 가능하다. 입찰 정보 계산의 디지털화로 경험에 의한 편차가 제거되고, 협력사의 업무 효율성 증대와 작업 시간 단축으로 생산성이 향상된다. 마지막으로, 클라우드 기반의 협업 공간 제공으로 부서 간 원활한 협업이 가능하다. 이러한 특징과 효과를 통해 AutoForm의 디지털 트랜스포메이션은 구매 프로세스의 혁신을 이끌고, ESG 경영을 실현하는데 큰 기여를 하고 있다. 4. 주요 고객 사이트 오토폼은 전 세계 50여 개국, 1,000여 개 회사에서 3,500명 이상의 사용자가 주요 엔지니어링 및 제조 공정을 위해 신뢰하고 있다. 주요 고객은 자동차 및 기타 OEM, 금형 및 스탬핑 업체, 철강 및 알루미늄 공급업체이며, 항공 우주 산업뿐만 아니라 의료, 가전 및 백색 가전 산업으로도 점점 더 진출하고 있다.     상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-06
지멘스, 모든 규모의 기업이 PLM을 활용할 수 있도록 팀센터 X 확장
지멘스 디지털 인더스트리 소프트웨어는 모든 규모의 조직이 SaaS(서비스형 소프트웨어) 기반 PLM(제품 수명주기 관리)을 활용하여 제조 산업 전반의 디지털 전환과 혁신을 촉진할 수 있도록 팀센터 X(Teamcenter X) 소프트웨어의 새로운 버전을 출시한다고 발표했다. 새로운 팀센터 X 제품군은 기계, 전기, 전자 개발을 아우르는 프로세스 관리 및 크로스 도메인 기능 등 다양한 고급 기능을 사전 구성된 형태로 제공한다. 팀센터 X는 기존 두 종류의 버전에 새롭게 두 가지를 추가해, 총 네 가지 버전으로 제공된다.     팀센터 X 에센셜즈(Teamcenter X Essentials)는 간편한 배포와 낮은 운영 비용을 고려하여 설계되었으며, 기계 설계에 집중하는 기업을 위한 데이터 관리 기능을 제공한다. CAD 데이터 관리, 제품 구조 및 리비전 관리, 사용 위치 검색, 체크인/체크아웃, 3D 보기 및 마크업 기능이 포함되어 있으며, 기업의 성장에 따라 확장성을 지원한다. 새롭게 출시된 팀센터 X 스탠더드(Teamcenter X Standard)는 에센셜즈 버전을 기반으로 단순 변경 관리, 프로젝트 일정 관리, 문서 관리, 보고서 생성 등 추가적인 PLM 기능을 포함한다. 모든 기능은 사전 구성된 형태로 제공되며, 고객의 요구에 맞게 조정할 수 있다. 역시 새롭게 출시된 팀센터 X 어드밴스드(Teamcenter X Advanced)는 제품 수명 주기 전반에 걸쳐 기계, 전자 및 전기 설계 간의 크로스 도메인 협업이 필요한 기업을 지원한다. 전기 및 전자 설계 통합 및 분류를 위한 데이터 관리 기능이 추가되었으며, 마찬가지로 사전 구성된 상태로 제공되고 필요 시 맞춤화할 수 있다. 팀센터 X 프리미엄(Teamcenter X Premium)은 클라우드 공급자를 선택할 수 있으며, 팀센터의 전체 기능을 활용하고자 하는 기업을 위한 포괄적 PLM 설루션이다. 엔터프라이즈 BOM, 비즈니스 시스템 통합, 모델 기반 시스템 엔지니어링(MBSE), 제조 계획, 품질 및 컴플라이언스 관리, 제품 비용 및 서비스 수명 주기 관리까지 포함한다. 또한 산업용 기계, 의료기기, 반도체 등 특정 산업군을 위한 사전 구성 설루션도 제공된다. 지멘스 디지털 인더스트리 소프트웨어의 프랜시스 에반스(Frances Evans) 라이프사이클 협업 소프트웨어 수석 부사장은 “팀센터 X의 이번 확장은 SaaS PLM을 모든 규모의 기업이 보다 쉽게 접근할 수 있도록 하려는 지멘스의 사명을 이어가는 것”이라면서, “새로운 팀센터 X의 기능은 더 많은 고객이 빠르게 PLM 도입을 시작하고, 이후 팀센터 포트폴리오 전반을 통해 비즈니스 과제를 확장해 나갈 수 있도록 돕는다”고 말했다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
로크웰 오토메이션, OT 사이버 위협 대응 위한 신규 보안 모니터링 서비스 출시
로크웰 오토메이션이 운영 기술(OT) 환경을 위한 신규 보안 모니터링 및 대응(Security Monitoring & Response) 서비스를 출시했다고 밝혔다. 이 서비스는 산업 조직이 점점 정교해지는 사이버 위협에 효과적으로 대응하고, 복원력 있는 운영 체계를 구축할 수 있도록 설계됐다. 이번 신규 서비스는 로크웰 오토메이션의 OT 보안 운영 센터(Security Operations Center : SOC)와 경험이 풍부한 사이버 보안 분석가로 구성된 전담팀이 실시간으로 위협을 탐지하고 대응함으로써, OT 보안의 복잡성을 해소하고 기술 격차 및 운영 비효율성을 최소화할 수 있도록 지원한다. 산업 사이버 보안 사고, 시스템 취약성, 그리고 숙련된 보안 인력의 부족으로 인해 OT 환경의 보안은 점점 복잡해지고 있다. 실제로 최근 발표된 스마트 제조 현황 보고서에 따르면, 사이버 보안 위협과 인력 부족은 모두 제조 산업에 영향을 미치는 중요 상위 5대 외부 장애 요인으로 지목되었다. 이번 설루션의 주요 기능으로는 ▲지속적인 보안 모니터링 및 대응 서비스 ▲신속한 사고 대응 및 문제 해결 ▲포괄적인 보고 체계 및 유연한 확장성이 있다.     보안 모니터링 및 대응 서비스는 OT 환경에 대한 연중무휴 24시간 실시간 모니터링 기능을 통해 잠재적 위협을 신속하게 탐지하고, 고급 분석 기법을 통해 원시 데이터를 실행 가능한 인사이트로 전환함으로써 대응의 정확성과 속도를 높인다. 또한, 사고 발생 시 축적된 노하우와 검증된 절차를 기반으로 한 단계별 대응 가이드를 통해 사고를 효율적으로 관리하고, 운영 중단을 최소화한다. 로크웰 오토메이션의 SOC 분석가는 고객의 보안팀을 보완하며 신속한 대응을 제공한다. 보고 체계와 확장성 측면에서도 강점을 갖추고 있다. 로크웰 오토메이션은 고객이 조직 차원에서 보안 상태를 체계적으로 점검하고 개선할 수 있도록 월간 경영진 요약 보고서와 분기별 비즈니스 리뷰를 제공하며, 주요 이해관계자들의 전략적 참여를 유도한다. 또한 모듈형 구조로 설계된 본 서비스는 각 고객의 고유한 요건에 맞춰 유연하게 확장 및 맞춤화가 가능하다. 이번 서비스를 통해 고객은 위협을 조기에 탐지하고 신속히 완화하여 운영 중단 및 재정적 손실을 줄일 수 있으며, 반복적인 보안 작업을 자동화함으로써 전반적인 운영 효율성을 높일 수 있다. 로크웰 오토메이션은 특히 실시간 보안 가시성을 기반으로 데이터 기반의 의사결정이 가능하며, 전문 인력이 부족한 환경에서도 효과적인 보안 체계를 유지할 수 있는 대안으로 작용할 것으로 기대하고 있다. 로크웰 오토메이션의 닉 크리스(Nick Creath) 사이버 보안 서비스 수석 제품 관리자는 “사이버 위협이 갈수록 정교해지는 상황에서 제조업체는 상시적인 경계와 전문 대응 역량이 필요하지만, 이를 위한 내부 리소스가 부족한 경우가 많다”며, “자사의 보안 모니터링 및 대응 서비스는 연중무휴 실시간 위협 감지와 전문가 주도 대응을 통해 고객의 보안 태세를 강화하고 기술 격차를 해소할 수 있도록 돕는다”고 밝혔다.
작성일 : 2025-04-29
마이크로소프트, ‘2025 업무동향지표’ 통해 AI-인간 협업 시대 예고
마이크로소프트가 연례 보고서인 ‘2025 Work Trend Index(업무동향지표)’를 발표하면서, AI가 재편하는 업무 환경과 프론티어 기업의 등장을 조명하는 한편 AI 시대의 변화에 대응할 로드맵을 제시했다. AI는 단순한 기술을 넘어 사고하고 추론하며 복잡한 문제를 해결하는 동반자로 진화하고 있다. 이에 마이크로소프트는 ‘2025 업무동향지표’를 통해 AI가 조직 경영과 비즈니스에 미치는 영향에 대한 주요 트렌드를 공개했다. 이번 보고서는 한국을 포함한 31개국 3만 1000 명의 근로자 대상 설문조사 결과와 함께, 마이크로소프트 365에서 수집된 수 조 건의 생산성 신호, 링크드인의 노동·채용 트렌드, 그리고 AI 스타트업, 학계 전문가, 경제학자 등과의 협업을 통해 도출됐다.     이번 보고서는 ‘프론티어 기업(Frontier Firm)’이라는 새로운 기업 유형이 등장하고 있으며, 향후 2-5년 안에 대부분의 조직이 이 방향으로 전환을 시작할 것으로 전망했다. 프론티어 기업은 인간과 AI 에이전트가 함께 일하는 하이브리드 팀을 중심으로 유연하게 운영되며, 빠르게 성장하고 성과를 만들어내는 것이 특징이다. 기업 리더의 81%는 향후 12~18개월 내 자사 AI 전략에 AI 에이전트가 광범위하게 통합될 것으로 기대하고 있으며, 실제로 AI 도입 속도도 빠르게 가속화되고 있다. 전체 리더 중 24%는 자사에 이미 전사 차원의 AI 도입이 이뤄졌다고 응답했으며, 시험 운영(pilot) 단계에 머무르고 있다고 답한 리더는 12%에 불과했다. 프론티어 기업은 인간과 AI의 협업 수준에 따라 세 단계로 진화한다. 1단계에서는 AI가 반복적인 업무를 보조해 인간의 효율을 높인다. 2단계에서는 에이전트가 팀의 디지털 동료로 합류해, 사람의 지시에 따라 구체적인 업무를 수행한다. 마지막 3단계에서는 인간이 방향을 제시하면, 에이전트가 전체 업무 흐름을 주도해 업무를 실행하고 인간은 필요할 때만 개입한다. 또한, 보고서는 AI의 급속한 발전으로, 인간의 시간·에너지·비용에 의존하던 지능이 이제는 언제든지 사용할 수 있는 ‘언제든지 사용할 수 있는 지능(Intelligence on tap)’으로 변화하고 있다고 분석했다. 합리적 사고, 계획, 행동이 가능한 AI와 에이전트의 등장으로 인해 이제 기업은 필요에 따라 팀과 개인의 역량을 확장할 수 있다. 실제로 글로벌 리더의 82%(한국 77%)는 2025년을 전략과 운영상의 주요 사항들을 재고해야 할 전환점으로 보고 있으며, 82%의 리더(한국 77%)는 향후 12~18개월 내에 디지털 노동력을 활용해 인력의 역량을 확대할 수 있을 것으로 기대하고 있다. 이 같은 변화의 배경에는 비즈니스 수요와 인간의 역량 간의 간극, 즉 역량 격차(Capacity Gap)가 있다. 리더의 53%(한국 65%)는 지금보다 더 높은 생산성이 필요하다고 답했지만, 리더를 포함한 근로자 80%(한국 81%)는 업무에 집중할 시간이나 에너지가 부족하다고 느꼈다. 마이크로소프트 365 사용자 행동 데이터에 따르면, 직원들은 회의, 이메일, 알림 등으로 하루 평균 275번 업무 방해를 받고 있으며, 10건의 회의 중 6건은 별다른 예고 없이 갑작스럽게 열리는 것으로 나타났다. 이 가운데, 일부 기업은 AI를 기반으로 조직 경영 전략을 새롭게 설계하고 있으며, 마이크로소프트는 이들을 ‘프론티어 기업’으로 정의했다. 31개국 3만 1000명 가운데 프론티어 기업에 근무하는 844명의 직원 71%는 자사가 빠르게 성장하고 있다고 답했으며, 이는 글로벌 평균(37%)의 약 두 배에 해당한다. 또 이들 중 55%(글로벌 20%)는 더 많은 업무를 감당할 여력이 있다고 응답했으며, 93%(글로벌 77%)는 향후 커리어 전망에 자신감을 보였다.     산업과 직무의 진화에 따른 다면적인 변화도 예고됐다. 리더의 45%(한국 44%)는 향후 12~18개월 안에 디지털 노동력을 통해 팀 역량을 확대하는 것을 최우선 과제로 꼽았다. 한편 링크드인에 따르면 유망 스타트업의 고용 증가율은 전년 대비 20.6%로, 빅테크(10.6%)의 약 두 배에 육박했다. 이어서, 보고서는 전통적인 조직 구조를 보완할 새로운 모델로 워크 차트(Work Chart)를 제시했다. 기존 조직이 재무, 마케팅, 엔지니어링 등 기능 중심으로 팀을 구성해왔다면, 워크 차트는 부서가 아닌 달성해야 할 목표를 기준으로 팀을 유연하게 구성하는 방식이다. 이 과정에서 AI 에이전트는 팀원으로서 분석, 지원, 제안 등 다양한 역할을 수행하며 인간의 역량을 확장한다. AI 에이전트의 역할이 모든 업무 영역에서 동일한 속도로 발전하지는 않을 것으로 예상됐다. 향후 일부 업무는 에이전트가 대부분을 수행하고, 인간은 고위험·고정밀 업무를 감독하는 방식으로 역할이 조정될 것으로 내다봤다. 판단, 공감, 사고력이 요구되는 업무는 인간의 개입이 필요하다는 분석이다. 인간과 에이전트 간 역할 분담을 측정할 수 있는 운영 지표인 인간-에이전트 비율(Human-agent ratio)의 필요성도 제시했다. 하이브리드 팀의 생산성을 극대화하기 위해서는 에이전트의 수뿐만 아니라, 이들을 효과적으로 조율하고 관리할 수 있는 인간의 수 역시 함께 고려해야 한다는 설명이다.  실제로 리더의 46%(한국 48%)는 자사에서 에이전트를 활용해 업무 절차나 프로세스를 완전히 자동화하고 있다고 답했다. AI 투자와 관련해서는, 향후 12~18개월 내 고객 서비스, 마케팅, 제품 개발 분야에서 확대가 빠르게 이뤄질 것으로 예상하는 리더가 많았다. AI에 대한 인식 차이도 주목된다. 직원의 52%(한국 52%)는 AI를 명령형 도구로 여기고 단순 지시 수행에 활용하고 있었고, 46%(한국 45%)는 조력자로 받아들여 아이디어를 구상하거나 창의적 사고를 확장하는 데 사용하는 것으로 나타났다. 이에 따라, 마이크로소프트는 조직이 향후 디지털 노동력 관리를 전담하는 지능 자원(intelligence resources) 부서나, 인간과 디지털 노동력의 균형을 조율하는 자원 최고 책임자(Chief Resources Officer)와 같은 새로운 리더십 역할 도입도 검토할 수 있다고 제언했다. 이러한 흐름 속에서, AI는 인간을 대체하기보다 협업을 통해 가치를 높이는 도구로 인식되고 있다. AI를 활용한 개인의 성과는 AI 없이 팀을 구성한 경우보다 높게 나타났으며, 직원들이 AI를 선호하는 이유로 ▲24시간 이용 가능성(42%)(한국 27%) ▲일정한 속도와 품질(30%)(한국 33%) ▲무제한 아이디어 제공(28%)(한국 25%)이 꼽혔다. 보고서는 AI 에이전트의 활용이 본격화되며, 에이전트 보스(Agent Boss) 시대가 도래할 것으로 전망했다. 이는 모든 근로자가 에이전트를 만들고 위임하고 관리하며, 에이전트 기반 스타트업의 CEO와 같은 사고방식을 갖춰야 한다는 의미다. 28%의 관리자는 인간과 AI로 구성된 하이브리드 팀을 이끌 담당자를 채용할 계획이며, 32%는 에이전트 설계·개발·최적화를 위해 12~18개월 내 AI 에이전트 전문가를 채용할 의향이 있다고 밝혔다. AI 전략 수립과 실행에서 리더의 역할도 더욱 강조되고 있다. 에이전트에 대한 친숙도, 사용 빈도, 신뢰 수준, 시간 절감 효과, 관리 역할, 사고 파트너로서 활용, 경력 기여 가능성 등 7가지 항목으로 에이전트 보스 마인드셋을 조사한 결과, 모든 지표에서 리더가 직원보다 높은 수치를 기록했다. 특히 리더들은 향후 5년 이내에 팀의 업무 범위에 ▲ AI를 활용한 비즈니스 프로세스 재설계(38%)(한국 35%) ▲복잡한 업무 자동화를 위한 멀티 에이전트 시스템 구축(42%)(한국 39%) ▲에이전트 훈련(41%)(한국 34%) ▲에이전트 관리(36%)(한국 38%) 등이 포함될 것으로 내다봤다. 에이전트에 익숙하다고 답한 리더는 67%(한국 70%)였지만 직원은 40%(한국 32%)에 그쳤고, 리더의 약 3분의 1이 AI를 통해 하루 1시간 이상을 절약한다고 응답했으나, 직원은 이보다 낮았다. AI가 커리어에 도움이 될 것이라고 본 비율도 리더는 79%, 직원은 67%로 조사됐다. 또한 51%의 관리자(한국 39%)는 향후 5년 안에, 직원의 AI 교육과 역량 강화가 자신의 업무 범위에 포함될 것으로 내다봤다. AI의 확산과 함께 조직 전반의 직무 변화가 가속화될 것으로도 전망했다. 실제로 현재 링크드인을 통해 채용된 직원 중 10% 이상은 2000년에는 존재하지 않았던 직무를 맡고 있으며, 링크드인은 2030년까지 대부분의 직무에서 요구되는 기술의 70%가 바뀔 것으로 예상했다. 한편, 83%의 리더는 AI가 신입 직원들이 더 빠르게 전략적이고 복잡한 업무에 적응하도록 도와줄 것이라고 내다봤다. 보고서는 직원들이 AI 기술을 학습하고 실무 경험을 쌓을 기회를 확보해야 하며, 기업은 이를 위한 교육과 도구를 적극 제공해야 한다고 제언했다. 직원의 52%, 리더의 57%는 자신이 속한 산업의 직업 안정성이 보장되지 않는다고 여기고 있으며, 81%의 직원이 지난 1년간 이직하지 않은 것으로 나타났다. 링크드인은 2025년 가장 주목받는 역량으로 AI 리터러시를 꼽았으며, AI 역량과 더불어 갈등 해결, 적응력, 프로세스 자동화, 혁신적 사고 등 기계가 대체할 수 없는 인간의 강점 또한 더욱 중요해질 것으로 전망했다. 마이크로소프트는 AI 시대에 유연하게 대응하기 위해 지금이 기업의 결정적 행동 시점이라고 강조하며 세 가지 실행 로드맵을 제시했다. 마이크로소프트는 ▲AI 에이전트를 디지털 직원으로 채용해 명확한 역할을 정의하고, 온보딩·책임 배분·성과 측정 등 실제 팀원처럼 관리할 것을 권고했으며 ▲고객 응대나 고위험 판단 등 인간의 개입이 필요한 영역과 자동화가 가능한 업무를 구분해, 인간과 AI의 협업 구조를 정립해야 한다고 제안하면서 ▲AI 도입을 기술 과제가 아닌 조직 혁신 과제로 보고, 시범 운영에 그치지 않고 전사적으로 빠르게 확산할 필요가 있다고 강조했다. 마이크로소프트의 자레드 스파타로(Jared Spataro) AI 기업 부문 부사장은 “AI는 조직의 경영 전략은 물론, 우리가 인식하는 지식 노동의 개념을 바꾸고 있다”며, “2025년은 프론티어 기업이 탄생한 해로, 앞으로 몇 년 안에는 AI를 통해 대부분의 산업과 조직에서 직원의 역할 경계가 새롭게 정의될 것”이라고 말했다.
작성일 : 2025-04-28