• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "방정식"에 대한 통합 검색 내용이 164개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅳ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (19)   터보 기계는 흐르는 유체와 회전하는 요소 사이에서 에너지 전달이 일어나는 기계에 초점을 맞춘 기계공학의 한 분야이다. 이러한 장치는 많은 산업 분야에서 중추적인 역할을 한다. 이번 호에서는 터보 기계의 시뮬레이션을 위한 솔버의 선택과 설정, 후처리 및 분석, 최적화 등의 과정을 살펴본다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   로터-스테이터 인터페이스 성능을 결정하고 잠재적인 문제를 식별하는 데 필수인 터보 기계의 회전 및 고정 구성 요소 간의 상호 작용을 모델링하는 방법에는 여러 가지가 있다. 다음에 설명된 방법은 동적 영역과 정적 영역 간의 정확한 흐름 전달을 보장하기 위해 로터-회전자 인터페이스를 올바르게 모델링하는 데에 사용된다.  혼합 평면 접근법 : 이 방법은 인터페이스 전반의 유동 특성을 평균화하여 회전 영역과 고정 영역 사이의 인터페이스를 모델링하는 데 사용되는 계산적으로 효율적인 정상 상태 근사치이다. 이 방법은 이들 영역 사이의 흐름을 효과적으로 ‘혼합’하여 안정된 인터페이스 조건을 제공하므로, 로터 블레이드가 고정자 베인을 통과할 때 발생하는 실제 불안정한 현상을 해결하지 않아 시뮬레이션을 단순화한다. 도메인 스케일링 방법 : 이 불안정 기법은 도메인의 물리적 치수를 스케일링하여 로터와 고정자 사이의 상대적인 움직임을 시뮬레이션하는 것이다. 다양한 회전 속도의 효과를 모델링하거나 전체 지오메트리를 명시적으로 모델링하지 않고 정수가 아닌 블레이드 수 비율을 맞추기 위해 자주 사용된다. 이 방법은 로터/스테이터 인터페이스 전체에 동일한 메시 주기성을 적용하여 양쪽에서 일관된 흐름 특성을 보장한다. 위상 지연 방법 : 이 방법은 주기성을 가정하고 도메인의 여러 세그먼트 간에 위상 변이를 적용하여 불안정한 회전자-회전자 상호 작용을 시뮬레이션할 수 있다. 이 방법을 사용하면 전체 도메인의 불안정한 동작을 표현하면서 지오메트리의 일부를 시뮬레이션할 수 있으므로 계산 비용을 줄일 수 있다. 위상 지연 방식은 반복 패턴이나 주기적 대칭이 있는 경우에 특히 유용하다. 회전 기준 프레임(RRF) : RRF 방법은 로터와 함께 회전하는 기준 프레임에서 유동 방정식을 푸는 방식이다. 이 방법은 로터 동작의 물리적 시뮬레이션 없이도 구성 요소 회전으로 인한 흐름 효과를 시뮬레이션한다. 이 방법은 정상 및 비정상 시뮬레이션 모두에 사용할 수 있다. 정상 시뮬레이션에 사용할 경우 회전하는 부품과 정지된 부품 간의 통신을 위한 인터페이스 처리가 필요한 경우가 많으며, 이때 혼합 평면 접근법을 적용할 수 있다. 슬라이딩 메시 방법 : 이 기법은 과도 시뮬레이션에 사용되며 로터와 고정자 사이의 시간에 따라 변화하는 상호작용을 캡처할 수 있다. 로터 도메인의 메시가 고정자 도메인의 고정 메시와 관련하여 움직이거나 미끄러지므로 실제 회전 및 관련 불안정 유동 현상을 시뮬레이션할 수 있다. 다중 참조 프레임(MRF) : MRF는 회전하는 영역의 흐름을 평균화하는 정상 상태 접근 방식이다. 그러나 이 방법을 사용하면 시뮬레이션 도메인의 여러 영역이 서로 다른 기준 프레임에 있을 수 있다. 따라서 회전자 도메인은 회전하는 기준 프레임에 설정하고 고정자 도메인은 고정된 상태로 유지할 수 있다. 고정 회전자 접근법 : 로터와 스테이터 위치가 서로에 대해 고정되어 있는 정상 상태 근사치로, 시간의 스냅샷을 시뮬레이션한다. 슬라이딩 메시 방식보다 계산 비용이 저렴하지만 실제 과도 효과를 포착할 수 없다.   그림 1. 특정 경우와 일반적인 경우의 로터-스테이터 처리 순서도   <그림 1>의 순서도는 특정 유동 특성에 따라 정상 상태 계산에서 로터-스테이터 인터페이스 처리를 선택하기 위한 의사 결정 프로세스를 제공한다. 시뮬레이션에 회전하는 임펠러와 고정된 볼류트 케이스 사이의 상호작용이 포함된 경우, 상세한 국소 유동 변화를 포착하고 계면 전체의 질량, 운동량 및 에너지 보존을 국소적으로 보장하기 위해 국소 보수적 결합을 권장한다. 다음으로, 계면 근처에 충격파가 존재하여 유동장에 강한 영향을 미칠 수 있는 고구배 유동 특성인 경우 1D 또는 2D 비반사 경계 조건이 제안된다. 이러한 조건은 시뮬레이션 결과를 손상시킬 수 있는 경계에서 충격파의 인위적인 반사를 최소화하도록 설계되었다. 마지막으로, 인터페이스 근처에 충격파가 없는 경우 전체 비일치 혼합 평면 또는 보수적 결합 방법을 사용하는 것이 좋다. 완전 비일치 혼합면 방법은 계면 전체의 유동 특성을 평균화하므로 회전자-회전자 상호 작용의 상세한 시간 정확도 캡처가 중요하지 않은 경우에 적합하다. 보수적 결합 접근법은 메시 적합성 없이 인터페이스 전체에서 질량, 운동량 및 에너지를 보존해야 하는 시나리오에 이상적이며, 따라서 회전자 메시와 고정자 메시 간의 어느 정도의 정렬 불일치 또는 비적합성을 수용할 수 있다. <표 1>에는 안정된 시뮬레이션에 사용할 수 있는 다양한 로터-스테이터 인터페이스 처리 방법이 요약되어 있다.   표 1. 회전자-고정자 인터페이스 처리 방법     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-03-06
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅲ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (18)   터보 기계는 흐르는 유체와 회전하는 요소 사이에서 에너지 전달이 일어나는 기계에 초점을 맞춘 기계공학의 한 분야이다. 이러한 장치는 많은 산업 분야에서 중추적인 역할을 한다.이번 호에서는 메시 작업 이후 유동 흐름 및 물리 모델을 설정하는 과정을 살펴본다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   흐름 및 물리 모델 설정 메시 프로세스를 완료한 후 흐름 및 물리 모델을 설정하는 것은 정확한 예측을 위한 토대를 마련하는 중요한 작업이다. 이 프로세스에는 미묘한 터보기계 흐름 역학을 포착하는 데 중요한 적절한 층류 또는 난류 모델을 선택하는 것이 포함된다. 또한 재료 특성 지정, 경계 조건의 신중한 구성, 초기 조건 설정이 수반된다. 이러한 세부 사항에 주의를 기울임으로써 시뮬레이션 프레임워크는 복제하고자 하는 실제 물리적 시나리오를 반영할 수 있도록 잘 준비될 것이다.   머티리얼 프로퍼티 정의 재료 속성을 올바르게 지정하면 다양한 작동 조건에서 유체 또는 고체 재료의 물리적 거동을 사실적으로 캡처할 수 있다. 다음에는 지정해야 할 주요 머티리얼 프로퍼티가 나열되어 있다.  밀도 및 점도 : 유체의 경우 이러한 특성은 특히 관성 및 흐름 저항 측면에서 흐름 거동에 영향을 미치므로 정확한 밀도와 점도를 지정하는 것이 중요하다.  열적 특성 : 여기에는 열 전달과 관련된 시뮬레이션에 필수적인 비열 용량과 열전도도가 포함된다.  압축성 : 가스의 경우 밀도와 압력의 변화를 정확하게 모델링하려면 압축성 계수가 필요하다.  탄성 및 가소성(고체 재료의 경우) : FSI와 관련된 시뮬레이션에서는 유체 힘에 대한 구조적 반응을 예측하기 위해 탄성 및 가소성과 같은 기계적 특성이 필요하다. 재료 특성은 온도, 압력 및 기타 환경 요인에 따라 변화하는 경우가 많다. 특히 다양한 작동 조건이 예상되는 시뮬레이션에서는 이러한 변화를 고려하는 것이 필수이다. 재료 특성이 부정확하면 실제 성능과 상당한 편차가 발생하여 설계 프로세스가 잘못될 수 있다.   유동 모델 선택 시뮬레이션의 물리적 특성을 반영하기 위해 재료 특성을 정의했다면, 다음 단계는 적절한 유동 모델링 접근 방식을 선택하고 구현하는 것이다. 터보 기계의 흐름은 본질적으로 불안정(unsteady)하며 3차원의 점성, 불안정 효과의 조합으로 설명할 수 있다. 그러나 터보 머신의 설계는 다열 상호 작용(예 : 전위 효과 및 파동 전파), 난류(예 : 와류 흘림 및 2차 흐름), 설계 외 효과(예 : 회전 실속 및 서지), 외부 왜곡(예 : 돌풍 및 발생 바람), 블레이드 진동(예 : 플러터 및 강제 응답) 같은 현상으로 인한 불안정한 효과를 무시하고 안정된 유동 해석에 기반하는 경우가 많다.  <그림 1>에 제시된 흐름 모델은 불안정성을 올바르게 모델링하는 데 필수이다.    그림 1. 주기성 및 안정성을 기반으로 터보 기계의 불안정성을 포착하는 흐름 모델   Large Eddy Simulation(LES) & Detached Eddy Simulation(DES) : 터보 기계의 불안정한 현상을 포착하는 충실도 높은 모델이다. LES는 큰 난기류 스케일을 해결하고 작은 난기류 스케일을 모델링한다. 반대로 DES는 단단한 벽 근처의 RANS 방법과 벽에서 떨어진 영역의 LES 방법을 혼합하여 더 큰 규모의 난류 소용돌이와 흐름 분리를 포착한다. 두 방법 모두 난류와 불안정한 흐름 역학에 대한 상세한 인사이트를 제공하지만 계산 비용이 높다.  Reynold-Average Navier-Stokes(RANS) : RANS는 터보 기계의 안정적인 흐름 조건을 시뮬레이션하는 데 이상적이다. 이 접근 방식은 시간에 따른 NS 방정식의 평균을 구하여 평균 흐름 거동에 대한 통찰력을 얻는다.  Unsteady Reynolds-Averaged Navier-Stokes(URANS) : URANS는 시간에 따른 효과를 포착하기 위해 RANS 접근 방식을 확장한 것이다. 주기적 및 일시적인 실행 문제를 시뮬레이션하는 데 사용할 수 있다. 주기적 현상은 시간 평균 주기적 솔루션과 섭동을 포함하며, 과도 실행 문제는 일시적인 시작 및 종료 시나리오와 같은 불안정하고 비주기적인 현상과 관련이 있다.  Frequency Domain Method : 주기적인 불안정 현상을 시뮬레이션하기 위한 계산 방식이다. 시간에 따른 해를 계산하는 대신 진동 주파수를 고려함으로써 불안정성으로 인한 정상 상태 효과를 분석할 수 있다. 이 방법은 특히 블레이드 통과 효과와 같은 주기적 응답을 캡처하는 데 유용하며, 전체 과도 시뮬레이션에 비해 계산 비용을 절감할 수 있다.   난기류 모델링 레이놀즈 응력이라고 하는 NS 방정식의 비선형 항은 일반적으로 다양한 난류 모델을 사용하여 모델링한다. 난류는 속도 및 압력과 같은 유체 속성이 평균값 주변에서 무작위로 예측할 수 없는 변화를 보이는 것이 특징이다. 일반적으로 레이놀즈 수가 400에서 2000 사이의 임계값을 초과할 때 나타난다. 특히 산업용 애플리케이션의 95%에서 임계 레이놀즈 수가 이 임계값을 초과한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-02-04
해석 사례로 살펴보는 플루언트의 iFSI 기능
앤시스 워크벤치를 활용한 해석 성공 사례   앤시스 플루언트(Ansys Fluent)의 iFSI 기능은 구조 연성 해석에서 매우 유용한 기능이다. 이번 호에서는 Thermo-elasticity Model을 적용한 바이메탈 열변형 해석 사례를 통해, 플루언트 iFSI 기능의 장단점을 살펴보고자 한다.    ■ 정세훈 태성에스엔이 FBU-F5팀의 수석 매니저로 유동 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   앤시스에서 제공하는 FSI(Fluid-Structure Interaction : 유동-구조 연성 해석) 해석 방법은 크게 ‘extrinsic FSI’와 ‘intrinsic FSI’로 나뉜다. Extrinsic FSI는 CFD 및 메커니컬 솔버의 결과(유체-구조 상호작용 경계면에서의 압력, 열 및 변위)를 시스템 커플링 또는 External Data와 같은 별도의 프로그램을 통해 특정 반복(iteration)/시간(time)마다 주고받는 연성 해석 방법이다. 반면, ‘intrinsic FSI(iFSI)’는 별도의 커플링 프로그램 및 FEA 솔버 없이 앤시스 플루언트 솔버 단독으로 FSI 해석을 수행하는 방법으로, 앤시스 2019R1 버전에서 베타 기능으로 처음 소개되었으며 2020R1 버전에서 정식 기능으로 추가되었다. 2024R2 버전 기준으로, iFSI 해석 시에는 다음과 같은 제한 및 주의 사항이 있다. 다면체(polyhedral) 셀을 지원하지 않음 FSI 솔루션이 초기화 또는 시작된 경우 격자를 교체할 수 없음 유체와 고체 영역은 반드시 양면 벽(즉, wall/wall-shadow)에 의해 분리되어야 함 구조 모델을 활성화하려면 도메인에 적어도 하나의 고체 영역이 있어야 함 다음 동적 메시 옵션은 지원되지 않음 : in-cylinder, six DOF, 접촉 감지(contact detection)  Dynamic Mesh Zones 대화 상자에서 양면 벽(즉, 벽 또는 벽 그림자) 바로 옆의 유체 셀 영역(벽 대화 상자의 Adjacent Cell Zone 필드에 의해 표시됨)에 대해서만 선택 가능 DEFINE_PROFILE과 같은 다른 경계 조건 프로파일 또는 UDF는 사용할 수 없음 shell conduction, mesh adaption, mesh morpher, optimizer, adaptive time stepping 기능은 사용할 수 없음 구조 모델은 앤시스 워크벤치에서 앤시스 플루언트를 실행할 때 사용할 수 없음 선형 탄성(linear elasticity) 구조 모델은 고체 재료의 항복 강도를 초과하지 않는 응력 하중에 적합함   Thermal-elasticity Model thermal-elasticity model은 앤시스 플루언트 솔버에 탑재된 다음과 같은 구성 방정식을 통해 열하중에 의한 구조물의 변형을 예측하는 기능이다.   εt = total strain vector ∆T= T – Tref , Tref = Starting(reference) temperature  {α} = vector of coefficients of thermal expansion  {β} = vector of thermos elastic coefficients = [D]{α}  [D]  = elastic stiffness matrix <그림 1>에서 Energy Equation을 선택하고, <그림 2>와 같이 Structural Model에서 Thermal Effect 항목을 설정하면 해당 기능을 사용할 수 있다.   그림 1. Energy Equation 선택   그림 2. Structural Model 설정   바이메탈 열변형 해석 사례 <그림 3>은 유동장 내부의 바이메탈 변형량을 예측하기 위한 iFSI 해석 사례의 개략도이다.   그림 3. 바이메탈 연성 해석 개략도   이 사례에서 바이메탈 하부 재료(steel1)는 상부 재료(steel2)에 비해 더 높은 열팽창 계수를 가지고 있으며, 각 재료의 물성은 <표 1>과 같다. 유체는 이상기체로 가정했다. 바이메탈이 뜨거운 유체에 의해 가열되어 발생하는 열팽창과 굽힘 차이를 예측하기 위해 Thermal-elasticity Model을 적용한 iFSI 기법으로 해석을 진행했다.   표 1. 바이메탈 물성값     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-01-06
구글, ‘제미나이 2.0’ 출시와 함께 ‘에이전트형 시대’ 발표
구글이 새로운 에이전트 시대를 위한 ‘에이전트형(agentic) AI 모델’인 ‘제미나이 2.0’을 출시했다. 제미나이 2.0은 네이티브 이미지 및 오디오 출력, 네이티브 툴 사용 등 향상된 멀티모달 기능을 제공하여 텍스트, 이미지, 동영상, 오디오, 코드 등 다양한 형태의 정보를 자연스럽게 이해하고 처리할 수 있다.  구글은 “제미나이 2.0는 지금까지 선보인 모델 중 가장 뛰어난 성능을 자랑한다”면서, “리서치, 보고서 작업 등 다양한 방면의 복잡한 작업을 수행하는 ‘에이전트’ 기능을 갖춘 AI 시대를 본격적으로 열어갈 것”이라고 밝혔다.  제미나이 2.0은 네이티브 이미지 및 오디오 출력, 네이티브 툴 사용 등 향상된 멀티모달 기능을 바탕으로 이용자 경험을 혁신할 뿐 아니라, 개발자에게도 강력한 AI 기반 애플리케이션을 구축할 수 있는 툴을 제공한다. 전 세계 제미나이 이용자는 데스크톱과 모바일 웹에서 제미나이 2.0을 사용할 수 있다. 데스크톱과 모바일 웹의 모델 드롭다운 메뉴에서 ‘2.0 플래시 실험 버전’을 선택하면 채팅에 최적화된 제미나이 2.0을 바로 사용해 볼 수 있으며, 이는 제미나이 모바일 앱에도 곧 적용될 예정이다.     제미나이 2.0을 기반으로 새롭게 개선된 ‘프로젝트 아스트라(Project Astra)’는 다국어 대화, 구글 툴(구글 검색, 구글 렌즈, 맵스 등) 사용, 최대 10분 동안의 대화를 기억하는 향상된 메모리, 빠른 응답 속도 등의 기능을 제공한다. 구글은 이러한 기능을 구글의 AI 어시스턴트인 제미나이 앱 등 구글 제품은 물론, 다른 폼 팩터에도 도입할 계획이다.  ‘프로젝트 마리너(Project Mariner)’는 웹 브라우저에서 작동하는 에이전트 프로토타입으로, 픽셀 및 텍스트, 코드, 이미지, 양식과 같은 웹 요소를 포함해 브라우저 화면의 정보를 이해하고 추론한 다음, 실험적인 크롬 확장 프로그램(Chrome extension)을 통해 해당 정보를 활용해 작업을 완료한다. 개발자를 위한 AI 에이전트인 ‘줄스(Jules)’는 깃허브(GitHub) 워크플로에 직접 통합돼 개발자의 지시와 감독 하에 이슈를 처리하고, 계획을 세우고 실행하는 기능을 제공한다.  구글은 제미나이 2.0을 사용해 비디오 게임의 가상 세계 탐색을 지원하는 에이전트를 구축했다. 이 에이전트는 화면의 동작만을 기반으로 게임에 대해 추론하고, 실시간 대화를 통해 다음에 무엇을 해야 할지 제안할 수 있다. 가상 게임의 동반자 역할은 물론, 구글 검색을 활용해 웹 상의 풍부한 게임 지식을 제공할 수도 있다. 이 외에도 구글은 제미나이 2.0의 공간 추론 기능을 로봇 공학에 적용해 물리적 세계에서 도움을 줄 수 있는 에이전트를 실험하고 있다. 한편, 구글은 제미나이 2.0가 구글 검색의 AI 개요(AI Overview) 기능에도 적용되어, 고급 수학 방정식, 멀티모달 쿼리, 코딩 등 더욱 복잡한 질문에 대한 답변을 제공하도록 개선될 예정이라고 밝혔다.  전 세계 제미나이 이용자는 데스크톱 및 모바일 웹에서 제미나이 앱을 통해 제미나이 2.0 플래시(Gemini 2.0 Flash) 실험 버전을 AI 어시스턴트로 사용할 수 있다. 제미나이 2.0 플래시 실험 모델은 구글 AI 스튜디오(Google AI Studio) 및 버텍스 AI(Vertex AI)를 통해 모든 개발자가 사용할 수 있다. 개발자들은 제미나이 2.0을 활용하여 텍스트, 오디오 및 이미지를 포함한 통합 응답을 생성하고, 구글 검색 및 코드 실행과 같은 툴을 활용하는 애플리케이션을 구축할 수 있다.
작성일 : 2024-12-12
[다쏘시스템] 제주에서 개최되는 Asian Modelica Conference 2024에 참여하세요. (12/12-13)
    Asian Modelica Conference 2024에 다쏘시스템이 Platinum Sponsor로 참여합니다! 2024년 12월 12일(목) - 13일(금) 제주 ICC 호텔 Asian Modelica Conference 2024는 iVH(자동차공학연구소) 주관으로 올해 특별히 제주에서 개최됩니다.  특히, 자동차, 전자, 에너지, 항공방산 등 다양한 산업군에서 다쏘시스템의 Dymola 를 활용했던 연구와 프로젝트가 공유될 예정이니, Modelica 언어를 활용한 최신 기술에 대해 알아볼 수 있는 기회를 놓치지 마세요! 행사 자세히 보기 [개념 짚고가기 1] Modelica란? Modelica의 도구들은 효율적인 시뮬레이션 코드 생성을 위한 방정식을 통해 일을 처리하기 때문에, 분야에 국한되지 않습니다. 기계, 전기, 열 유동 분야의 다양한 애플리케이션을 다루도록 설계된 Modelica 라이브러리에 대해 알아보세요.  자세히 알아보기 [개념 짚고가기 2] 다쏘시스템 Dymola Dymola(Dynamic Modeling Laboratory)는 자동차, 항공우주, 로봇 공학, 프로세스 및 기타 응용 분야에서 사용할 수 있는 복잡한 통합 시스템의 모델링 및 시뮬레이션을 위한 완벽한 도구입니다. 복잡한 다분야 시스템 모델링과 분석 문제를 빠르게 해결할 수 있는 Dymola에 대해 알아보세요! 자세히 보기 다쏘시스템 솔루션에 대한 구매 문의 및 상담은 아래를 통해 자세히 안내해 드리겠습니다. 상담 문의하기
작성일 : 2024-12-10
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅱ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (16)   터보 기계는 흐르는 유체와 회전하는 요소 사이에서 에너지 전달이 일어나는 기계에 초점을 맞춘 기계공학의 한 분야이다. 이러한 장치는 많은 산업 분야에서 중추적인 역할을 한다.이번 호에서는 지오메트리 준비를 위한 팁과 메시의 생성/변형/세분화에 대한 내용을 소개한다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   효과적인 지오메트리 준비를 위한 팁 지오메트리 생성 후에는 안정적인 터보 기계 시뮬레이션을 달성하기 위해 효과적인 모델 준비가 필수이다. 이 프로세스를 관리하는 데 도움이 되는 팁을 다음과 같이 소개한다.  지오메트리 정리 및 수리 : CAD 모델에서 틈새, 겹침 또는 중복된 가장자리를 복구한다. 양질의 메시를 생성하려면 깨끗하고 빈틈없는 지오메트리가 필요하다.  메시 최적화 : 날카로운 모서리나 모서리에 필렛을 추가하고 지오메트리를 분할하여 로컬 메시를 세분화할 수 있도록 한다.  가능한 경우 단순화 : 연구 중인 유동 물리학에 필수적이지 않은 작은 피처와 디테일을 제거한다.  매개변수화 : 설계 연구를 위해 치수를 쉽게 변경할 수 있도록 지오메트리를 매개변수화한다. 이러한 팁을 따르면 엔지니어는 터보 기계 형상이 최고 수준의 표준에 맞게 준비되었다고 확신할 수 있다.   메시 생성 지오메트리 생성 및 준비 외에도 전처리에는 복잡한 형상을 위한 메시 생성이 포함되며, 이는 종종 터보 기계 CFD 워크플로의 병목 현상이 된다. 터보 기계 구성 요소의 복잡성과 작동의 동적 특성으로 인해, 정확한 시뮬레이션 결과를 얻기 위해서는 정밀하고 잘 구성된 메시가 필요하다. 자동화 및 템플릿 기반 접근 방식을 활용하면 이 단계의 효율성을 높이고 전반적인 생산성을 높일 수 있다.   메시 생성의 기본 사항 메시 생성은 계산 영역을 셀 또는 요소라고 하는 작은 영역으로 세분화하여 그 위에 지배 방정식을 푸는 프로세스이다. 잘 구성된 그리드는 필수적인 흐름 특징과 물리적 현상을 포착하는 정확하고 효율적인 터보 기계 시뮬레이션을 보장한다. [참고] 피델리티 오토메시를 통한 향상된 터보 기계 메싱 피델리티 오토메시(Fidelity Automesh) 소프트웨어 패키지는 회전 기계 메싱을 위한 툴로, 피델리티 오토그리드를 통한 자동화된 멀티블록 구조형 메싱과 피델리티 헥스프레스를 통한 비정형 메싱 기능을 제공한다. 모든 유형의 터보 기계 애플리케이션을 위한 템플릿을 갖춘 이 설루션은 메시 프로세스를 간소화하여 복잡한 지오메트리를 손쉽게 처리하고 고품질 메시를 빠른 시간 내에 제공한다. 피델리티 오토메시로 시뮬레이션 워크플로를 가속화하여 설계 혁신과 최적화에 집중할 수 있다.   그림 1. (a) 풍력 터빈의 구조화된 메시, (b) 로터 블레이드 팁의 하이브리드 메시   메시 유형 터보 기계 시뮬레이션에 사용되는 주요 메시 유형과 기법은 다음과 같다.  Structured : 일정한 간격의 그리드 포인트로 구성된 구조화된 메시(그림 1-a)는 일관된 패턴을 사용하며, 종종 격자형 구조와 유사하다. 예측 가능한 흐름 패턴이 있는 영역에서는 고품질 해상도를 제공하지만, 복잡한 지오메트리에서는 구현하기가 어려울 수 있다.  멀티블록 : 계산 도메인은 구조화된 격자로 개별적으로 메시 처리된 여러 개의 간단한 블록으로 나뉜다. 이 방법을 사용하면 복잡한 도형에 대해 국소적인 세분화가 용이하고 그리드를 쉽게 생성할 수 있다.  Unstructured : 이러한 메시는 불규칙한 패턴으로 구성되며 2D에서는 삼각형, 3D에서는 사면체로 구성되는 경우가 많다. 복잡한 형상에 적합한 비정형 메시는 복잡한 모델에 쉽게 적용할 수 있지만, 중요한 흐름 영역에서 해상도가 저하되는 경우가 있다.  Hybrid : 구조화된 메시와 구조화되지 않은 메시의 장점을 결합한 하이브리드 메시(그림 1-b)는 경계 레이어와 같이 더 높은 해상도가 필요한 영역에는 구조화된 그리드를 사용하고, 복잡한 기하학적 영역에는 구조화되지 않은 그리드를 사용한다.  Conformal : 이 기술은 지오메트리의 여러 부분에 걸쳐 메시가 연속되도록 하여 인접한 메시 블록 사이의 간격과 중첩을 제거한다. 컴프레서나 터빈의 블레이드와 같이 간격이 좁은 구성 요소 사이의 흐름을 정확하게 캡처하는 데에 필수이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-12-05
[무료다운로드] 터보 기계 시뮬레이션을 위한 엔지니어 가이드 I
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (15)   터보 기계는 흐르는 유체와 회전하는 요소 사이에서 에너지 전달이 일어나는 기계에 초점을 맞춘 기계공학의 한 분야이다. 이러한 장치는 많은 산업 분야에서 중추적인 역할을 한다.  이번 호에서는 성능 최적화, 안전성 보장, 효율성 향상을 위한 정확한 시뮬레이션의 중요성을 강조하면서 터보 기계 시뮬레이션의 복잡성에 대해 살펴본다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   오늘날의 기술 중심 세계에서는 터보 기계의 동작을 정확하게 예측하는 것이 무엇보다 중요하다. 이를 통해 항공기 추진 시스템에 결함이 없고, 에너지 시스템은 최소한의 낭비로 최대 출력을 제공하며, 전 세계 산업은 수요에 따라 흔들리지 않는 기계에 의존할 수 있다. 하지만 이러한 노력은 간단하지 않다. 여러 층의 복잡성, 기본 원리에 대한 이해, 고급 계산 기술의 적용이 필요하다.  이번 호부터 소개할 가이드에서는 터보 기계의 시뮬레이션 프로세스를 설명하고자 하는데, 이론적 토대와 실제 적용 사례를 모두 조명하는 것을 목표로 한다. 내용은 풍부하고 상세하지만, 전문성을 향상하고자 하는 전문가, 한계를 뛰어넘고자 하는 연구자, 핵심을 파악하고자 하는 초보자를 위해 명확하게 구성되어 있다.  향후 연재할 가이드를 통해 터보 기계 시뮬레이션의 원리, 방법론, 향후 발전 방향에 대해 살펴본다. 단순한 지식 전달을 넘어 이 분야에 대한 깊은 이해를 심어주는 것이 목표이다.    터보 기계의 기초  터보머신을 시뮬레이션하려면 유체 역학 및 열역학에 대한 기본적인 이해가 필요하다. 이 장에서는 이러한 정교한 기계의 시뮬레이션을 안내하는 핵심 원리, 터보 기계의 유형 및 주요 구성 요소에 대해 설명한다.    기본 원리  터보머신의 핵심은 로터라고 하는 회전 메커니즘을 통해 에너지를 전달하는 장치를 말한다. 공기, 증기, 물, 휘발유, 디젤, 고온 가스 등 지속적으로 흐르는 유체가 회전하는 구성 요소(예 : 블레이드, 베인, 임펠러)와 상호작용하여 유체에서 에너지를 추출하거나 유체에 전달한다. 이러한 에너지 전달은 유체 속도, 압력, 때로는 온도의 변화로 나타나며, 기계적 작업 결과물 또는 유체 에너지의 증가로 이어진다. 디지털 시대에는 전산 유체 역학(CFD)이 터보 기계를 시뮬레이션하는 주요 수단 이 되었다.  많은 CFD 소프트웨어는 다음에 정의된 유체 운동에 보존 법칙을 적용하여 도출된 나비에-스토크스(Navier-Stokes) 방정식을 기반으로 한다.  질량 보존(연속성 방정식) : 이 법칙은 닫힌 시스템에서는 질량이 생성되거나 소멸될 수 없다는 것을 말한다. 유체의 경우, 이는 질량이 부피에 들어오는 속도와 부피에서 나가는 속도가 같아야 하며, 부피 내에 축적된 질량은 모두 같아야 함을 의미한다. 이 원리는 연속성 방정식으로 이어진다.  운동량 보존(뉴턴의 운동 제2법칙) : 유체에 적용되는 뉴턴의 제2법칙으로, 유체 요소의 운동량 변화율은 그 요소에 작용하는 힘의 합과 같다는 것을 말한다. 이러한 힘에는 유체 요소의 표면에 작용하는 압력 힘과 유체 내의 점성 응력이 모두 포함된다. 운동량 보존 법칙이 유체에 적용되면 운동량 방정식이 성립한다.  에너지 보존(열역학 제1법칙) : 이 법칙에 따르면 에너지는 생성되거나 파괴될 수 없으며, 한 형태에서 다른 형태로만 전달되거나 변환될 수 있다. 유체 역학에서 이 보존 법칙은 전도, 대류 및 유체 내의 열원이나 흡원으로 인한 열 에너지 전달을 설명하는데 적용된다. 비압축성(밀도가 일정한) 및 등온성(온도가 일정한) 흐름의 경우 열 효과는 나비에-스토크스 방정식에 나타나지 않는 경우가 많다. 그러나 압축성 및 비등온성 흐름의 경우 에너지 방정식을 나비에 스토크스 방정식과 결합하여 유체 내의 온도장 및 열 전달을 설명할 수 있다.  이 세 가지 보존 법칙은 나비에-스토크스 방정식의 핵심을 이루며 편미분 방정식으로 표현된다. 나비에-스토크스 방정식은 특히 복잡한 경계 조건의 경우 해석적으로 풀기 어려운 경우가 많다. 따라서 근사 해를 구하기 위해 수치적 방법을 자주 사용한다. 나비에-스토크스 방정식을 수치적으로 풀면 터보 기계 내부의 유체 흐름 특성에 대한 통찰력을 얻을 수 있다.   그림 1. 다단 원심 컴프레서의 계산 모델에서 흐름이 간소화된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-11-04
항공 음향 시뮬레이션을 위한 엔지니어 가이드 Ⅲ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (14)   항공 음향학은 난류 유체 운동 또는 표면과 공기역학적 힘의 상호작용으로 인한 소음 발생을 연구하는 학문이다. 이번 호에서는 효과적인 항공 음향 시뮬레이션을 위한 전략과 실제 사례에 대해 살펴본다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   경계 및 초기 조건 지오메트리 및 메시 프로세스에 이어 음파가 반사되지 않고 빠져나갈 수 있는 경계를 지정한다. 일반적인 방법으로는 변수를 감쇠시켜 경계 반사를 방지하는 스펀지 레이어 또는 파동을 기하급수적으로 감쇠시키는 비반사 레이어인 PML(Perfectly Matched Layers : 완벽하게 일치하는 레이어)이 있다. 그런 다음 흐름 시나리오에 따라 유입, 유출, 벽 및 기타 조건을 설정한다. 시뮬레이션 유형에 따라 초기 흐름 또는 노이즈 필드를 제공해야 할 수도 있다.   솔버 선택 솔루션 전략은 문제의 복잡성, 원하는 정확도, 사용 가능한 리소스에 따라 선택해야 한다. 케이던스의 피델리티 찰스(Fidelity CharLES)는 시간 의존적인 간접 LES(Large Eddy Simulation) 방법론을 활용한다. 이러한 과도 시뮬레이션의 경우 가장 높은 관심 주파수를 포착하는 시간 간격을 선택하여 시간적 해상도가 충분한지 확인한다.   음향 유추 및 소스 올바른 음향 모델을 사용하는 것은 항공 음향 시뮬레이션의 정확성과 신뢰성을 위한 기본이다. 적절한 음향 유추는 소음원의 특성과 문제의 특정 요구 사항에 따라 결정되는 경우가 많다. 따라서 시뮬레이션에 올바른 소스 조건을 통합하는 것은 소음 발생으로 이어지는 물리적 현상을 나타내므로 매우 중요하다. 일부 시뮬레이션, 특히 직접 방법론(direct methods)을 사용하는 시뮬레이션에서는 와류 방출 또는 경계층 상호 작용과 같은 물리적 프로세스를 나타내는 명시적인 소스를 도입해야 할 수도 있다. 간접 방법에서는 소스 조건이 계산된 유동장에서 파생되는 경우가 많다. 예를 들어, 난류 통계는 RANS(Reynolds Averaged Navier-Stokes) 시뮬레이션에서 추출한 다음 항공 음향학적 유추에서 소스 조건으로 사용할 수 있다. 이러한 소스 용어가 작용하는 위치를 정확하게 정의하는 것이 중요하다. 회전하는 기계와 관련된 시나리오에서는 블레이드에 가까운 영역이 주요 소스 영역으로 지정될 수 있다.   후처리와 최적화 항공 음향 시뮬레이션을 수행하려면 전처리 및 시뮬레이션 단계만큼이나 후처리 및 최적화 단계도 중요하다. 계산이 완료되면 방대한 데이터 세트가 기다리고 있다. 피델리티 찰스는 시뮬레이션 데이터에 숨겨진 의미 있는 정보를 추출하는 데에 도움이 되도록 다음과 같은 후처리 도구를 제공하며, 모두 한 가지 목표를 염두에 두고 설계되었다. Quantitative Imaging : 시뮬레이션에서 직접 정량적 PNG 이미지를 생성한다. Modal Decomposition : 흐름과 음향 필드를 개별 모드로 분해한다. Ffowcs Williams-Hawkings Acoustic Predictions : 원거리 데이터에서 근거리 소음을 예측한다.   그림 1. 효율적인 초음속 비행체(ESAV)의 마하수 윤곽선 플롯   피델리티 찰스는 데이터 분석 기능을 제공할 뿐만 아니라 <그림 1>에 표시된 것처럼 시뮬레이션 데이터에 생명을 불어넣는 플롯, 등고선 지도, 그래픽 표현과 같은 고급 시각화 도구도 제공한다. 등고선 및 표면 플롯을 통해 압력 및 속도 필드에 대한 인사이트를 얻어 흐름 특징과 노이즈 원인을 정확히 파악할 수 있다. 스펙트로그램과 주파수 플롯을 사용하면 공명하는 톤 사운드와 혼란스러운 광대역 노이즈를 구분하는 데에 도움이 될 수 있다. 파티클 추적과 유선형 플롯은 난류 구조, 와류 및 기타 노이즈 생성 현상에 대한 그림을 그리는 또 다른 깊이 있는 레이어를 추가한다. 더 자세히 살펴보면, 특정 작업이나 프로세스를 사용자 지정 및 자동화하고, 변수 및 방정식을 생성하여 음압 레벨(SPL : Sound Pressure Level) 또는 난기류 강도 등 파생된 수치를 계산하여 시각적 인사이트를 정량화하기 위한 파이썬 API(Python API)와 내장 식 평가기를 찾을 수 있다. SPL과 같은 지표는 음향 핫스팟을 강조하며, 전체 음압 레벨(OASPL : Overall Sound Pressure Level)은 지정된 주파수 범위의 총 SPL을 측정한 값이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-10-07
[무료다운로드] 항공 음향 시뮬레이션을 위한 엔지니어 가이드
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (12)   항공 음향학은 난류 유체 운동 또는 표면과 공기역학적 힘의 상호작용으로 인한 소음 발생을 연구하는 학문이다. 이번 호에서는 항공 음향 시뮬레이션과 관련된 구체적인 과제 및 기법에 대해 살펴본다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   항공 음향을 예측하는 것은 단순히 소리의 근원을 정확히 찾아내는 것만이 아니라 다양한 시나리오에서 소리의 생성, 전파, 수신 뒤에 숨겨진 복잡한 메커니즘을 이해해야 한다. 간소화된 자동차 설계의 고주파 음향 방출부터 제트 추진 시스템의 저주파 소음 시그니처에 이르기까지, 각각은 엔지니어에게 고유한 과제와 통찰력을 제시한다. 항공 음향 시뮬레이션의 중요성은 설계 및 최적화 고려사항 그 이상으로 확장된다. 환경 규정 준수, 사용자 편의성 보장, 산업별 소음 표준 준수에 필수이다. 항공우주 및 자동차 등의 분야에서 급속한 발전이 이루어지면서 정확한 항공 음향 예측에 대한 중요성이 점점 더 강조되고 있다. 이번 호에서는 기초 지식과 고급 시뮬레이션 방법론을 연결하여 항공 음향학에 대한 자세한 개요를 살펴본다. 기본 원리, 항공 음향 소음원, 모델링 과제, 최신 툴과 기법, 시뮬레이션 설정 가이드라인, 포스트 프로세싱 인사이트, 실제 사례 연구 등을 다루고자 한다.   항공 음향학의 기초 항공 음향학(aeroacoustics)은 유체 역학과 음향학의 교차점에 서 있다. 그 동작을 능숙하게 시뮬레이션하려면 이 분야와 가장 관련 있는 기본 원리를 이해하는 것이 필수이다. 운동 방정식 특정 수학적 프레임워크는 유체 운동에 의해 생성되는 소리의 동작을 지배한다. 그 중심에는 선형화된 나비에-스토크스(Navier-Stokes) 방정식이 있다. 이 방정식의 전체 도출은 여기서 다루지 않지만, 이 방정식은 유체의 교란이 어떻게 음파를 생성하는지에 대한 본질을 파악할 수 있다. 파동 전파 음파는 매질에서 압축과 희박으로 전파된다. 이 전파에는 여러 가지 요인이 영향을 미친다. 매체의 탄성 및 밀도와 같은 속성은 음속과 감쇠에 영향을 줄 수 있다.  또한 온도, 고도, 습도와 같은 환경적 요인은 음파 전파에 다양한 영향을 미쳐 속도와 방향을 변경할 수 있다.  경계면과의 사운드 상호 작용 환경을 시뮬레이션할 때는 음파가 반사, 회절, 흡수를 통해 구조물과 어떻게 상호 작용하는지 이해하는 것이 중요하다. <그림 1>에서 볼 수 있듯이 반사는 음파가 경계를 만나면 반사되는 것으로, 반사각은 입사각과 같다. 파동이 장애물을 만나면 특히 파장이 장애물 크기에 비해 큰 경우 장애물 주변에서 휘어질 수 있다. 이를 회절이라고 정의한다. 일부 물질은 소리 에너지를 흡수하여 열로 변환하여 소리를 감쇠시킬 수 있는데, 이를 흡음이라고 한다.   그림 1. 방음벽에 의해 반사, 회절 또는 흡수되는 입사음   항공 음향 소음의 발생원 항공 음향 소리의 출처를 파악하는 것은 효과적인 시뮬레이션의 핵심이다. 많은 소스는 소리를 방사하는 방식에 따라 1차 소스(예 : 단극자(monopole), 쌍극자(dipole), 사중극자(quadrupole)) 또는 고차 소스로 분류할 수 있다. 우리가 인지하는 소음은 또한 두 가지 스펙트럼 유형, 즉 톤과 광대역으로 분류할 수 있다. 톤 노이즈는 노이즈 스펙트럼의 특정 주파수에서 뚜렷한 피크가 특징이며, 종종 흐름의 주기적 이벤트 또는 공명과 관련이 있다. 반면 광대역 노이즈는 광범위한 주파수에 걸쳐 발생하며, 톤 노이즈에서 볼 수 있는 뚜렷한 피크가 없는 보다 무작위적이고 난류적인 프로세스에서 발생한다.  항공 음향 노이즈의 주요 소스와 생성되는 소리의 스펙트럼 특성은 다음과 같다.   단극자 소스 단극자 소스(monopole source)는 풍선이 부풀어 오르거나 수축하는 것처럼 모든 방향으로 균일하게 방사된다. 주로 유체의 부피 변화와 관련이 있다. 연소 소음은 단극자 소스의 한 예이다. 연소 소음 : 엔진에서와 같이 급격한 연소 이벤트는 단극자 소스로 방사되는 급격한 볼륨 변화를 일으킬 수 있다.   쌍극자 소스 쌍극자 소스(dipole source)는 유체 흐름과 고체 경계와의 상호 작용에서 발생한다. 쌍극자 소스는 주로 두 개의 반대 방향으로 소리를 내며, 많은 시나리오에서 단극자 소스보다 더 강하다. 쌍극자 소스의 예로는 경계층 및 블레이드 소음과 유동으로 인한 진동이 있다. 경계층 노이즈 : 유체가 표면 위로 흐르면 경계층 난류가 표면에 변동하는 힘을 가하여 쌍극자 노이즈 방사를 유발할 수 있다. 유동 유도 진동 : 공기 탄성 플러터 또는 캐비티 공명과 같은 흐름과 구조물 간의 상호 작용은 쌍극자 소음 방사로 이어질 수 있다. 블레이드 소음 : 회전하는 기계에서 난류 유입과 블레이드 간의 상호 작용으로 인해 쌍극자 소음이 발생할 수 있다.   사중극자 소스 사중극자 소스(quadrupole source)는 난기류-난기류 상호 작용과 관련이 있다. 일반적으로 단극 및 쌍극자 소스보다 약하지만 고속, 난류 혼합 노이즈와 같은 고난류 시나리오에서 중요할 수 있다. 난류 혼합 소음 : 난류가 심한 고속 흐름에서는 서로 다른 난류 구조 간의 상호 작용으로 인해 사중극자 음파가 방사될 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-08-05
[신간] 아바쿠스 교재 발간 - Abaqus와 함께하는 구조해석의 개념과 분석방법
#아바쿠스교재 #CAE # 구조해석 #브이이엔지 ㈜브이이엔지 지음 / 33,000원 / 이엔지미디어   구입하러가기 4차 산업혁명 시대 컴퓨터 응용 해석(CAE : Computer Aided Engineering)은 단순한 설계 보조 도구를 넘어 새로운 기술과의 통합을 통해 산업 전반의 혁신을 주도하는 핵심 요소로 자리 잡고 있다.  Abaqus(아바쿠스)는 다쏘시스템의 SIMULIA(시뮬리아) 제품군 중 대표적인 구조해석 소프트웨어로, 사실적인 시뮬레이션을 위한 최고의 통합 해석 솔루션이다.  Abaqus는 자동차, 항공, 국방, 화학, 의료, 가전 등 다양한 제품의 시뮬레이션을 지원하는 유한요소 모델링 및 유한요소해석 소프트웨어로서, 광범위한 산업 부문에서 엔지니어링 상의 문제를 해결할 수 있는 강력한 솔루션을 제공하여, 널리 사용되고 있다. 이번에 새롭게 발간한 이 책은 Abaqus 사용법뿐만 아니라 관련 필수 이론을 단계별로 습득할 수 있는 새로운 교재이다. 이번 교재는 처음부터 한글로 작성되어 개념적으로 이해하기 쉽고, 연습이 쉬운 워크숍 모델을 포함하고 있다. 특히, 실무 현장에서 쉽게 적용할 수 있는 실질적인 분석 방법과 사례를 제공하여 독자들이 Abaqus를 효과적으로 활용할 수 있도록 도와줄 것이다..  이 책은 구조해석 기본 과정으로, 구조 엔지니어링 분야의 공학자가 CAE의 개념을 쉽게 이해하고, 산업 현장에서 해석을 더 잘 활용하기 위하여 작성되었다. 이 책을 읽고 따라하다 보면 범용 해석 솔루션인 Abaqus를 쉽게 시작하고, 어렵고 복잡한 개념을 하나씩 실무에 적용하여 제조 엔지니어링 분야의 경쟁력을 갖추는데 도움을 줄 것이다. 이 책을 집필한 ㈜브이이엔지는 다쏘시스템의 SIMULIA 전문 파트너로서, 2007년부터 다쏘시스템의 다양한 CAE 솔루션을 공급하며 SIMULIA 전문 교육, 기술 지원 및 엔지니어링 컨설팅 서비스를 제공하고 있다. ㈜브이이엔지는 매년 30회 이상의 Abaqus 기본 교육과 고급 교육을 진행하면서 Abaqus 교재 개발에 대해 끊임없이 고민해 왔으며, 다쏘시스템의 교재를 기반으로 번역, 한글화 한 '초급 및 중급 사용자를 위한 Abaqus 입문서(2013)'와  'Abaqus(아바쿠스)를 이용한 Contact 해석(2014)'을 발간한 바 있다.   지은이 소개 ㈜브이이엔지 ㈜브이이엔지는 다쏘시스템의 SIMULIA 전문 파트너로서 자동차, 전기전자, 에너지, 항공우주, 조선 및 생명공학 등의 산업 전반에서 30년 이상 축적된 노하우와 다양한 경력을 보유한 전문가들로 구성된 CAE 솔루션과 엔지니어링 컨설팅 전문 회사이다.   추천의 글 10여년 전, 언어의 장벽으로 Abaqus 학습에 어려움을 겪는 고객 여러분께 도움이 되고자, 미흡한 영어실력에도 불구하고 최초의 한글 교재를 출판했다. 이후 수많은 도전 과제를 해결하면서, Abaqus 사용법뿐만 아니라 관련 필수 이론을 단계별로 습득할 수 있는, 특히 처음부터 한글로 작성된 교재의 필요성을 오랫동안 절감해 왔다. 이번 교재는 우리의 이러한 갈증을 시원하게 해소해 줄 것이다.  ㈜브이이엔지의 비전은 고객 여러분이 더욱 혁신적이고 효율적인 컴퓨터 응용 해석(CAE)을 수행할 수 있도록 지원하는 것이다. 이 책이 실질적인 도움이 되어 많은 이들에게 유익한 자원이 되기를 진심으로 기대한다.  - ㈜브이이엔지 김창훈 대표   목차 PART 01. 해석(CAE)이란?     1. CAE(Computer Aided Engineering)    8 2. 해석의 목적    9 3. 해석의 효과    11 4. 구조 해석(Structural Analysis)    12 5. 유한 요소법(Finite Element Method)    13 6. 해석 툴의 구성    14 7. 제품 개발에서의 해석    17 함께하기 01. 성형 해석으로 Abaqus 친해지기     19 함께하기 02. C–단면 빔의 횡방향 좌굴    28      PART 02. 응력과 변형률    47 1. 힘    48 2. 응력    51 3. 모멘트    53 4. 변형과 변형률    54 5. 응력 성분    55 6. 변형률 성분    67 7. 구성방정식(Constitutive Law)    69 8. 탄성 계수와 전단 계수의 관계    73 9. Mises 응력    78 10. 체적 탄성 계수    79 함께하기 03. 내압을 받는 실린더 해석(2D)    83 함께하기 04. 1–요소 모델과 프아송 비 비교    94 함께하기 05. 변형 모드별 주 응력 방향 확인    124 함께하기 06. 고무 가스켓(gasket) 씰링 해석    153      PART 03. 유한 요소법    163 1. 요소, 절점 및 자유도(DOF, Degree Of Freedom)    164 2. 주요 요소    166 함께하기 07. 구조 요소를 이용한 C–단면 빔의 횡방향 좌굴 해석    181      PART 04. 해석의 구성 요소    193 1. 해석 신뢰성    194 2. 해석의 구성 요소    194 함께하기 08. 선형 해석과 비선형 해석    211 함께하기 09. 컨트롤암의 좌굴 해석    222      PART 05. 선형 해석과 비선형 해석    239 1. 선형 해석    240 2. 비선형의 요인    243 함께하기 10. 3점 굽힘 시험    250      PART 06. 정적 해석과 동적 해석    271 1. 정적 해석(Static Analysis)    272 2. 동적 해석(Dynamic Analysis)    273 3. 과도 응답(Transient Response)    276 4. 고유 진동수 및 고유 모드의 의미    278 5. 주파수 영역과 복소수 표현    282 6. 고유 진동수 및 고유 모드의 추출    289 7. 주파수 응답 함수    292 함께하기 11. 공진 구조물 (1) – 고유 진동수 해석    296 함께하기 12. 공진 구조물 (2) – 주파수 응답 해석    313 함께하기 13. 공진 구조물 (3) – 동적 과도 해석(Implicit vs Explicit)    318      PART 07. 해석 재질 물성(탄소성 재질)    335 1. 단순 인장 시험    336 2. 진 응력(True Stress)과 진 변형률(True Strain)    341 3. Mises 소성 모델    347 함께하기 14. 단순 인장 시험과 탄소성 재질 변환    350      PART 08. 해석 재질 물성(고무 재질)    365 1. 고무 재질의 특성    366 2. 고무 재질의 응력–변형률 시험    367 3. 고무 재질 모델    370 4. 재질 안정성(Material Stability)    373 함께하기 15. Abaqus/CAE Material Evaluation 기능    375 함께하기 16. 고무 부싱(bushing)의 동적 과도 해석    381  
작성일 : 2024-06-28