• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "모델링"에 대한 통합 검색 내용이 5,662개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[특별기고] 디지털 트윈 발전 전망
디지털 트윈과 산업용 메타버스 트렌드   데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다.  디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.   ▲ 철도 네트워크의 디지털 트윈 구축하는 독일 디지털 철도(이미지 출처 : 엔비디아)   1. 디지털 전환과 디지털 트윈 디지털 전환(Digital Transformation: DX)은 비즈니스 전 과정에 ICT 기술을 도입하여 전사적 업무, 생산 기술, 제품 등을 디지털화 한 후 이를 기반으로 가상 실험이 가능한 디지털 환경을 구축하는 것이다.  디지털 전환의 궁극적 목적은 기업 이윤 극대화에 필요한 업부/생산 효율성 및 제품 부가 가치 증대를 위한 다양한 창의적 대안들을 가상 실험을 통해 평가한 후 그 결과를 비즈니스 전 과정에 활용하는 것이다. 예를 들어, 스마트 팩토리의 디지털 전환은 조달 시스템, 생산 시스템, 물류 시스템 등 스마트 팩토리 구성요소들의 자원 할당 및 운용에 대한 다양한 대안들을 가상 실험을 통해 평가할 수 있는 환경을 구축하여야 한다. 그렇다면, 비즈니스 전 과정을 가상 실험하기 위해서는 무엇이 필요할까?  가상 실험을 하기 위해서는 먼저 가상 실험 대상(예: 제조 공장)을 선정하고, 다음으로, 가상 실험 시나리오(예:새로운 제조 장비 도입)가 필요하며 시나리오를 수행할 모델(예: 제조 공정 시뮬레이션 모델)이 필요하다. 이러한 가상 실험을 위한 모델이 디지털 트윈이며 이런 이유로 많은 사람들이 디지털 트윈을 DX의 Key(Richard Marchall, 2017), DX의 Enablers(Reterto Saracco, 2019), DX의 Central(Vijay Ragjumathan, 2019), DX의 Steppingstone(Harry Forbes, 2020), DX의 Pillar(Fransesco Belloni, 2020)라고 지적하였다.   2. 디지털 트윈의 정의 디지털 트윈은 물리적 자산, 프로세스 및 시스템에 대한 복제본으로 정의[Wiki 사전]되며, 복제본이란 대상 체계의 운용 데이터, 지형/공간/형상 정보 및 동작/운용 법(규)칙을 컴퓨터 속에 디지털화 해 놓은 것을 의미한다. 예를 들면, 제조 공장의 디지털 트윈은 제조 공장의 운용 데이터, 제조 공장의 공간/형상 정보, 그리고 제조 장비 동작 및 공정 모델이 컴퓨터 속에 복제된 것이 될 것이다. 디지털 트윈과 대상 체계가 쌍둥이기 때문에 쌍둥이 중 누가 먼저 태어났느냐에 따라 디지털 트윈의 이름을 다르게 붙이기도 한다. 대상 체계가 존재하기 전에 만들어진 디지털 트윈을 디지털 트윈 프로토타입(Prototype) 그리고 대상 체계가 만들어진 후 복제된 디지털 트윈을 디지털 트윈 인스턴스(Instance)라고 부른다. 디지털 트윈 프로토타입은 대상 체계 설계 단계에서 활용되며 디지털 트윈 인스턴스는 대상 체계의 운용 분석에 활용되는 것이 일반적이다. 디지털 트윈 인스턴스(실 체계의 복제본)와 디지털 트윈 프로토타입(실 체계의 설계 모델)이 모두 존재할 수도 있지만 디지털 트윈 프로토타입 없이 디지털 트윈 인스턴스만 존재할 수도 있다. 디지털 트윈 프로토타입과 인스턴스가 모두 존재한다면 인스턴스는 프로토타입에 실 체계 운용 정보가 반영되어 진화(성장)된 트윈으로 볼 수 있다. 3. 디지털 트윈 구축 목적 디지털 트윈의 구축 목적은 대상 실 체계와 디지털 트윈을 연동 운용함으로써 실 체계 관련 이해 당사자에게 지혜 수준의 혁신적 서비스를 제공할 수 있는 핵심 도구/수단으로 활용하기 위함이다. 데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다. 융합 빅 데이터는 AI-통계/공학 분석도구들을 이용하여 실 세계의 구성요소인 자산, 사람, 운용 프로세스들의 다양한 결합에 대한 분석/예측 및 체계 운용 최적 대안(최적화)을 찾는데 활용될 수 있다. 아울러, 융합 빅 데이터는 실 세계를 가상 환경에서 현실감 있게 표출할 수 있는 다양한 장비/장치와 VR/AR/XR/메타버스 관련 ICT 기술과의 융합 인터페이스를 통해 오락, 관광, 교육 훈련, 체험 등에 활용될 수 있다.     디지털 트윈의 복제 대상은 실 체계의 운용 데이터, 공간/형상 정보 및 실 체계에 포함된 객체들의 행위 모델 등 3가지이다. 운용 데이터는 실 체계에 설치된 IoT 장비로부터 획득이 가능하다. 공간/형상 정보는 서비스 목적에 따라 GIS, BIM 혹은 3D CAD 중 한 가지 이상을 결합하여 사용한다. 객체 행위 모델은 다양한 시나리오를 가상 실험하기 위한 시뮬레이션 모델을 사용하지만 서비스 목적에 따라서는 운용 데이터를 학습한 데이터 모델을 사용할 수도 있다. 구성요소 중 일부만을 사용한 디지털 트윈은 나머지 구성요소를 사용하지 않음으로 인한 한계점에 봉착하게 된다. 예를 들면, 실 체계 운용 데이터 복제만으로 구성된 IoT 기반 디지털 트윈은 수집된 데이터를 분석할 수는 있지만, 실 체계를 시각화한 지형/공간 상에 데이터를 표출할 수 없을 뿐만 아니라 실 체계와는 다른 가상 데이터를 입력한 시뮬레이션을 수행할 수 없다. 마찬가지로, 지형/공간 정보 만으로 구성된 디지털 트윈은 실 체계에서 일어나는 지형/공간 정보의 변화를 실 시간으로 반영할 수 없으며 시뮬레이션을 통한 실 체계의 현상 분석 및 미래 예측이 불가능 하다.      디지털 트윈의 효율적인 활용을 위해서는 위의 세 가지 구성요소 모두를 개발 및 운용할 수 있는 통합 플랫폼이 바람직하지만 국내외적으로 표준화된 디지털 트윈 플랫폼은 존재하지 않는다. 디지털 트윈의 특성 상 3가지의 디지털 트윈 구성요소 각각을 개발하는 독립적인 플랫폼을 사용하여 구성요소를 개발한 후 이들을 연동하여 운용하는 것이 효율적이다.  구체적으로는, 먼저, 디지털 트윈 개발 목적에 맞게 운용 데이터를 수집하는 IoT 플랫폼, 지형/공간 정보를 구축하는 지형/공간정보 플랫폼 및 모델링 시뮬레이션 플랫폼들을 이용하여 각 구성요소를 개발한다. 다음으로, 개발된 세 가지 구성요소를 실행하는 플랫폼들을 연동 운용하는 PoP(Platform of Platforms) 구조를 사용할 수 있다. PoP 구조는 디지털트윈의 목적에 부합되는 모든 디지털트윈을 개발/운용할 수 있는 플랫폼으로써 신뢰성 및 경제성(개발 기간 및 비용) 면에서 효율적인 구조이다. PoP 구조를 사용할 경우 플랫폼들 사이의 연동을 위한 데이터 모델과 API의 국제적인 표준화가 요구되며 데이터 모델의 표준은 대상 시스템에 따라 달라질 수 있다.  디지털 트윈을 실제 시스템에 대한 문제 해결 목적으로 사용하기 위해서는 대상 시스템에 대한 다양한 질문의 답을 디지털 트윈을 통해서 얻을 수 있는 서비스가 제공되어야 한다. OR 이론의 창시자 중 한 명으로 경영 과학 이론가인 R.L.Ackoff 교수는 사람이 생각하는 내용을 데이터, 정보. 지식, 지혜 등 4가지로 분류하였다. 데이터는 단순한 심벌(숫자나 문자)을 말하지만 정보는 ‘who’, ‘what’, ‘where’, ‘when’을 답할 수 있고, 지식은 ‘how’를 답할 수 있고, 지혜는 ‘why’를 답할 수 있어야 한다고 정의하였다. 디지털 트윈의 서비스 수준을 Ackhoff 교수의 분류법에 매핑 시킨다면 정보 수준 서비스는 시스템 분석(현상, 기능 등), 지식 수준 서비스는 시스템 예측(행위, 성능 등) 그리고 지혜 수준 서비스는 시스템 최적화(운용 최적화 등) 및 진단(수명 진단 등)에 해당한다. 예를 들어, 교통 시스템에 대한 다양한 질문을 답하기 위해 교통 디지털 트윈을 만들었다고 하자. 정보 서비스의 예는 현재 교통 시스템의 현상을 분석하는 것으로 어느 위치의 현재 시간대에 단위 시간당 교차로 통과 차량 대수가 얼마인지에 대한 답을 하는 서비스이다. 지식 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 얼마가 되는지를 예측하는 질문에 대한 답을 하는 서비스이다. 지혜 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 최소가 되는 최적화된 경로가 어떤 것인지의 질문에 대한 답을 하는 서비스이다.    4. 디지털 트윈의 구성요소 디지털 트윈의 3 가지 구성요소 중 행위 모델은 목적에 따라 데이터 모델과 시뮬레이션 모델로 대별된다. 데이터 모델은 실 체계에서 수집된 데이터들 사이의 상관관계를 기계학습하여 얻어진 모델(예: 인공신경망)로서 지식 서비스를 위한 시스템 행위 예측에 한계점을 가지고 있다. 구체적으로, 데이터 모델은 학습된 데이터 영역에서는 미래 예측이 가능하지만 학습된 영역 밖의 데이터에 대한 예측은 불가능 하다. 뿐만 아니라 학습 시와 예측 시의 시스템 운용 조건이 달라질 경우에도 예측이 불가능하다. 앞서 예시한 교통 디지털 트윈으로 데이터 모델을 사용할 경우 학습 시 도로 상황(운행 시간, 사고 발생 유무 등)이 예측 시 도로 상황과 동일하지 않으면 소요 시간 예측의 정확도가 보장되지 않는다. 더욱이, 시스템 변수 사이의 상관 관계로 표현된 데이터 모델은 변수 사이의 인과 관계가 필요한 시스템의 최적화 및 고장 진단 등에는 활용할 수 없다. 이러한 데이터 모델의 서비스 한계를 극복하기 위해서는 시뮬레이션 모델을 사용할 수 있다. 시뮬레이션 모델은 구축은 대상 시스템에 대한 도메인 지식과 이를 표현하는 지배 법칙에 대한 수학적/논리적 표현 방법을 이해해야 하므로 데이터 모델에 비해 고 비용이 요구된다. 따라서, 디지털 트윈의 행위 모델은 대상 시스템의 서비스 목적과 수준에 따라 다르게 선택될 수 있다.    5. 디지털 트윈의 발전 전망  디지털 트윈의 향후 발전 전망은 문제 해결과 가상 체험 및 빅 데이터 분야로 대별할 수 있다. 문제 해결 분야에서 디지털 트윈의 대상은 분석, 예측, 최적화/진단 대상이 되는 모든 시스템 분야로서 산업(제조, 생산, 물류, 식물공장 등), 공공(교통, 환경, 금융 등), 의료(진단, 인공장기, 가상수술 등), 재난안전(안전점검, 피해분석, 대피훈련 등), 국방(군사훈련, 국방분석, 무기체계 획득 등)등을 포함한다.  현재 디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.  가상 체험 분야는 디지털 트윈이 실 세계 혹은 가상 세계를 움직이는 다양한 시나리오를 정형화한 지배 법칙(모델)을 실행(시뮬레이션)하는 수단으로 활용될 전망이다. 이러한 지배법칙 실행은 실제 세계와 가상 세계의 구별 없는 가상 체험을 목표로 하는 메타버스의 서비스 콘텐츠를 제공한다. 따라서, 메타버스 발전을 위해서 메타버스의 서비스 컨텐츠를 제공하는 디지털 트윈 발전이 필수적으로 향후 메타버스와 디지털 트윈은 동시에 발전할 전망이다.  빅 데이터 분야에서는 디지털 트윈의 가상 실험을 통해 실 체계에서는 물리적/경제적 이유로 수집 불가능한 다양한 빅 데이터를 생성하는데 활용될 전망이다. 유의미한 빅 데이터 생성을 위해서는 실 체계에서 수집 가능한 데이터를 사용하여 디지털 트윈 모델의 검증이 선행된 후 실 체계에서 수집 불가능한 데이터 생성을 위한 가상 실험이 설계되어야 한다. 디지털 트윈을 사용한 빅 데이터 생성은 시스템 기능 검증, 예지 진단 및 기계학습 등과 같은 부가가치가 높은 데이터 생성에 집중되어 미래 데이터 구독 시장 활성화에 기여할 전망이다.   김탁곤 명예교수  KAIST 전기전자공학부  
작성일 : 2025-05-05
수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (3)   이번 호에서는 심센터 히즈(Simcenter HEEDS)를 사용하여 수집된 외부 데이터를 시각화하고 분석하는 데 초점을 맞추고, 데이터 시각화의 중요성과 분석 기법의 활용 방안을 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   데이터 분석의 중요성 오늘날 데이터는 우리의 일상과 비즈니스 운영에서 점점 더 중요한 역할을 하고 있다. 수집되고 측정된 데이터의 양이 증가하면서 이를 효과적으로 처리하고 분석하는 방법은 더욱 필요해지고 있다. 이러한 변화 속에서, 지멘스의 심센터 히즈는 강력한 데이터 분석 및 시각화 기능을 제공하여 다양한 산업 분야에서 최적의 해결책을 찾는 데 기여하고 있다. 이번 호에서는 히즈의 기능을 효과적으로 활용하여 어떻게 복잡한 데이터를 이해하고 의미 있는 인사이트를 얻을 수 있는지 살펴볼 것이다.   히즈의 데이터 분석 기능 히즈의 Discover(디스커버) 탭은 사용자가 데이터 사이의 관계 및 최적화 가능성을 탐구할 수 있도록 다양한 도구를 제공한다. Discover 기능은 주요한 데이터 분석 및 이해를 도와주는 여러 방법을 포함하고 있다.    그림 1   다음은 각각의 기능에 대한 설명이다.  Closest : 특정 데이터 포인트에 가장 가까운 변화를 식별한다. 이를 통해 최적화 과정에서의 데이터 민감성을 이해하고 결정에 도움을 줄 수 있다.  Similar : 사용자가 선택한 기준에 따라 유사한 데이터 집합을 찾는 기능이다. 이는 집합의 규칙 또는 모델을 파악하는 데 유용하다. Clusters : 데이터 세트를 서로 연관된 그룹으로 분류한다. 군집화 기법을 통해 데이터의 패턴을 식별하고 알고리즘에 의한 데이터 이해를 개선할 수 있다.  Trade-offs : 다수의 설계 목표 간의 상충 관계를 분석한다. 이를 통해 각각의 설계 대안이 어떻게 특정 목표를 달성하는지에 대해 명확하게 이해할 수 있다.  Patterns : 데이터 내의 반복되는 경향이나 구조를 발견하여 예측 및 모델링에 도움을 주는 기능이다. 패턴 인식은 정보의 신뢰도를 높이는 데 중요하다.  Preview History : 사용자가 수행한 변경이나 실행의 기록을 미리 보면서 데이터 분석의 이력을 관리할 수 있다.  Design Set : 여러 디자인 시나리오를 만들고 비교하여 최적의 설계를 도출하는 데 도움을 준다.  Performance & Plot : 데이터의 성능을 평가하고 시각적으로 플롯하여 분석 결과를 명확하게 표현한다.  Discover 탭의 이러한 기능은 히즈 사용자가 데이터를 깊이 이해하고 시뮬레이션 최적화 과정에서 효과적인 의사 결정을 내리도록 돕는다. 이를 바탕으로 보다 정확하고 신뢰성 있는 설계와 분석 결과를 도출할 수 있다.   데이터 분석을 위한 예제   그림 2    목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(σ) ≤ 200 MPa  최대 끝단 처짐(δ) ≤ 2 mm  설계 변수 Length : 5,000 mm  Load P : 6,500 N  E : 200 MPa  H : 50 mm ≤ H ≤ 100 mm  h1 : 5 mm ≤ h1 ≤ 30 mm  b1 : 50 mm ≤ b1 ≤ 100 mm  b2 : 5 mm ≤ b2 ≤ 50 mm 히즈의 Discovery Method를 사용하여 분석할 데이터는 우리가 지금까지 계속 예제로 사용한 외팔보의 처짐 문제를 기반으로 Adaptive Sampling Study(어댑티브 샘플링 스터디)에서 500개의 데이터를 생성하여 사용할 것이다. 아니면 독자들이 가지고 있는 데이터를 사용해도 괜찮다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅳ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (21)   이번 호에서는 다양한 유형의 난류 모델과 사용 시기, 그리고 복잡한 형상을 위한 고충실도 난류 모델링에 있어 케이던스 밀레니엄 M1(Cadence Millennium M1) CFD 슈퍼컴퓨터가 어떻게 혁신을 가져오는지에 대해 설명한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   자동차 산업은 거의 매일 새로운 혁신과 개발이 등장하며 끊임없이 발전하고 있다. 자동차 업계는 전기 구동 차량과 대량 생산이 증가하는 추세에 발맞춰 보다 지속 가능한 미래를 만들기 위해 노력하고 있다. 자동차 생산량은 꾸준히 늘고 있지만, 업계는 여러 디자인 또는 새로운 헤드라이트, 스플리터, 사이드 스커트 추가와 같은 아주 작은 디자인 변경에 대해서도 풍동 테스트 또는 프로토타입 테스트를 수용하면서 연비 기준을 충족해야 하는 과제에 직면해 있다. 그 결과, 항력 계수 등 관심 있는 유동장 정보와 성능 관련 수치를 예측하여 필요한 실험 횟수를 크게 줄일 수 있는 시뮬레이션 기반 접근 방식이 점점 더 인기를 얻고 있다.   그림 1   유체 흐름의 난류를 이해하고 전산 유체 역학(CFD) 시뮬레이션을 통해 동일한 난류를 재현하려면 다양한 난류 모델을 사용해야 한다. 자동차 애플리케이션과 리소스 가용성에 따라 적합한 난류 모델을 선택하면 설계 주기를 단축하는 데 도움이 될 수 있다.    난류의 모델링 기법 ‘난류’는 압력과 속도의 혼란스러운 변화를 특징으로 하는 불규칙한 흐름을 일컫는 용어이다. 우리는 일상 생활에서 난류를 경험하며 공기 역학, 연소, 혼합, 열 전달 등과 같은 다양한 엔지니어링 응용 분야에서 중요한 역할을 한다. 하지만 유체 역학을 지배하는 나비에-스토크스 방정식은 매우 비선형적인 편미분 방정식이며 난류에 대한 이론적 해법은 존재하지 않는다. 난류는 광범위한 공간적, 시간적 규모를 포함하기 때문에 모델링과 시뮬레이션이 어려울 수 있다. 일반적으로 큰 와류는 난기류에 의해 생성된 에너지의 대부분을 전달하고 작은 와류는 이 에너지를 열로 발산한다. 이 현상을 ‘에너지 캐스케이드’라고 한다. 몇 년에 걸쳐 다양한 난기류 모델링 접근법이 개발되었으며, 가장 일반적인 세 가지 접근법을 간략히 설명한다. Direct Numerical Simulation(DNS) : DNS에서는 모델이나 근사치 없이 미세한 그리드와 매우 작은 시간 단계를 사용하여 모든 규모에서 난기류를 해결한다. DNS의 계산 비용은 엄청나게 높지만 결과는 가장 정확하다. DNS 시뮬레이션은 난류장에 대한 포괄적인 정보를 제공하기 위한 ‘수치 실험’으로 사용된다. Large-Eddy Simulation(LES) : 이름에서 알 수 있듯이 이 난류 모델링 기법은 큰 소용돌이를 해결하고 보편적인 특성을 가진 작은 소용돌이를 모델링한다. LES 시뮬레이션은 최소 길이 스케일을 건너뛰어 계산 비용을 줄이면서도 시간에 따라 변화하는 난기류의 변동 요소를 자세히 보여준다. Reynolds-Averaged Navier-Stokes Model(RANS) : RANS 방정식은 나비에-스토크스 방정식의 시간 평균을 취하여 도출되었다. 난기류 효과는 미지의 레이놀즈 응력 항을 추가로 모델링하여 시뮬레이션한다. RANS 시뮬레이션은 평균 흐름을 해결하고 난류 변동을 평균화하므로 다른 두 가지 접근 방식보다 훨씬 비용 효율적이다.   올바른 선택 : DNS, LES 또는 RANS 올바른 난류 모델을 선택하는 것은 모든 시뮬레이션의 중요한 측면이며, 이는 주로 시뮬레이션의 목적, 흐름의 레이놀즈 수, 기하학적 구조 및 사용 가능한 계산 리소스에 따라 달라진다. 학술 연구의 경우 DNS 시뮬레이션은 난류의 근본적인 메커니즘과 구조를 이해하는 데 가장 적합한 결과를 제공한다. DNS는 레이놀즈 수가 낮은 경우에 적합하지만, 막대한 시간과 리소스가 필요하기 때문에 대부분의 산업 분야에서는 실용적인 선택이 아니다. 반면에 LES는 일반적으로 레이놀즈 수가 높은 복잡한 형상을 포함하는 산업용 사례를 처리하는 데 적합한 옵션이다. LES가 생성하는 고충실도 결과물은 경쟁이 치열한 자동차 시장에서 중요한 한 차원 높은 성능 개선이 가능한 설계를 가능하게 한다.   그림 2    RANS 시뮬레이션은 LES에 비해 근사치의 범위가 넓기 때문에 정확도가 떨어진다. 그러나 정확도와 계산 비용 간의 균형으로 인해 RANS는 계산 리소스와 시뮬레이션 시간이 제한된 업계 사용자에게 일반적인 설루션이다. 이 방법은 또한 짧은 시간 내에 여러 사례를 분석해야 할 때 널리 사용된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
카티아 VMU를 활용한 설계 검증 혁신
산업 디지털 전환을 가속화하는 버추얼 트윈 (2)   이번 호에서는 VMU(가상 목업)의 개념과 기술적 특성, 주요 산업 사례, 그리고 VMU의 혁신적 가치와 향후 확장 가능성에 대해 살펴본다.    ■ 최윤정 다쏘시스템의 기술 컨설턴트로 디자인&엔지니어링 팀에서 3DEXPERIENCE CATIA 제품을 담당하고 있다. 자동차 산업을 위한 고급 서피스 모델링 및 가상 검증 영역을 전문으로 하고 있으며, 제조업의 VMU 도입 효과성 관련 학술연구 또한 수행 중에 있다. 홈페이지 | www.3ds.com/ko   가상 시뮬레이션 기술이 점차 고도화됨에 따라, 제품 개발 전 과정에서 디지털 모델을 활용하여 제품 품질과 개발 효율성을 높이려는 시도가 활발하게 이루어지고 있다. VMU(Virtual Mock-Up, 가상 목업) 기술은 3D익스피리언스 카티아(3DEXPERIENCE CATIA)에 기반한 가상 검증 프로세스로, 설계 오류와 품질 상의 문제점을 조기에 식별·개선하고 개발 비용과 시간을 절감하는 혁신적 방식으로 주목받고 있다. 제품의 실물을 제작하지 않고도 고품질 렌더링을 통해 시각적·감성적 요소를 평가할 수 있기 때문에, 다양한 산업 분야에서 VMU의 필요성이 커지고 있다.   그림 1. 카티아 설계 데이터 화면   그림 2. 카티아에서 재질을 적용한 설계 데이터 화면   VMU의 개념과 기술적 특징 VMU는 고품질 렌더링 기술을 활용해 설계 데이터를 가상 환경에서 실물과 유사하게 재현하여, 설계 오류와 품질 상의 문제점을 조기에 식별·개선하는 기술이다. 이 프로세스는 실물 목업을 제작하지 않고도 제품 외관을 정확히 시뮬레이션함으로써 제품 개발 시간과 비용을 단축한다. 기존의 DMU(Digital Mock-up, 디지털 목업)는 주로 설계 과정에서 형상과 구조 검증에 초점을 둔다. 즉, 3D 설계 데이터 상에서 간섭 검사, 조립 순서·공정 시뮬레이션, 각 부품의 형상 적합성 등을 확인하는 용도로 사용된다. 한편, VMU는 DMU에서 한발 더 나아가, 광학 특성(반사·굴절), 질감, 점등 이미지 등 외관 품질을 실사 수준으로 구현하며, 인체공학 기반의 휴먼 모델(human model)을 연계해 실제 사용 환경에서의 조작성, 시야 확보성 등을 종합적으로 검토할 수 있다. XR(확장현실) 기술과의 융합을 통해 몰입형 품평 환경도 제공된다. 자동차 외장 램프처럼 미세한 빛의 반사·굴절을 예측 및 검증해야 하는 제품은 VMU를 활용할 경우 실물 목업 없이 외관 이미지를 높은 정확도로 검토함으로써 개발 리스크를 크게 줄일 수 있다. 기존에 카티아를 기반으로 제품 설계를 하고 있는 다양한 산업군에서 VMU는 이미 필수 프로세스로 자리매김하고 있다. 설계, 렌더링, 검증 및 품평을 하나의 일관된 프로세스로 결합함으로써 제품 개발 방식에 혁신적인 변화를 가져올 수 있다. 데이터 변환이나 별도 인터페이스가 필요 없이 동일 플랫폼에서 모든 단계가 이뤄지므로, 데이터 손실이나 형상 왜곡을 최소화하고 기존에 없던 빠르고 유연한 협업 환경을 구축할 수 있다. 이를 통해 제품의 완성도와 품질을 높이는 긍정적 효과가 입증되었다.    표 1. 실물 목업 및 기존 렌더링 툴과의 비교   3D익스피리언스 카티아 기반의 VMU 프로세스 적용 사례 자동차 외장 램프 품질 검증 사례 자동차 외장 램프는 외관과 점등 이미지가 모두 중요하여, 시각적 품질 검증이 설계 단계에서 핵심 과제로 부각된다. 기존에는 정확도를 높이기 위해 실물 금형과 목업을 제작했으나, 이 방식은 과도한 시간과 비용 투자를 요구했다. 대체 방법으로 3D 프린팅 등의 기술을 이용하기도 했지만, 정밀도가 부족하다는 한계가 있었다. 이 문제를 해결하기 위해 최근 카티아 기반 VMU 프로세스를 적용한 디지털 선행 검증이 주목을 받고 있다. 미세 광학 요소와 복잡한 반사·굴절 특성을 지닌 램프를 고정밀 시뮬레이션할 수 있어, 점등·비점등 시의 실제 이미지를 실물 목업 수준으로 재현한다. 특히 스캔을 통해 확보한 시편 데이터의 정확한 물성을 설계 데이터에 적용함으로써 곡률에 따른 왜곡이나 광원으로 인한 반사를 사실적으로 재현하고, 실차에 장착했을 때 예상되는 품질 이슈까지 가상 환경에서 검토할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
비즈니스 프로세스 모델링을 배워보자
BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (3)   지난 호에서는 BPMN(Business Process Modeling Notation)의 구성 요소를 살펴보고, 간단한 예제를 통해 주요 기능과 특징을 개괄적으로 파악해 보았다. 이번 호에서는 BPMN을 작성하기 위한 모델링 툴을 살펴보고, 이를 활용하여 비교적 간단한 비즈니스 프로세스 모델을 작성하는 방법을 소개하도록 하겠다.   ■ 연재순서 제1회 비즈니스 프로세스 모델링이 필요한 이유 제2회 BPMN은 무엇일까? 제3회 비즈니스 프로세스 모델링을 배워보자 제4회 간단한 제품 개발 프로세스를 디자인해보기 제5회 클라우드 서버 환경에서 BPMN을 연결하는 설루션 탐구   ■ 윤경렬 현대자동차 연구개발본부 책임연구원 ■ 가브리엘 데그라시 이탈리아 Esteco사의 프로젝트 매니저   우리는 지난 호에서 BPMN이 무엇인지에 대해 알아보았다. 우선 BPMN의 구성 요소를 살펴보았고 아주 간단한 BPMN 예제를 통해 주요 기능과 특징을 개괄적으로 파악해 보았다. 또한 BPMN을 활용하여 리프 스프링 개발 프로세스를 모델링하는 사례를 통해, 일반적인 WBS와 비교해 보았을 때 개발에 참여한 이해관계자들이 어떻게 협업을 해야 하는지 명확하게 파악할 수 있다는 것을 알게 되었다.   BPMN 웹사이트에서 모델러 확인 및 다운로드받기 BPMN을 작성하기 위한 모델링 툴을 알아보기에 앞서, 지난 호에서 소개한 바 있는 OMG 그룹에서 운영하고 있는 BPMN 웹사이트를 우선 찾아가 보도록 하겠다. OMG의 웹사이트(www.bpmn.org)에서는 기본적인 BPMN 개념 정의부터 새로운 BPMN 표준에 대한 연구까지 자세하게 소개하고 있으며, BPMN의 개념, 문서, 예제, 표준화 진행 등에 대한 내용이 자세하게 기술되어 있어서 BPMN을 이해하고 활용하는데 많은 도움을 받을 수 있다.   그림 1. OMG 그룹에서 운영하는 BPMN 웹사이트   우리는 여기서 세 가지 정도를 간단하게 살펴보고자 한다. 우선 ‘Examples’에는 BPMN을 보다 쉽게 이해할 수 있도록 다양한 분야의 예제를 템플릿 형태로 제공하고 있어, 사용자가 이를 활용하여 빠르게 BPMN을 적용해 볼 수 있도록 도움을 주고 있다. 다음은 ‘Implementers’로 현재 BPMN을 지원하고 활용하는 산업과 사례를 소개하고 있는데, 생각보다 다양하고 유명한 회사에서 어떻게 활용되고 있는지 확인할 수 있다.   그림 2. 다양한 예제를 보여주는 Examples   그림 3. 사례를 보여주는 Implementers   마지막으로 ‘BPMN MIWG’에서는 BPMN 표준을 준수하고 상호 모델을 교환하고 위한 목적으로 다양한 툴(소프트웨어)을 소개하고 비교 분석을 수행하고 있다. 우리가 여기서 관심 있게 살펴보려고 하는 것은 ‘View current test results on various tools’의 내용이다. 개인적 취향 및 선호도에 따라 모델링을 하기 위한 툴을 선택할 수 있지만, 대부분 표준을 잘 준수하고 있어서 표준 모델링의 경우 선택의 차이는 크지 않을 것으로 생각된다. 그래서 BPMN 모델을 작성하기 위해 우리는 상대적인 차이가 크지 않지만 인지도가 높은 ‘Camunda Modeler’를 선택하였다.   그림 4. 다양한 모델러에 대한 표준 및 상호 모델 교환 수준에 대한 정리     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[케이스 스터디] 미래 모빌리티를 위한 자율주행 시뮬레이터, 모라이 심
실시간 3D 엔진을 활용해 더욱 현실적인 시뮬레이션 구축   시뮬레이션은 어느새 산업에서 반드시 거쳐야 하는 단계로 자리잡았다. 이번 호에서는 자율주행 시뮬레이터 기술을 개발하는 모라이(MORAI)의 모라이 시뮬레이션 플랫폼(MORAI Simulation Platform)을 소개한다. ■ 자료 제공 : 유니티 코리아     모라이 시뮬레이션 플랫폼 모라이는 주로 ‘디지털 트윈’, ‘개발 도구’, ‘검증 도구’로 불리는 시뮬레이션 툴을 통해 자율주행 기술의 안전성과 신뢰성을 검증한다. 실제 도로에서 발생할 수 있는 다양한 돌발 상황을 가상화한 환경에서 테스트하고 개발함으로써, 실제 도로에서의 복잡하고 위험한 테스트를 대신할 수 있다. 이를 통해 개발자는 안전하고 효율적으로 자율주행 시스템을 검증하고 개선할 수 있다. 모라이에서 개발한 모라이 시뮬레이션 플랫폼은 자율주행, 자율 비행 등 자율 이동체를 테스트하고 개발할 수 있는 종합적인 미래 모빌리티 시뮬레이터이다. 이 솔루션은 자율주행 자동차, UAM(도심 항공 모빌리티), 무인 로봇, 무인 선박 등 다양한 차세대 모빌리티 산업에 적용되며, 자율주행 상용화를 가속화하는 핵심 가상 검증 플랫폼으로 주목받고 있다.   유니티를 도입하게 된 이유 유니티의 강력한 기능과 사용자 친화적인 인터페이스 덕분에, 짧은 시간 내에 모라이가 원하는 가상 환경 및 시뮬레이터를 개발할 수 있었다. 이는 특히 프로젝트의 초기 단계에서 도움이 되었다. 유니티를 통해 현실적이고 정교한 3D 시뮬레이션 환경을 구현함으로써, 자율주행 기술의 테스트와 검증 과정을 더욱 효율적이고 안전하게 수행할 수 있는 기능을 개발할 수 있었다. 이와 함께, 유니티의 커뮤니티와 풍부한 리소스는 문제 해결과 기술 향상에 도움이 되었다. 다양한 예제와 튜토리얼을 통해 개발자들이 빠르게 학습하고, 프로젝트에 필요한 기능을 구현할 수 있었다. 결과적으로, 유니티 도입 이후 모라이는 프로젝트의 개발 속도와 품질을 높였으며, 더 나은 자율주행 시뮬레이션 환경을 제공할 수 있게 되었다.   플랫폼 구성 요소 기본적으로 가상 환경을 렌더링하고 사용자 인터페이스를 제공하는 베이스 플랫폼(Base Platform)이 중심을 이룬다. 이 베이스 플랫폼 위에 다양한 모듈이 결합되어, 정밀하고 현실적인 시뮬레이션 환경을 구현한다. 첫 번째로 정밀 지도 도로 모듈이 있다. 이 모듈은 실제 도로와 동일한 환경을 가상으로 재현하며, 자율주행 차량이 운행할 수 있는 도로 네트워크를 제공한다. 이를 통해 현실적인 도로 상황에서의 테스트와 검증이 가능하다.  두 번째로 차량 동역학(Vehicle Dynamics) 모듈이 있다. 이 모듈은 차량의 물리적 특성과 동역학을 시뮬레이션하여, 다양한 운전 조건에서 차량의 반응을 정확하게 모델링한다. 이를 통해 차량의 주행 성능과 안전성을 평가할 수 있다. 세 번째로 센서 모델(Sensor Model) 모듈이 있다. 이 모듈은 자율주행 차량에 장착된 다양한 센서의 데이터를 시뮬레이션한다. 카메라, 라이다, 레이더 등의 센서가 실제 환경에서 어떻게 작동하는지를 가상으로 재현하여, 센서의 정확도와 신뢰성을 검증할 수 있다. 네 번째로 교통 모델(Traffic Model) 모듈이 있다. 이 모듈은 다양한 교통 상황을 시뮬레이션하여, 자율주행 차량이 실제 도로에서 마주할 수 있는 다양한 교통 상황을 가상으로 재현한다. 이를 통해 교통 혼잡, 돌발 상황, 보행자와의 상호작용 등을 테스트할 수 있다. 마지막으로 인터페이스(Interface) 모듈이 있다. 이 모듈은 외부 시스템과의 연동을 가능하게 하여, 다양한 테스트 시나리오와 데이터를 효율적으로 관리하고 분석할 수 있게 한다. 이를 통해 개발자가 자율주행 시스템을 더 효과적으로 개발하고 검증할 수 있다. 이 모든 구성 요소가 결합되어, 모라이 시뮬레이션 플랫폼은 자율주행 시스템의 개발, 테스트, 검증을 위한 강력한 도구로서의 역할을 수행한다.     가상환경과 현실의 차이를 최소화하기 위한 노력 모라이가 시뮬레이션 플랫폼을 구축하면서 가장 신경 썼던 부분은 현실과의 차이를 최소화하는 것이었다. 이를 위해 고충실도 시뮬레이션 환경을 제공하고, 실제 지도 데이터, 교통 데이터, 센서 데이터를 기반으로 가상과 실제 환경의 갭을 최소화하는 데 집중했다. 이를 위해 자율주행차가 실제 도로에서 맞닥뜨릴 수 있는 거의 모든 상황을 가상 환경에서 묘사할 수 있도록 다양한 요소 기술을 개발하고 있다. 이는 사람이 실제 도로에 나가지 않더라도 최대한 많은 테스트를 할 수 있도록 하기 위한 것이다. 예를 들어, 보행자 충돌 위험성 등 실제 도로에서 검증하기 어려운 시나리오를 수만 번 반복하여 테스트할 수 있다. 이를 통해 자율주행 개발 기업과 연구원들은 더욱 신뢰성과 안전성을 갖춘 검증을 할 수 있다. 또한, 가상과 실제 환경이 직접적으로 연계될 수 있도록 설계했다. 시뮬레이션이 실제 환경의 데이터와 상호작용할 수 있도록 하여, 개발자들이 현실적인 조건에서 자율주행 시스템을 테스트하고 개선할 수 있게 했다. 이와 같은 접근 방식은 실제 도로에서 발생할 수 있는 다양한 상황을 사전에 예측하고 대응하는 데 도움이 된다.   모라이 시뮬레이션 플랫폼에 대한 고객의 니즈 우선 고객사들은 현실적인 그래픽과 정밀한 도로 환경을 원했다. 자율주행 차량은 다양한 도로 상황과 환경에서 운행되므로, 시뮬레이터가 실제 도로와 유사한 환경을 재현해야 한다. 이를 통해 개발자는 도시, 고속도로, 교외 지역 등 다양한 도로 상황에서 자율주행 시스템의 성능을 테스트할 수 있다. 또한 다양한 교통 상황과 돌발 상황을 시뮬레이션할 수 있어야 했다. 교통 혼잡, 보행자와의 상호작용, 돌발적인 장애물 등 실제 도로에서 발생할 수 있는 모든 상황을 가상 환경에서 재현하여, 자율주행 시스템이 어떻게 대응하는지 평가할 수 있어야 한다. 아울러, 고객사들은 다양한 센서 데이터를 필요로 했다. 자율주행 차량은 카메라, 라이다, 레이더 등의 센서를 통해 주변 환경을 인식하기 때문에, 시뮬레이터는 이러한 센서의 데이터를 정확하게 생성하고, 실제 환경에서의 센서 성능을 재현할 수 있어야 한다.   개발 시 어려웠던 점과 해결 방법 자율주행 시뮬레이터를 개발하는 것은 다양한 기술을 통합해야 하기 때문에 많은 어려움이 따른다. 기본적으로 3D 엔진에 대한 이해도가 필요하며, 그 위에 올라가는 센서, 차량 동역학, 통신 등 각각의 모듈에 대한 깊은 이해와 적절한 통합 과정이 필요하다. 이 과정에서 각 개발자의 이해도와 전문 분야가 다르기 때문에, 이를 하나의 시뮬레이터로 통합하는 것이 가장 어려운 부분이었다. 다행히, 유니티는 이러한 다양한 요소들을 모두 통합할 수 있는 개발 환경을 제공했다. 각 모듈 개발자들이 개발할 때마다 바로 결과를 확인할 수 있었고, 다른 모듈에 대한 이해도를 높일 수 있었다. 이를 통해 각 모듈이 전체 시스템에 어떤 영향을 미치는지 파악할 수 있었고, 빠르게 개발을 진행할 수 있었다. 또한, SDV(Software Defined Vehicle : 소프트웨어 정의 차량)와 UAM 등의 복잡한 시뮬레이션 환경을 구축하는 데 있어서도 유니티의 유연한 개발 환경이 도움이 되었다. 유니티의 그래픽 엔진과 실시간 데이터 처리 능력을 활용하여 현실과 유사한 고충실도의 시뮬레이션 환경을 구현할 수 있었고, 이를 통해 다양한 테스트와 검증을 효율적으로 수행할 수 있었다.     모라이의 목표 모라이는 자율주행 시뮬레이션 시장에서 개발뿐만 아니라 검증과 인증까지 가능한 시뮬레이터를 제공하고자 한다. 앞서 설명한 대로 개발자들이 손쉽게 사용할 수 있는 가상 공간과 시뮬레이션 도구를 공급하여, 이 툴을 기반으로 빠르게 기술을 개발하고 정량적으로 시험 평가할 수 있도록 하는 것이 모라이의 목표이다. 또한, 모라이는 고객이 많은 노력을 들이지 않아도 바로 이해하고 현업에 적용할 수 있는 개발 도구를 제공하는 것을 중요하게 생각하고 있다. 이를 통해 고객은 복잡한 설정이나 학습 없이도 자율주행 기술을 개발하고 테스트할 수 있게 된다.  궁극적으로는 자율주행 자동차, UAM, 무인 로봇, 무인 선박 등 모든 무인 이동체의 기술 개발 및 통합 검증에 사용되는 도구가 되는 것이 모라이의 목표이다.  모라이의 공동설립자인 홍준 CTO는 “이 과정에서 유니티는 핵심 개발 도구로서 중요한 역할을 하고 있다. 유니티의 강력한 3D 엔진과 사용자 친화적인 인터페이스 덕분에 우리는 고품질의 시뮬레이션 환경을 빠르게 개발할 수 있다. 또한, 유니티의 지속적인 기술 지원과 업데이트는 우리가 최신 기술을 빠르게 도입하고, 고객의 요구에 맞는 기능을 신속하게 제공하는 데 큰 도움이 된다”고 전했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[케이스 스터디] 노트르담 대성당의 영광스러운 복원을 선보인 언리얼 엔진 5 라이팅
리얼타임 3D 기술을 도입하여 한층 발전된 프로젝션 매핑 구현   화재로 큰 피해를 입은 파리의 노트르담 대성당이 5년에 걸친 복원 끝에 재개관했다. 복원된 성당을 더욱 돋보이게 한 프로젝션 매핑 작업은 언리얼 엔진의 실시간 렌더링 기술을 활용해 역사적 건축물을 사실적이고 정교하게 되살린 혁신적인 사례로 주목받고 있다. ■ 자료 제공 : 에픽게임즈   ▲ 이미지 제공 : 코스모 AV    2019년 4월, 파리의 상징인 노트르담 대성당에서 끔찍한 화재가 발생했다. 건물 처마 밑에서 시작된 불길은 곧 첨탑과 목조 지붕 대부분을 집어삼키며 다음 날 아침까지 밤새 타올랐다. 이후 장대한 복원 프로젝트가 진행되었으며, 5년에 걸쳐 1200명 이상의 인원이 재건에 힘을 쏟았다. 채석장 작업자와 목수, 모르타르 제조자, 석공 등 숙련된 장인이 고용되어 12세기 건축 당시와 똑같은 재료와 기법으로 대성당을 재건했다.  2024년 12월, 잿더미에서 부활한 노트르담 대성당의 재개관식이 TV 시청 황금 시간대에 방송되었다. 프랑스 텔레비지옹(France Télévisions)은 복원된 대성당의 영광스러운 모습을 선보이기 위해 비디오 매핑 회사인 코스모 AV(Cosmo AV)에 의뢰했고, 코스모 AV는 프로젝션 매핑 전문가 앙투안 부르구앵(Antoine Bourgouin)에게 재개관식을 위한 멋진 건축 라이팅을 제작해 달라고 요청했다.   ▲ 이미지 제공 : 코스모 AV   언리얼 엔진을 사용한 프로젝션 매핑 지난 2010년, 앙투안 부르구앵은 거대한 트롱프뢰유를 보여줄 캔버스로 건물을 사용하는 데 처음 관심을 갖게 되었다. 트롱프뢰유는 ‘눈속임’이라는 뜻의 프랑스어로, 2차원 표면에 3차원 공간과 물체를 표현하는 극사실적인 착시 기법을 나타내는 미술 용어다. 이는 주로 회화에서 관람자가 그림 속의 사물이나 공간을 실제처럼 인식하도록 속이는 기법을 일컫는다. 초기에는 이러한 종류의 작업을 구현할 수 있는 툴이 시중에 없어, 건물의 윤곽과 규모에 맞는 비주얼을 제작하려면 직접 컴퓨터 프로그램을 개발해야 했다. 하지만 부르구앵은 비디오 프로젝터 컨트롤러와 같은 역할을 하는 소프트웨어인 모듈로 플레이어(Modulo Player)를 사용하여 벽이나 건물과 같은 표면에 영상을 투영하여 재생하고, 각 표면에 맞게 영상을 정밀하게 변형시키고 조정할 수 있도록 했다. 특히, 부르구앵은 이 과정에 리얼타임 기술을 도입하여 프로젝션 매핑 기술을 더욱 발전시키고 있다. 전통적인 비디오 매핑은 사전 녹화된 영상을 투영하는 방식이었지만, 부르구앵은 언리얼 엔진을 사용해 개발한 비주얼을 실시간으로 건물에 투영한다. 이러한 혁신적인 아이디어로 그는 플레이어의 스마트폰을 게임 패드처럼 사용하는 비디오 게임을 제작하겠다는 아이디어로 메가그랜트를 지원하게 되었다. 이러한 아이디어를 실현하고자 부르구앵은 코스모 AV의 CEO이자 인텐스시티(IntensCity)의 공동 설립자인 피에르 이브 툴로(Pierre-Yves Toulot)를 만났다.    ▲ 이미지 제공 : 코스모 AV   3D 모델에 라이팅 매핑 코스모 AV는 프랑스 국영 텔레비전 방송사인 프랑스 텔레비지옹으로부터 노트르담 대성당 재개관을 위한 프로젝션 매핑 비주얼 제작을 의뢰받았다. 그 요청 중 하나는 대성당의 외관을 돋보이게 할 아름다운 라이팅 연출을 제작하는 것이었다. 툴로와 부르구앵은 이전에도 비슷한 프로젝트에서 협업한 적이 있었는데, 특별하면서도  우아함이 필요한 작업에서는 뛰어난 전통 건축 라이팅 디자이너인 장 프랑수아 투샤(Jean-François Touchard)의 기술을 활용했다. 툴로가 노트르담 프로젝트에 부르구앵과 투샤를 합류시킨 것은 당연한 결정이었다. 먼저 부르구앵은 노트르담 대성당의 3D 스캔 모델을 언리얼 엔진으로 가져왔고, 이 과정은 FBX 파일을 임포트하는 것만큼이나 간단했다. 부르구앵은 “언리얼 엔진과 나나이트(Ninite) 기술 덕분에 이제는 임포트한 메시의 폴리곤 밀도에 더 이상 신경 쓰지 않아도 된다. 노트르담 모델은 400만 개의 트라이앵글로 구성된 메시 구조였지만, 현재 언리얼 엔진에서는 이 정도의 폴리곤 수를 아주 쉽게 처리할 수 있다”고 말했다. 나나이트는 언리얼 엔진 5의 가상화된 지오메트리 시스템으로, 성능에 미치는 영향을 최소화하면서 방대한 양의 폴리곤으로 구성된 디테일한 3D 모델을 제작할 수 있다. 이 시스템은 활용해 대성당의 매우 정밀한 메시를 렌더링하는 데 쓰였으며, 가장 작은 디테일까지 정확하게 구현할 수 있었다. 팀은 대성당의 모든 디테일을 강조하기 위해 3D 모델에 옴니 라이트, 스포트 라이트, 렉트 라이트 등 500개의 라이트를 배치했다. 이 라이트는 강도와 온도, 색상이 조화를 이루도록 하는 것이 중요했다. 부르구앵은 “조작해야 하는 라이트의 수량이 이 프로젝트에서 가장 큰 과제였다. 하지만 즉석에서 바로 만든 블루프린트를 사용하고 라이트 액터에 태그를 지정하여 다른 그룹을 나누는 방식으로 매우 원활하게 작업할 수 있었다”고 설명했다. 툴로는 아트 디렉터 역할을 했고, 장 프랑수아는 대성당의 디테일한 부분에 대한 라이팅을 실제로 구현하는 데 전문성을 발휘했다. 팀은 조각상마다 두세 개의 스포트 라이트를 배치하고 그림자를 세심하게 조작하여 조각상의 형태와 입체감을 강조했다. 또한, IES(Illuminating Engineering Society)의 라이트 프로파일을 사용해 3D 라이팅이 실제 라이트처럼 각 아치와 발코니, 기타 건축 요소의 디테일과 정확하게 일치하도록 했으며, 깊이를 강조하기 위해 라이트 온도를 조정했다. 라이팅 구성을 이미지로 렌더링한 다음 모듈로 플레이어 시스템과 연결된 30대의 고광도 파나소닉(Panasonic) 비디오 프로젝터를 사용하여 노트르담 대성당에 투영했다.   ▲ 이미지 제공 : 코스모 AV   메가라이트와 루멘 활용 노트르담 프로젝트에서 팀은 사전 녹화된 영상을 대성당에 투영할 예정이었지만, 리얼타임 기술을 사용하면서 라이팅 디자인에서 많은 이점을 얻을 수 있었다. 라이팅이 실제 건물에서 어떻게 보일지 테스트하기 위해 팀은 현장에서 언리얼 엔진으로 3D 모델을 바로 업데이트하여, 대성당에서 즉시 결과를 확인하고 필요에 따라 조정할 수 있었다. 부르구앵은 언리얼 엔진으로 작업을 완성할 수 있었던 주요 이유로 나나이트와 결합된 강력한 라이팅 시스템의 성능을 꼽았다. 부르구앵은 “라이트 수가 많은 하이 폴리곤 메시에서 직관적인 편집 방식(WYSIWYG)으로 원활하게 작업할 수 있었다. 이로써 기존의 3D 모델링 소프트웨어에서처럼 렌더링 결과를 상상할 필요가 없었다”고 말했다. 또한 최근 언리얼 엔진 5.5에 출시된 강력한 신규 기능인 메가라이트에 대해서도 높이 평가했다. 메가라이트는 아티스트가 신(scene)에 다이내믹 섀도를 드리우는 수백 개의 라이트를 추가할 수 있게 해주는 실험적인 도구다. 언리얼 엔진의 다이내믹 글로벌 일루미네이션 및 리플렉션 기능인 루멘과 함께 사용하면 매우 사실적인 라이팅을 구현할 수 있다. 부르구앵은 “메가라이트는 상당히 유용한 기능 중 하나였다. 실시간으로 그림자를 유지하면서 수백 개의 라이트로 작업할 수 있었다. 루멘을 보완하는 환상적인 기능”이라고 말했다.   되찾은 노트르담의 영광 툴로, 장 프랑수아와 함께 한 부르구앵의 라이팅 작업은 파리에서 가장 유명한 기념물 중 하나인 대성당의 재개관식에서 중요한 역할을 했다. 언리얼 엔진 덕분에 팀은 복원가들의 놀라운 작업을 빛내고 노트르담 대성당의 영광스러운 모습을 선보일 수 있었다. 부르구앵은 “파리의 노트르담 대성당은 프로젝션 매핑 작업을 하는 사람들이라면 누구나 꿈꾸는 건물 중 하나다. 이 작업에 기여할 수 있32 · 어서 정말 큰 영광이었다”라고 말했다.      ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[핫윈도] 디지털 트윈 기대 속에 실질적 도입과 확산 위한 노력 필요
캐드앤그래픽스 디지털 트윈 설문조사 분석   디지털 트윈 기술에 대한 관심이 국내 제조 및 엔지니어링 업계를 중심으로 높아지고 있지만, 실제 산업 현장에서는 여전히 다양한 현실적 제약에 직면해 있는 것으로 나타났다. 캐드앤그래픽스는 국내 디지털 트윈 현황을 집대성한 ‘디지털 트윈 가이드’를 발간하고, 국내 제조 및 엔지니어링 업계 관계자를 대상으로 3월 13일부터 4월 14일까지 ‘국내 디지털 트윈 현황 설문조사’를 실시했다. 총 1212명이 참여한 이번 설문조사에서는 디지털 트윈의 이해도, 적용 분야, 도입 단계, 구축 시 어려움 등 다양한 관점에서 기술의 현주소를 조망했다. 특히 디지털 트윈을 실제로 사용 중인 기업과 종사자를 대상으로 진행한 심층 조사에서는 기술 도입 과정에서의 구체적인 어려움과 향후 투자 계획 등 실질적인 인사이트가 도출됐다. ■ 최경화 국장   설문조사 개요 및 참가자 현황 이번 설문조사는 국내 제조 엔지니어링 업계 관계자 1212명을 대상으로 진행되었다. 설문 참가자들의 배경은 다양한 산업 분야에 걸쳐 있었으며, 이는 디지털 트윈 기술이 단일 산업에 국한되지 않고 여러 분야에서 관심을 받고 있음을 시사한다. 참가자들의 직무 또한 연구개발, 설계, 생산, 관리 등 다양한 영역에 분포하고 있어, 디지털 트윈 기술이 기업 내 여러 부서와 직무에 걸쳐 중요성을 인정받고 있음을 알 수 있었다. 디지털 트윈 관련 업무 분야에서도 다양한 응답이 나타나, 이 기술의 응용 범위가 넓어지고 있음을 확인할 수 있다.   주력 산업 분야 설문 응답자들의 주력 산업 분야는 ‘건축/건설/토목’(22.7%)과 ‘전기전자/하이테크/반도체’(17.9%), ‘시각화/그래픽/디자인’(14.2%) 등이 높은 비중을 차지했으며, 자동차, 플랜트 등 다양한 산업 분야가 분포되어 있음을 알 수 있다.   그림 1. 설문 응답자 현황 - 주력 산업 분야   직무 분야 설문 응답자들의 직무 분포는 ‘엔지니어’(41.2%)가 압도적으로 높은 비율을 보였고, ‘경영진/임원’(15.9%), ‘SW 개발’(14.3%) 순으로 나타나, 기술 및 관리 직무 종사자들의 높은 관심을 반영했다.   그림 2. 설문 응답자 현황 – 직무   디지털 트윈 관련 업무 분야 설문 응답자들의 디지털 트윈 관련 업무 분야에 대해서는 CAD/3D 모델링이 가장 높게 나타났고, AI/머신러닝, CAE/시뮬레이션 순으로 나타났다.    그림 3. 설문 참가자 현황 - 디지털 트윈 관련 업무 분야   국내 디지털 트윈 도입 현황 - 뜨거운 기대감과 더딘 현실 디지털 트윈 이해 수준 기술에 대한 이해 수준은 아직 부족한 것으로 나타났다. 디지털 트윈 이해 수준에 대해서는 ‘대체로 알고 있다’(36.8%)와 ‘조금 알고 있다’(37.2%)가 비슷한 비율을 보였으며, ‘매우 잘 알고 있다’ (10.4%)는 소수에 불과했다. ‘잘 모른다’(15.6%)는 응답도 상당수를 차지했다. 이는 기술에 대한 인지도는 높지만, 깊이 있는 이해와 활용 능력은 아직 부족하다는 점을 시사한다.   그림 4. 디지털 트윈에 대한 이해 수준   디지털 트윈 발전 전망 반면, 디지털 트윈의 미래에 대한 업계의 기대는 매우 컸다. 향후 디지털 트윈 발전 전망에 대한 응답에 따르면 ‘매우 중요하게 성장할 것’(66%)과 ‘다소 성장할 것’(30.5%)이라는 답변이 전체의 압도적인 대다수를 차지했다. 또한 전체 응답자의 96.5%가 기술의 중요성과 잠재력에 대해 폭넓은 공감대를 형성하고 있음을 확인시켜 주었다.   그림 5. 디지털 트윈 향후 발전 전망   디지털 트윈 사용 기업 및 도입 현황 디지털 트윈을 실제로 사용하고 있는 기업 및 유저를 대상으로 한 심층 조사에는 총 385명이 참여했다. 이들 기업의 규모는 매출액과 직원 수를 기준으로 다양하게 분포하고 있어, 디지털 트윈 기술이 대기업뿐 아니라 중소기업에서도 점차 도입되고 있음을 알 수 있다.   디지털 트윈 사용 기업 규모 디지털 트윈 사용 기업의 매출액은 5000억원 이상이 48.8%를 차지해 가장 높은 분포를 보였으며, 1000억원 이상~500억원 미만이 13.2%로 큰 기업들이 주로 관심을 가지고 있었음을 알 수 있었다. 직원 수도 5000명 이상이 32.2%로 가장 높은 수치를 차지했으며, 1000명~5000명 미만이 17.9%, 100명~500명 미만이 11.7% 순으로 나타났다.    그림 6. 디지털 트윈 사용 기업 매출액   디지털 트윈 사용 기업 적용 분야 디지털 트윈 적용 분야는 ‘제품 설계 및 시뮬레이션’(66.8%), ‘생산/제조 운영’(43.9%), 설비 모니터링 및 유지보수(39.2%) 순으로, 제품 개발과 생산 영역에 활용이 집중되는 경향을 보였다. 제조 분야에 비해서는 사용이 적지만 도시, 에너지, 교통, 물류, 의료 등 다양한 영역에서 활용되고 있음을 확인할 수 있다. 특히 제조업 분야에서는 생산 공정 최적화, 품질 관리, 설비 예지 보전 등의 목적으로 활용되고 있을 것으로 추정된다.   그림 7. 디지털 트윈 적용 분야   디지털 트윈 적용 목적 디지털 트윈을 적용하는 주요 목적은 ‘설계 최적화’(61.0%), ‘생산성 향상’(54.5%), ‘운영 효율화’(46.2%) 등 효율성 증대 관련 항목들이 우위를 점했다.   그림 8. 디지털 트윈 적용 목적   디지털 트윈 도입 단계 아직까지 디지털 트윈에 대한 관심은 높지만 실제 사용 보다는 검토 중인 기업이 많은 것으로 나타났다. 디지털 트윈 사용 기업의 도입 단계 관련 답변을 보면, ‘도입 검토 중’(43.6%)이 가장 큰 비중을 차지했다. 이어 ‘일부 시스템 도입 완료’(18.4%), ‘PoC(파일럿) 진행 중’(12.2%), ‘전사 확산 및 활용 중’은 4.2% 순으로, 본격적인 활용 단계에 진입한 기업은 소수임을 알 수 있었다. ‘도입 계획 없음’(17.9%)이라는 응답도 적지 않았다.    그림 9. 디지털 트윈 도입 단계   다양한 상용 디지털 트윈 툴 사용… 자체 개발·검토도 다수 디지털 트윈 기술의 확산과 함께, 국내 기업들이 활용 중인 디지털 트윈 소프트웨어 및 플랫폼은 매우 다양하며, 기업별로 도입 단계나 활용 수준에서도 큰 차이를 보이는 것으로 나타났다. ‘현재 사용 중인 디지털 트윈 툴’에 대한 주관식 응답 결과를 분석해 보면, 국내 산업계는 BIM 기반 플랫폼, CAE 시뮬레이션 도구, PLM 및 협업 플랫폼, 그리고 게임 엔진 기반 시각화 도구를 중심으로 디지털 트윈 기술을 도입하고 있는 것으로 나타났다. 아래 내용은 답변 내용을 중심으로 정리한 것이다.   BIM 및 설계 중심 소프트웨어의 강세 디지털 트윈 구축의 초기 단계에서 가장 두드러지는 분야는 설계 기반 모델링(BIM) 도구다. 응답자 중 상당수가 오토데스크의 레빗(Revit), 오토캐드, 시빌 3D(Civil 3D), 나비스웍스(Navisworks) 등을 사용하고 있다고 응답했다. 벤틀리 시스템즈의 아이트윈(iTwin), 트림블의 테클라(Tekla) 및 트림블 커넥트(Trimble Connect), 아비바의 아비바 E3D(AVEVA E3D) 등도 건설·플랜트 산업에서 활용하고 있다고 답변했다.   정밀 해석 기반의 시뮬레이션 툴 확산 앤시스(Ansys), 아바쿠스(Abaqus), 하이퍼웍스(HyperWorks), LS-DYNA, 시뮬링크(Simulink), 아담스(Adams), GT-스위트(GT-Suite), 플렉스심(FlexSim) 등 해석 전문 툴의 사용도 두드러졌다. 특히 제품 설계나 공정 시뮬레이션에서 정밀한 모델링이 필요한 제조업, 자동차, 중공업 분야에서는 다물리 해석 툴 기반의 디지털 트윈 구현이 주를 이뤘다.   PLM 기반 통합 디지털 플랫폼도 주목 설계-생산-운영 전 주기를 통합 관리하기 위한 PLM 기반 플랫폼도 활발히 사용되고 있다. 다쏘시스템즈의 3D익스피리언스(3DEXPERIENCE), 카티아(CATIA), 에노비아(ENOVIA), 지멘스의 NX, 팀센터(Teamcenter), 플랜트 시뮬레이션(Plant Simulation), PTC의 크레오(Creo), 윈칠(Windchill), 씽웍스(ThingWorx) 외에도 전문 툴인 비주얼컴포넌트 등은 스마트 공정 및 운영 관리까지 연계된 디지털 트윈 구현에 활용되고 있는 것으로 보인다.   게임엔진 기반 실시간 시각화 기술 부상 유니티(Unity), 언리얼 엔진(Unreal Engine), 트윈모션(Twinmotion), 엔비디아 옴니버스(Omniverse) 등 게임엔진 기반 시각화 도구는 실시간 협업과 현장 시뮬레이션에서 각광받고 있다. 특히 언리얼엔진, 유니티와 옴니버스 등은 다른 플랫폼과의 연동성을 강화해 디자인 협업 및 공정 검증에 널리 활용되고 있다.   자체 설루션 및 커스터마이징 비율도 높아 이밖에도 국산 설루션인 이에이트, 소프트힐스, 버넥트, 한국디지털트윈연구소 설루션을 이용하고 있다는 응답도 있었다. 흥미로운 점은 응답자의 상당수가 ‘인하우스 개발’ 또는 ‘자체 플랫폼’, ‘프로젝트마다 요구사항 수렴 방식’ 등의 형태로 독자적인 디지털 트윈 시스템을 운영하고 있다는 것이다. 이는 특정 상용 설루션만으로는 각기 다른 업무 흐름이나 도메인 지식을 완벽히 반영하기 어렵기 때문으로 분석된다. 또한 ‘아직 도입 예정’ 또는 ‘검토 단계’라는 응답도 적지 않아, 디지털 트윈 도입의 확산은 진행 중인 흐름임을 알 수 있다.   넘어야 할 장벽 : 현장의 목소리로 본 핵심 과제 디지털 트윈의 확산이 더딘 배경에는 공통적으로 지적된 여러 장애물이 존재했다. 특히 높은 비용과 불확실한 ROI는 가장 큰 걸림돌로 지목됐다.   디지털 트윈 시스템 구축의 어려움 디지털 트윈 사용 기업이 꼽은 구축 시 가장 큰 어려움으로 ‘초기 투자 비용’(24.4%)과 ‘전문 인력 부족’(20.5%)이 가장 높은 비율을 차지했다. 그 뒤를 이어 ‘ROI 분석의 어려움’(16.6%), ‘경영진의 이해 부족’(15.1%) 순으로 나타났다. 주관식 답변에서는 고비용의 소프트웨어, 외산 설루션 및 3D 프로그램의 높은 라이선스 비용, 디지털 전환(DX) 도입 및 유지보수 비용 과다 등 경제적 부담에 대한 토로가 많았다. 특히 기대효과가 명확해야 한다, 비용 대비 효율이 확보되지 않으면 불가능하다, 실질적인 경영 효과로 어떻게 연결되는지 의문이라며, 투자를 정당화할 명확한 성과 측정과 검증된 성공 사례 부족을 지적했다. 전문 인력 부족 문제는 교육 시스템의 부재와 연계돼 있으며, 현장에서는 관련 교육 기회가 부족하다는 지적이 많았다. 경영진의 이해 부족도 중요한 문제로 나타났다.   그림 10. 디지털 트윈 구축 시 어려움   디지털 트윈 시스템 구축 관련 투자 계획 이러한 어려움에도 불구하고, 향후 디지털 트윈에 대한 투자 의향은 비교적 긍정적이었다. 사용 기업의 향후 투자 계획을 보여주는 그래프를 보면, ‘2년 이내’(31.4%), ‘1년 이내’(19.0%), ‘6개월 이내’(11.4%) 등 2년 내 투자 계획이 있다는 응답이 전체의 61.8%를 차지했다. 반면에 ‘도입 계획 없음’(26.2%)도 상당수 있었다.   그림 11. 향후 투자 계획   미래 투자 방향과 나아갈 길 전체 응답자가 디지털 트윈 확산을 위해 가장 필요하다고 꼽은 요소를 가중치 순으로 나타낸 그래프를 보면, ‘경영진의 의지와 디지털 트윈에 대한 이해’가 다른 항목을 큰 차이로 앞서며 압도적인 1위를 차지하고 있음을 확인할 수 있다. 또한 실제 사용 기업이 겪는 어려움에서도 ‘경영진의 이해 부족’이 중요한 요인으로 드러났다. 주관식 답변에서는 ROI 증명의 어려움과 맞물려 경영진 설득의 어려움을 토로하거나, 심지어 “실제 시험을 안 해도 된다고 생각하는 경영진이 많다”는 언급까지 나와, 리더십의 인식 개선이 시급함을 알 수 있었다. 표준화의 부재 역시 반복적으로 지적되었다. 응답자들은 데이터 표준화, 3D CAD 포맷 변환, 시스템 간 호환성 부족 등을 구체적인 문제로 언급했다.   그림 12. 디지털 트윈 시스템 구축과 확대를 위해 가장 필요한 것   구체적 정보와 성공 사례의 부족 또한 큰 장벽이다. 응답자들은 산업별 사례, 성공 및 실패 경험 등을 통한 실질적 정보 공유를 절실히 요구하고 있다. 이 밖에도 데이터 확보의 어려움, 외산 소프트웨어 의존도, 기술 복잡성, 국산 소프트웨어 개발의 필요성 등이 복합적으로 언급되며, 생태계 전반에 대한 개선이 필요함을 시사했다. 따라서 성공적인 디지털 트윈 도입과 확산을 위해서는 산적한 과제를 해결하기 위한 다각적인 노력이 필요하다. 현장의 목소리와 설문 데이터는 다음과 같은 방향을 제시하고 있다. 정부의 적극적인 역할 : 중소기업 지원 확대 , R&D 지원 및 국산 소프트웨어 육성, 산업 표준화 주도, 선도적인 인프라 투자 및 정책 지원 등 정부의 체계적이고 일관성 있는 지원 정책이 요구된다. 실질적 가치 증명 및 정보 공유 : 명확한 ROI 산정 모델 개발, 산업별 성공/실패 사례 발굴 및 투명한 공유, 기술 효용성에 대한 적극적인 홍보와 교육 강화가 필요하다. 표준화 및 기술 개발 : 데이터 형식 통일, 호환성 확보 등 산업 표준을 조속히 마련하고, 사용자 편의성을 높인 기술 및 플랫폼 개발 노력이 필요하다. 인력 양성 및 생태계 조성 : 실무 중심의 교육 프로그램 개발발 및 전문가 양성 시스템 구축, 산학연관 협력 시스템 강화가 필요하다.   맺음말 : 잠재력 현실화 위한 협력과 실질적 노력 시급 이번 설문조사는 디지털 트윈에 대한 국내 산업계의 높은 관심과 함께, 도입을 가로막는 다양한 현실적 장애 요인을 통계와 목소리로 생생하게 보여준 것이라고 할 수 있다. 이 같은 결과는 국내 산업계에서 디지털 트윈 도입이 활발히 이루어지고 있으나, 여전히 도입 도구의 표준화, 조직 내 전사적 활용, 실제 업무 흐름과의 통합 등에서 과제가 많다는 점을 보여준다. 향후에는 상용 툴과 자체 개발 플랫폼 간의 융합 전략, 그리고 데이터 연동성과 유지관리 측면에서의 체계적인 접근이 더욱 중요해질 것으로 보인다. 또한 디지털 트윈이 제조업 혁신의 핵심 동력으로 자리매김하기 위해서는 산업계, 정부, 학계가 함께 협력해 실질적인 해결책을 모색하고, 지속 가능한 생태계를 조성하려는 노력이 절실하다고 할 것이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[온에어] 공기업 BIM 적용 지침에 따른 설계·시공 프로세스 변화와 대응 전략
캐드앤그래픽스 CNG TV 지식방송 지상 중계   지난 3월 31일 CNG TV는 ‘공기업 BIM 적용 지침에 따른 설계 및 시공 프로세스 변화와 대응 전략’을 주제로 웨비나를 개최했다. 이번 웨비나는 공기업의 건축 BIM(건설 정보 모델링) 적용 지침에 따른 설계 및 시공 프로세스의 변화와 이에 대한 실질적인 대응 전략을 다뤘으며, 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   ▲ 디지털 지식연구소 조형식 대표, 성균관대학교 진상윤 교수   공기업 건축 BIM 적용 지침의 변화와 실무 적용 사례 LH와 GH의 건축 BIM 적용 지침 개발을 총괄한 성균관대학교 진상윤 교수는 이 지침이 설계 및 시공 프로세스에 어떤 변화를 가져오는지 설명했다. 이 지침은 공기업이 각 기관의 특성에 맞춰 BIM 적용 지침을 제정하도록 유도하고 있으며, LH, GH 및 기타 공사가 이를 기반으로 자체 BIM 지침을 수립한 것이 특징이다. 진 교수는 이 지침을 통해 설계 및 시공의 초기 단계부터 BIM을 적극 활용하고, 기존의 ‘전환 설계’ 방식이 아닌 실질적인 BIM 설계 프로세스를 유도하고자 했다고 설명했다. 또한, 발주자가 BIM을 통해 실질적인 관리가 가능한 체계를 구축하고, 도면 대신 BIM 기반의 성과물을 생산하는 프로세스를 개발 중이라고 밝혔다. 그는 BIM을 활용한 설계가 국제 경쟁력 확보와 산업 선진화를 목표로 하고 있다면서, 공동주택 설계의 BIM 프로세스를 소개하는 비전 영상도 함께 공개했다. 주요 내용으로는 ▲기존 BIM 적용의 한계 극복 ▲실질적인 BIM 설계 프로세스 유도 ▲발주자의 지속 가능한 BIM 운영 체계 구축 ▲시공 BIM 프로세스 개선 ▲유지관리 단계까지 고려한 준공 BIM 확보 등이 제시됐다. 진 교수는 “BIM은 단순한 기술 도입이 아니라 언어 자체가 바뀌는 개념으로 접근해야 하며, ▲인식 개선 ▲프로세스 개선 ▲대가 체계 개선 ▲표현 언어 변화 ▲생태계 전환이라는 다섯 가지 관점에서 변화가 필요하다”고 강조했다.   ▲ LH와 GH의 BIM 적용 현황   단위 세대 모델링과 BIM 데이터 구축 단위 세대 모델링은 중심선을 그리드로 설정하고 벽 및 바닥을 모델링한 뒤 창호나 문을 배치하는 방식으로 진행된다. 모델이 변경되면 면적 산정도 자동으로 반영되며, 사용자는 전용 면적, 공용 면적, 발코니 면적 등 세부 면적 정보를 구분하여 입력하고 효율적으로 관리할 수 있다. 공동주택의 경우 반복되는 객체가 많아 프로그램 성능 저하가 우려되지만, 효율적인 파일 관리 방안을 마련하면 안정적인 운영이 가능하다고 밝혔다. 또한 구조 정합성 검토는 구조 부재 정보를 기반으로 진행되며, 실내 재료 마감표를 구성하여 높은 정합성을 가진 도면을 추출할 수 있는 점도 장점으로 꼽혔다.   현상 설계 공모 단계에서의 BIM 적용 변화 과거에는 현상 설계 공모 단계에서 BIM 활용에 대한 반대 의견이 있었으나, 최근에는 BIM 역량을 갖춘 업체의 참여를 유도하는 방향으로 변화하고 있다. 실제로 고양 창릉 지구의 기본 설계 공모에서 현상 설계 단계부터 BIM 적용이 요구되기 시작했으며, 이는 건축 산업의 디지털 전환을 가속화하려는 의도로 풀이된다. 진 교수는 “현상 설계 공모에서 BIM을 활용한 3D 모델과 정보를 구축하고 이를 바탕으로 설계 설명서를 제작하는 것이 요구되고 있으며, 이를 위한 정확한 설계 검증 시스템도 마련되고 있다”고 말했다. 또한 “BIM은 설계자의 부담을 줄이고, 설계 데이터와 요구 사항을 지속적으로 확인하며 작업할 수 있게 해주는 도구로 기능한다”고 설명했다. 아울러 “BIM을 사용하지 않을 경우 감점 조치가 시행되고 있으며, 설계뿐 아니라 관리까지 BIM을 활용하도록 요구되면서 BIM 거버넌스의 중요성이 더욱 강조되고 있다”고 덧붙였다. 한편, 공기업 BIM 적용 지침에서는 원본 데이터에서 정의된 뷰 명칭을 도면 각 페이지에 각주로 명시해야 한다. 이는 BIM을 통해 구축한 실체에 해당 명칭을 추가하는 과정으로, 중대한 위반 사항과 사전 검토 항목은 BIM 시스템을 통해 검토해야 하며, 불법 건축 등 법규 위반 여부도 BIM 데이터를 통해 확인이 가능하다. 과거에는 현상 설계에서 별도로 가상 모델을 제출해야 했지만, 현재는 BIM을 통해 이를 손쉽게 구현할 수 있다. 아직 BIM을 적용한 현상 설계 사례는 많지 않지만, 지침에 따라 가상 모델 제출을 선택적으로 요구할 수 있는 유연성도 확보된 상황이다.   ▲ LH가 추구하는 설계 BIM 프로세스   지속 가능한 BIM 거버넌스 체제 필요성 지속 가능한 BIM 거버넌스 체계는 조직 내 경영진 변화와 무관하게 유지되어야 하며, 실무자는 최소 4년 이상 담당함으로써 충분한 이해와 경험을 축적해야 한다. BIM 적용 과정에서 발생할 수 있는 시행착오는 실무자의 심리적 부담을 고려해 제도적으로 포용할 필요가 있다. 이를 위해 선순환적인 BIM 수행 체계를 마련하고, 이를 기반으로 한 교육 및 훈련 프로그램을 체계적으로 운영해야 성공적인  BIM 도입이 가능하다. 또한 설계 및 시공자의 편의를 고려한 지침은 최소한의 요구사항을 명시해 사업 특성에 맞는 유연한 적용을 가능하게 하며, 필요 시 감독관과 협의를 거쳐 조정할 수 있다. BIM 도면은 기존의 2D CAD 도면이 가진 한계를 극복하고, 3D의 특성을 살려 설계 이해도를 높이는 방향으로 발전해야 한다. BIM은 다양한 디지털 기술의 기반이 되는 핵심 요소이며, 기업의 지속 가능한 발전을 위한 필수 기술로 자리 잡고 있다. 국내에서 BIM 사용 시 BCF 포맷을 지원하는 대표 소프트웨어로는 나비스웍스, 레빗, 아키캐드 등이 있으며, 국산 소프트웨어의 발전도 요구되고 있다.   BIM의 중요성과 국내 소프트웨어 현황 진 교수는 “한국 건설 산업에서 BIM의 활성화를 위해 실무자 중심의 프로세스를 구축해야 하며, 현재는 외주 업체에 대한 의존도가 높아 시장 성장이 제한적”이라며, “BIM 적용 시 전문가 간 분업을 통해 효율적인 업무 분담이 이루어져야 하고, 설계자와 엔지니어 간 명확한 역할 구분이 필요하다”고 강조했다. 향후 BIM의 발전 방향으로는 AI 기술과의 융합이 이루어져 보다 자동화된 건축 관리 시대가 도래할 가능성이 있으며, BIM은 디지털 기술 전환의 기반으로서 핵심 역할을 할 것으로 전망된다. 진 교수는 “국내 BIM 소프트웨어가 활성화되지 못하는 이유는 시장 규모가 작기 때문이며, 실무자가 아닌 외주 업체가 주로 사용하는 구조로 인해 사용률이 낮다”고 지적했다. 그리고 “건설업계 종사자가 약 100만 명에 달하지만, 이 중 실질적으로 BIM을 사용하는 비율은 낮아 시장 확대가 필요하다”고 덧붙였다. 앞으로 외주 업체는 BIM 컨설팅 서비스를 통해 부가가치를 창출하고, 이를 통해 산업 전반의 발전에 기여할 수 있는 기회를 마련해야 한다. 실무자 중심의 BIM 프로세스가 정착된다면, 국산 소프트웨어의 판매 증가와 함께 시장의 선순환 구조 형성도 기대할 수 있다.   ▲ 기존 대비 BIM 설계 예시       ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02