• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "딥러닝"에 대한 통합 검색 내용이 364개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
캐디안, 벤처창업진흥유공포상 ‘중소벤처기업부 장관상’ 수상 
인공지능 기반의 CAD 프로그램 개발 기업인 캐디안은 2024년 우수 벤처기업 정부포상에서 중소벤처기업부 장관상을 수상했다고 밝혔다. 벤처창업진흥 유공 포상은 벤처 산업 발전과 혁신 성장에 기여한 유공자에게 주어지는 상으로, 기술 및 경영 혁신 능력이 뛰어나고 대외 경쟁력이 우수하며 사회적 공헌도가 높은 벤처기업을 대상으로 수여된다. 지난 1990년 설립하여 만 34년차의 벤처기업인 캐디안은 CAD 기술력과 경영혁신 능력을 바탐으로 기술혁신기업(이노비즈)과 경영혁신기업(메인비즈)으로도 선정되었다. 이번에 수상하게 된 캐디안(CADian)은 오토캐드의 DWG 파일과 호환되는 설계 저작도구이다.     특히 캐디안이 최근 선보인 캐디안 AI-CE(CADian AI-CE) 설루션은 디지털 이미지 내 특정 영역에 대한 분류 결과를 보여주는 객체 인식(Object Detection) 기술과 디지털 이미지를 여러 개의 픽셀 집합으로 분할을 통해 이미지의 표현을 해석하기 쉽게 단순화하여 분류 결과를 보여주는 의미적 분할(semantic segmentation) 기술에 의해 개발됐다. 이 제폼은 중대형 건설 및 인테리어 수주에 앞서 요구되는 입찰을 위한 견적용 적산과 공사 완료 시점에 필요한 정산용 적산 등을 신속하고 정확하고 추출할 수 있다는 점을 내세운다. 캐디안의 박승훈 대표는 “산업 전반에 공헌도가 높은 벤처 기업을 대상으로 수여하는 상을 수상하게 되어 기쁘다”면서, “최근에는 래스터 이미지 파일과 벡터 파일을 AI 딥러닝으로 인식하여 도면을 자동으로 재설계하면서 적산 자동화를 가능하게 하는 AI 기반의 차세대 CAD 설루션 캐디안 AI-CE를 출시했다. 이젠 우리나라가 글로벌 CAD 시장을 리드해 나갈 수 있도록 노력하겠다”고 밝혔다.
작성일 : 2024-12-23
딥러닝 모델 개발 프로세스 기록/분석/가시화 및 모델 튜닝하기
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 AI 업계에서 표준적으로 사용되고 있는 도구를 개발하는 W&B(Weights & Biases)를 소개하고, 이를 사용하는 방법을 소개한다. 그리고 건설, 제조와 같은 전통 엔지니어링 산업에서 생존을 위해 생각할 부분을 정리해 보고자 한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 |  http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 |  www.facebook.com/groups/digestpodcast 모든 산업 분야에서 딥러닝으로 시작된 인공지능(AI) 기술 트랜드가 거세게 몰아치고 있다. 특히, 올해는 생성형 AI가 업무에 실질적으로 사용되기 시작했다. 생성형 AI는 다양한 업무 분야를 자동화하고 있어, ‘Job Killer’라 불릴 만큼 오피스에 많은 영향을 주고 있다. 이와 같이 기술이 전통적인 시장과 일자리를 축소하기도 하지만, 이번 호에서 소개할 W&B는 골드러시에서 역마차를 만들어 운영했던 웰스파고의 전략을 잘 실행한 스타트업이다.     W&B 기술 소개 딥러닝 모델을 개발하다 보면 수많은 종류의 데이터셋, 하이퍼모델 파라미터 튜닝 등으로 인해 관리해야 할 자료가 매우 복잡해진다는 것을 알게 된다. W&B는 이름 그대로 완벽한 모델 학습을 위해 필요한 딥러닝 모델의 가중치(weights)와 편향(biases)을 모니터링 및 관리할 수 있는 로그 도구이다. 즉, 딥러닝 모델 개발자를 위한 프로세스 로그 및 가시화 플랫폼을 제공한다.    그림 1. W&B(AI Summer)   매우 직관적인 이름을 가진 이 스타트업은 텐서보드(Tensorboard)와 비슷하지만, 적은 코드로 모델 개발에 많은 통찰력을 준다. W&B의 WandB 라이브러리를 사용하면 딥러닝 모델 학습 시 지저분하게 붙어 나가는 로그 처리를 간단한 함수 몇 개로 처리할 수 있고, 통합된 대시보드 형태로 다양한 모델 학습 품질 지표를 확인 및 비교할 수 있다. 이외에도 학습 모델 하이퍼 파라미터 관리와 튜닝 및 비교 보고서 생성 기능을 제공한다. 로그는 숫자, 텍스트, 이미지 등 다양한 포맷을 지원한다.    그림 2. W&B 딥러닝 모델 개발 프로세스 가시화 대시보드   이번 호에서는 딥러닝 모델 학습 로그 및 가시화 영역에 집중해 살펴본다. 글의 마무리에서는 W&B의 개발 배경도 간단히 알아본다.     사용법 다음 링크에 방문해 회원 가입한다.  wandb.ai website : https://wandb.ai 회원 가입한 후 <그림 3~4>와 같이 홈 메뉴에서 키 토큰 값을 얻어 복사한다. 이 키는 wandb API를 사용할 때 필요하다.   그림 3    그림 4   명령행 터미널에서 다음 명령을 실행해 wandb 파이썬 라이브러리를 설치한다.  pip install wandb     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-12-05
AWS, 딥러닝 및 생성형 AI를 위한 트레이니움2 인스턴스 출시
아마존웹서비스(AWS)는 ‘AWS 리인벤트’ 행사에서 AWS 트레이니움2(AWS Trainium2) 칩 기반의 아마존 EC2(Amazon EC2) 인스턴스를 공식 출시했다고 발표했다. 또한, AWS는 대규모 언어 모델(LLM) 및 파운데이션 모델(FM)의 학습과 추론을 지원하는 트레이니움2 울트라서버(Trn2 UltraServers)와 차세대 트레이니움3(Trainium3) 칩도 함께 공개했다. Trn2 인스턴스는 16개의 트레이니움2 칩을 탑재하여 최대 20.8 페타플롭스(PF)의 연산 성능을 제공한다. 이는 수십억 개의 매개변수를 가진 LLM의 학습 및 배포에 적합하다. Trn2 인스턴스는 동일한 비용으로 기존 GPU 기반 EC2 P5e 및 P5en 인스턴스 대비 30~40% 더 나은 가격 대비 성능을 제공하며, 메모리 대역폭도 개선되어 비용 효율성이 높다는 것이 AWS의 설명이다. Trn2 울트라서버는 새로운 EC2 제품군으로, 초고속 뉴런링크(NeuronLink) 기술을 사용해 64개의 트레이니움2 칩을 연결하여 최대 83.2 피크 페타플롭스의 연산 성능을 제공한다. 이는 단일 Trn2 인스턴스 대비 연산, 메모리, 네트워킹 성능을 각각 4배로 확장해 대규모의 모델 학습과 배포를 가능하게 한다. Trn2 인스턴스는 현재 미국 동부(오하이오) AWS 리전에서 사용 가능하며, 추가 리전에서도 곧 제공될 예정이다. Trn2 울트라서버는 현재 프리뷰 상태로 제공되고 있다. 한편, AWS는 앤스로픽(Anthropic)과 협력해 수십만 개의 트레이니움2 칩을 포함하는 EC2 울트라클러스터(UltraClusters)를 구축하고 있다고 밝혔다. 이 프로젝트는 ‘프로젝트 레이니어(Project Rainier)’로 명명되었으며, 현재 세대의 최첨단 AI 모델 훈련에 사용된 엑사플롭스의 5배 이상의 성능을 갖출 것으로 기대된다. 이외에도 AWS는 차세대 AI 학습 칩인 트레이니움3를 공개했다. 트레이니움3는 트레이니움2 대비 최대 2배 성능과 40% 개선된 에너지 효율성을 제공하며, 이를 통해 고객은 더 큰 모델을 더 빠르게 구축하고 실시간 성능을 극대화할 수 있다. AWS의 데이비드 브라운(David Brown) 컴퓨팅 및 네트워킹 부문 부사장은 “트레이니움2는 AWS가 개발한 칩 중 가장 강력한 성능을 자랑하며, 대규모 및 최첨단 생성형 AI 워크로드를 지원하기 위해 설계되었다. 이 칩은 학습과 추론 모두에서 최고의 가격 대비 성능을 제공한다”면서, “매개변수가 수조 개에 달하는 모델이 등장하면서, 고객들에게 대규모 모델을 효율적으로 학습하고 운영할 수 있는 새로운 접근 방식이 필요해졌다. Trn2 울트라서버는 AWS에서 가장 빠른 학습 및 추론 성능을 제공하며, 모든 규모의 조직이 세계 최대 모델을 더 빠르고 비용 효율적으로 학습하고 배포할 수 있도록 돕는다”고 전했다.
작성일 : 2024-12-04
Stochos : 온프레미스 기반의 AI 알고리즘 솔루션
개발 및 공급 : 태성에스엔이 주요 특징 : 확률적 머신러닝 알고리즘 접근 방식 사용, 기존 데이터 활용 또는 새로운 데이터 수집 계획으로 샘플과 자원의 효율적 관리, 전문가의 도움 없이도 확률적 머신러닝 작업 수행, 2D 및 3D FEM/CFD 등 다양한 형상과 데이터 형식 학습 가능, 실제 실험 데이터와 시뮬레이션 데이터의 유연한 처리 등   ▲ DIM-GP 알고리즘   Stochos(스토코스)는 딥러닝(DL)과 가우시안 프로세스(GP)를 독창적으로 결합하여 각 알고리즘의 장점을 최대화하고 단점을 최소화한 혁신적인 머신러닝 솔루션(DIM-GP : Deep infinite mixture of Gaussian Processes)을 제공한다. 기존 머신러닝 기업이 주로 딥러닝에 의존해 많은 하이퍼 파라미터 튜닝을 요구하는 것과 달리, 하이퍼 파라미터 훈련이 전혀 필요하지 않다. 또한 온프레미스(on-premise) 방식으로 학습 및 응용 시에 사내에서 안전하게 처리 및 보관할 수 있어 보안이 강화되며, 비용과 자원이 많이 드는 클라우드 컴퓨팅 솔루션이 요구되지 않는다.  낮은 하드웨어 요구 사항으로 빠른 AI 모델 구축 가능(클라우드 필요 없음) 하이퍼 파라미터 설정 불필요(AI 전문 지식 필요 없음) 다양한 형태의 데이터 사용 가능(1D/2D/3D, 이미지, 실험 데이터, 정해석, 과도해석 등) CAE 해석 프로그램의 종류에 무관하게 적용 가능 적은 데이터 수로 높은 정확도 구현 자동 노이즈 처리 데이터는 고객에게 보관됨 Stochos는 지도 학습, 비지도 학습, 강화 학습의 세 가지 유형의 머신러닝을 모두 지원한다. 지도 학습에서는 시뮬레이션 솔버를 대체하고 최적화를 수행하는 데에 유용하다. 비지도 학습의 예로는 모델이 센서 데이터에서 이상을 분석하는 예측 유지보수 작업이 있다. 강화 학습 작업은 로봇 공학이나 자율주행과 같은 실시간 제어 작업을 모두 포괄한다. 이 소프트웨어는 CPU, GPU, 마이크로 컨트롤러 등 다양한 하드웨어 플랫폼에서 작동하여 실시간 응답을 제공할 수 있다.   2D 유동 과도 해석, 사용 샘플 5개 변수 : 받음각 엔비디아 4090 GPU, 학습 시간 14분 1 CPU(8 코어), 학습 시간 32분   3D 고주파 해석, 사용 샘플 37개 변수 : 안테나 위치 엔비디아 4090 GPU, 학습 시간 7초, CPU  학습 시간 10초   3D 과도 충돌 해석, 사용 샘플 32개 변수 : 판재 두께 엔비디아 4090 GPU, 학습 시간 21초   3D 열유동 해석, 사용 샘플 34개 변수 : 냉각채널 형상 엔비디아 4090 GPU, 학습 시간 6시간   또한, Stochos의 AI 라이브러를 이용해 업체 맞춤형 AI 제작 프로그램을 만들어, 해석 및 분석 작업의 효율을 최대화할 수 있다.    ▲ Stochos 라이브러리를 이용한 맞춤형 AI 프로그램 제작     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-12-04
CAD&Graphics 2024년 12월호 목차
  18 THEME. 제조·건축 디자인의 미래를 그리는 인공지능과 디지털 트윈 AI 주도의 디자인을 바라보는 관점 : 프로세스와 사례 중심으로 / 고성찬 생성형 AI와 제조 디자인의 현재 그리고 미래 / 유훈식 이미지 생성을 넘어 : 모빌리티 디자인에서 생성형 AI의 동향과 숙제 / 박현준 제조 및 건설 산업의 패러다임을 바꾸는 디지털 트윈의 혁신 / 이문규 디지털 혁신의 시대, 건축가와 엔지니어를 위한 협업 도구 / 이경선 제조 산업의 디지털 트윈을 위한 리얼타임 렌더링 / 진득호   INFOWORLD   Editorial 17 2024년을 되돌아보며 : AI, 산업을 재정의하다   People&Company 45 시각화 콘텐츠 제작을 위한 토털 설루션 제공하는 맥슨 지브러시, 시네마4D, 레드 자이언트로 만나는 새로운 크리에이티브 경험   Case Study 68 항공기 부품 제조 혁신에 기여하는 적층제조 3D 프린팅으로 만들어진 GE의 LEAP 연료 노즐 70 산업 분야에서 효과적인 협업을 돕는 몰입형 3D 기술 몰입형 3D 협업 앱으로 워크플로 및 생산성 개선   Column 86 현장에서 얻은 것 No.19 / 류용효 익숙함을 넘어 편리함으로 90 디지털 지식전문가 조형식의 지식마당 /조형식 스마트에서 혁신으로   Focus 48 CAE 컨퍼런스 2024, 제조 혁신을 위한 CAE와 AI의 융합 전략 소개 53 빌드스마트 콘퍼런스 2024, AI/로봇공학/디지털 도구를 통한 건설의 미래 탐색 56 다쏘시스템, “버추얼 트윈으로 지속 가능한 디지털 전환 이끈다” 58 앤시스, “시뮬레이션과 AI의 결합 및 접근장벽 낮추는 기술 개발 강화할 것” 73 AWS, 인더스트리 위크 통해 산업의 디지털 전환과 클라우드 혁신 전략 제시 76 인텔, AI PC 위한 프로세서와 생태계로 혁신의 문을 열다 78 연세대와 IBM의 양자 혁명 : 한국 첫 양자컴퓨터 설치의 의미와 미래 80 콘진원, ‘AI로 만나는 새로운 콘텐츠 세상’... AI 콘텐츠 페스티벌 2024 개최   New Products 60 제조 및 기계 설계를 위해 최적화된 CAD 설루션 ZWCAD LM 2025 / ZWCAD MFG 2025 64 온프레미스 기반의 AI 알고리즘 솔루션 Stochos 66 통합 디지털 콘텐츠 마켓플레이스 팹   On Air 82 캐드앤그래픽스 CNG TV 지식방송 지상중계 자동차 산업에서의 다중소재 접합 및 조립 해석 기술 동향 83 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조산업의 디지털 혁신을 위한 헥사곤 설루션 활용 전략 84 캐드앤그래픽스 CNG TV 지식방송 지상중계 클라우드 기반 데이터 리비전과 GIS 통합 설루션 85 캐드앤그래픽스 CNG TV 지식방송 지상중계 마커리스 증강 및 자동 라우팅 기술을 통한 미래 BIM 전략   Directory 139 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 93 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 딥러닝 모델 개발 프로세스 기록/분석/가시화 및 모델 튜닝하기 98 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (8) / 천벼리 BIM 도면의 상세 보기 132 디지털 데이터의 정리에 관하여 / 양승규 효율과 생산성을 높이기 위한 파일 관리 팁 136 새로워진 캐디안 2025 살펴보기 (1) / 최영석 최신 버전의 주요 기능 소개   Reverse Engineering 101 문화유산 분야의 이미지 데이터베이스와 활용 사례 (12) / 유우식 안료 데이터베이스   Mechanical 110 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (7) / 김성철 메커니즘 디자인 소개   Analysis 115 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (16) / 나인플러스IT 터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅱ 118 금속 적층제조의 최적화를 위한 앤시스 애디티브 / 박준혁 적층 공정의 파라미터 최적화를 위한 애디티브 사이언스 기능 124 SimericsMP for NX CAD의 해석 과정 소개 / 케이더블유티솔루션 CAD 프로그램 내부에서 유동 해석 직접 진행하기 128 산업 디지털 전환을 위한 버추얼 트윈 (7) / 임상혁 개념 설계부터 최종 제품까지 다물체 동역학 해석을 위한 심팩       캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2024-11-26
SAS, 2025년 인공지능 트렌드 전망 발표
SAS가 ‘2025년 인공지능(AI) 트렌드 전망’을 발표했다. 최근 몇 년간 AI가 기술 산업의 화두로 주목받아 왔으며, 이러한 흐름은 2025년에도 지속될 것으로 보인다. SAS는 2025년에는 산업별로 특화된 분석 모델 활용, 규제 문제, 환경적 지속가능성 등 다양한 AI 관련 이슈가 주목받을 것으로 예상했다. SAS 경영진과 전문가들이 분석한 2025년 AI 트렌드와 주요 비즈니스 및 기술 발전에 대한 9가지 전망은 ▲빠른 모델 학습으로 AI 탄소 발자국 감소 ▲AI 공격 대비 및 윤리적 사용 ▲불량 데이터로 AI 성능 저하 ▲생성형 AI의 실질적 가치에 집중 ▲클라우드/AI의 환경 영향에 대한 책임 ▲기업의 경쟁력으로 자리잡는 AI ▲LLM의 상품화 및 전문화 ▲ 클라우드 네이티브 AI에 따른 IT 합리화 ▲마케팅을 위한 생성형 AI의 고도화  등이다. 생성형 AI가 ‘일상적인 AI’로 자리 잡으면서, 기업은 모든 형태의 AI를 완전하게 운영할 수 있게 돼 반복적인 업무를 자동화하고 직원들이 더 중요한 업무에 집중할 수 있도록 할 것이다. 이러한 자동화는 기업이 더 빠르게 의사 결정을 내리고 기회를 포착하며 더욱 많은 혁신을 이루게 한다. 2025년에는 생성형 AI를 활용해 고객 경험과 제품 혁신 등에서 경쟁 우위를 확보하는 기업이 나타나는 반면, AI 경쟁에서 뒤처지는 기업도 있을 것이다.  생성형 AI에 대한 과도한 기대감을 내려놓고 실질적인 비즈니스 가치를 창출하는 데에 집중해야 하는 시점이다. 기업은 접근 방식, 거버넌스, 산업형 맞춤형 모델, 대규모 언어 모델(LLM)과 전문화된 소규모 언어 모델(SLM)의 전략적 선택으로 AI에 접근하고 있다. 또한 적용 업무에 따라 생성형 AI의 한계 및 환각 현상을 극복하기 위해 생성형 AI와 전통적 AI/ML을 선택 또는 조합하는 확장된 접근 방식을 택하는 기업도 늘어갈 것이다.   에너지를 많이 소비하는 AI는 지속가능한 에너지원에 대한 수요를 촉진하는 한편, 에너지 효율이 좋은 AI 모델 개발의 필요성을 더욱 높일 것으로 보인다. 클라우드에 최적화된 데이터 및 AI 플랫폼을 활용해서 AI 모델 개발의 효율성을 높이면 불필요한 중복 작업과 자원 낭비를 줄이고 에너지 소비를 최소화하는데 기여할 수 있다. 이와 함께 하드웨어 제공업체와 대형 클라우드 서비스 제공업체뿐 아니라 데이터와 AI 워크로드를 관리하는 AI 사용자들에게도 환경 영향을 줄이기 위한 공동 책임이 요구될 것으로 보인다. 불량 데이터는 AI의 성능을 저해하며, 조직은 근본적인 데이터 문제부터 해결하기 위해 노력해야 한다. 허위 정보 증가와 사회적 규범 조작 등 AI 공격에 대비해 민주주의 사회와 정부는 건전한 사회적 논의와 선거를 보호하고, 문화적 규범을 유지하기 위해 노력해야 한다. 또한 기업은 조직의 가치를 확고히 하고 AI 원칙, 정책, 기준, 통제 방안을 강력히 추진하며, 조직 내 AI의 윤리적 사용에 대한 논의를 주도해야 한다.  기업은 클라우드를 활용해 IT 인프라와 공급업체 관계를 간소화하고, 비즈니스 속도를 높이며 비용을 절감하는 ‘IT 합리화(Great IT Rationalization)’ 시대를 맞이하고 있다. 여러 기능을 지원하는 클라우드 네이티브의 AI 기반 플랫폼 환경에서 현대화를 추진하는 기업은 큰 가치를 창출할 수 있으며, 고객 수명주기와 기업 전반에 걸쳐 통합되고 민주화된 데이터 및 의사결정 역량을 확보할 수 있다. SAS는 2025년에는 LLM이 상품화되면서 기본 기능이 무료로 제공됨에 따라 AI 과금 모델이 붕괴할 것으로 전망했다. 또한, 오픈소스 LLM의 확산은 주요 제공업체의 지배적 지위를 약화시키고, 맞춤화와 통합이 핵심 차별화 요소가 될 분산형 AI 환경을 촉진할 것이다. 한편으로, 마케팅 담당자들은 단순한 활용에서 나아가 더욱 고도화된 AI 기술을 적극 도입할 것이다. LLM을 넘어 머신러닝, 딥러닝과 같이 보편화된 AI 기술뿐만 아니라 합성 데이터, 디지털 트윈과 같은 생성형 AI 도구를 활용해 고객의 개인정보를 보호하면서도 개인화된 경험과 효과적인 캠페인을 제공할 수 있을 전망이다. SAS코리아의 이중혁 대표이사는 “AI와 클라우드 기술은 이제 기업 경쟁력의 핵심 요소다. 이러한 기술의 윤리적 사용과 지속가능성은 더 이상 선택이 아닌 필수 과제”라며, “기업이 비즈니스 경쟁력을 확보하려면 개인화되고 고도화된 AI를 바탕으로 더 나은 서비스와 의사결정을 통해 실질적인 가치를 창출하는 동시에 윤리적이고 환경적인 책임을 다해야 한다”고 말했다. 그는 또 “SAS는 AI 및 분석 분야의 선두 기업으로서, 데이터 분석 플랫폼인 ‘SAS 바이야(SAS Viya)’를 통해 신뢰할 수 있는 AI 구축을 적극 지원함으로써 기업의 경쟁력 강화, 리스크 최소화 및 수익성 극대화, 그리고 사업 운영의 회복탄력성 증대에 이르기까지 전사 차원의 효율적인 AI 활용과 비즈니스 목표 달성을 돕겠다”고 덧붙였다.
작성일 : 2024-11-26
매스웍스코리아, ‘제4회 매트랩 대학생 AI 경진대회’ 수상자 발표
매스웍스는 국내 대학생들의 인공지능(AI) 기술 활용 능력 개발을 지원하는 ‘제4회 매트랩 대학생 AI 경진대회’ 수상자를 발표했다. 많은 학생들이 뛰어난 기술 역량과 창의성을 기반으로 매트랩(MATLAB)을 활용한 AI 모델을 구현한 가운데 부산대학교 전기전자공학과 학생들로 구성된 ‘전지적 레이더 시점’ 팀이 최우수상을 수상했다. 2021년에 시작된 ‘매트랩 대학생 AI 경진대회’는 매년 국내 대학생들의 AI 기술 활용 능력과 전문 분야별 경쟁력 강화를 지원해 왔다. 올해 참가자들은 1인 가구, 고령화, 교통, 환경 등 사회 변화에 대응하는 시의성 높은 프로젝트를 제출했다. 또한 다수의 참가자들이 AI를 활용해 사회 문제를 해결할 수 있는 효과적인 솔루션을 제시하며 실질적 응용 가능성과 기술적 우수성을 동시에 선보였다.  매스웍스코리아의 김경록 교육 기관 세일즈 매니저는 “이번 대회의 참가자들은 사회적 약자 지원, 교통 안전, 기후 대응 등 사회적 가치를 창출할 수 있는 다양한 프로젝트를 제출했다”면서, “매스웍스의 소프트웨어를 활용해 완성도를 높이고, 최근 공학 분야 트렌드에 맞춰 AI기술을 적극 활용한 아이디어를 제시한 점이 고무적이었다”고 말했다.     부산대학교 전지적 레이더 시점팀(전민욱, 박나윤, 신다민, 박도현, 김연호)은 노년층이나 보행이 불편한 사람들의 안전한 일상을 지원하는 ‘낙상 감지를 위한 레이더 기반 인간 행동 인식 시스템’으로 1등상을 수상했다. 학생들은 매트랩을 활용해 데이터 준비에서부터 하드웨어 배포까지 AI 모델링 워크플로의 전 영역에서 우수한 성과를 도출했다. 또한, 부산대 팀은 AI 모델 성능 향상을 위해 직접 실험을 통해 데이터를 수집하고, 입력 훈련 데이터와 비슷한 특징을 갖는 데이터를 생성할 수 있는 조건부 생성적 적대 신경망(CGAN)이라는 생성형 AI 모델을 활용해 데이터 불균형 문제를 해결했다. 심사단은 프로젝트에서 고안된 LED 점등 및 문자 메시지 전송 기능을 고령화로 인해 증가한 노인 낙상 사고에 대응할 수 있는 참신한 아이디어라고 평가했다. 전지적 레이더 시점팀의 전민욱 대표는 “매트랩이 제공하는 다양한 툴박스를 활용해 레이더 신호의 전처리와 데이터 분석을 효과적으로 수행하고, 복잡한 딥러닝 프로세스를 보다 직관적으로 다룰 수 있었다”면서, “특히 매트랩의 다양한 신경망 코드를 활용해 복잡한 신경망 모델을 쉽게 적용할 수 있어 큰 도움을 받았다”고 말했다. 2등 상을 수상한 세종대학교 기계항공우주공학부 학생들로 구성된 AIV팀(정진영, 윤정호)은 시뮬링크(Simulink)와 다양한 툴박스를 활용해 강화학습 기반의 로봇 회피 제어 모델을 구현해 로봇의 주행 안전성과 실내 환경 적응 능력을 입증했다. 해당 모델은 청소기, 서빙 로봇 등 스마트 AI 로봇 개발에 활용 가능할 것으로 기대된다. 3등 상을 수상한 한국기술교육대학교 메카트로닉스공학부 생산시스템전공생들로 구성된 AIM LAM팀(김호진, 박지원)은 1차원 컨벌루션(1D-Convolution) 모델을 사용해 리니어 모션(LM) 가이드의 고장을 효과적으로 검출하는 시스템을 개발했다. 출품작은 설명가능한 인공지능(Explainable AI)을 적용해 개발 완성도를 높였으며, 단순한 구조로 모델을 개발해 속도성과 유지보수 측면에서 산업 현장에 적용 가능성이 매우 높다는 차별점을 갖췄다. 매스웍스코리아의 이종민 대표는 “매스웍스는 대학생들이 참여할 수 있는 다양한 경진대회를 주최 및 후원하며 국내 공학 계열의 미래 인재를 양성하는 데에 지속적인 노력을 쏟고 있다”면서, “매스웍스 주최의 대학생 AI 경진대회에서 국내 대학생들의 혁신적인 기술 아이디어와 실용성 높은 프로젝트를 통해 매트랩 및 시뮬링크에 대한 높은 이해도를 확인하게 되어 기쁘다”고 말했다.
작성일 : 2024-10-15
[칼럼] PLM에 AI를 품다
현장에서 얻은 것 No.18   “미래의 성공은 데이터와 그 데이터를 활용하는 능력에 달려 있다.”  - 챗GPT   PLM에 AI 도입 본격화 지난 2022년 11월 챗GPT(ChatGPT)가 시장에 출시되고 난 후, 지멘스 인더스트리 소프트웨어는 2023년 4월 하노버 메세에서 마이크로소프트와 함께 생성형 AI 기반의 소프트웨어 개발, 문제 보고, 시각적 품질 검사를 통해 공장 자동화 AI 활용을 시장에 내놓았다. 그리고 생성형 설계(Generative Design)에 AI를 접목하는 것은 이미 상당히 현실화되었다. SAP는 2024년 6월 자사 AI 솔루션인 쥴(Joule)을 통해 클라우드 포트폴리오 전반에 비즈니스 AI를 도입한다고 발표했다. 그리고 2024년 7월 다쏘시스템은 미스트랄 AI(Mistral AI)를 AI 파트너로 선정하여 PLM에 본격적인 AI 도입을 진행 중이다.(표 1)   표 1. PLM에 AI 도입 본격화, 요약 정리(Gemini)    그리고 엔지니어링 분야에서 AI를 어떻게 활용할 수 있을지 기대되는 영역에 대해서 정리해 보았다.(표 2)   표 2. 엔지니어링 분야에서 AI 활용, 요약 정리(Gemini)    “기술이 발전할수록 인간의 창의성이 더 중요한 자산이 된다.” - 챗GPT   글로벌 PLM,ERP 기업의 AI 도입 전략 다쏘시스템은 미스트랄 AI와의 협업을 통해 3D익스피리언스(3DEXPERIENCE) 플랫폼에 생성형 AI를 도입하여, 자연어 명령만으로도 3D 모델을 생성하거나 설계를 수정할 수 있는 방안을 모색하고 있다. 버추얼 트윈 기술과 연계하여 실제 제품과 동일한 가상 모델을 구축하고, 이를 통해 제품 개발 전 과정을 시뮬레이션 하는데 AI가 큰 도움을 주리라 예상된다. 지멘스는 마이크로소프트와의 협업을 통해 애저 AI(Azure AI)를 활용하여 엑셀러레이터(Xcelerator) 포트폴리오의 예측 유지보수 기능을 고도화하고, 품질 관리 시스템을 강화한다. 오픈AI(OpenAI)의 GPT 모델을 활용하여 자연어 처리 기반의 사용자 인터페이스를 구현하고, 사용자 편의성을 높인다. 디지털 트윈 기반의 운영 효율성을 향상시키고, 지속 가능한 생산 시스템 구축을 목표로 한다. SAP는 쥴(Joule)을 통해 제품 전체에 AI를 확장하여 엔터프라이즈 레벨의 AI 플랫폼을 구축하려고 한다. 머신러닝, 딥러닝 등을 활용하여 비즈니스 프로세스를 자동화하고, 예측 분석을 통해 의사 결정을 지원하며, S/4HANA와의 긴밀한 통합을 통해 기업의 모든 데이터를 활용하여 더욱 정확한 예측과 분석을 가능하게 한다. PTC는 크레오(Creo)에 제너레이티브 디자인 기능을 추가하여 엔지니어들이 디자인 초기 단계에서 다양한 설계 옵션을 빠르게 생성하고 평가할 수 있도록 지원한다. AR(증강현실) 기술과 결합하여 엔지니어가 실제 제품을 보듯이 설계를 검토하고 수정할 수 있도록 지원하며, 다양한 파트너와 협력하여 사물인터넷(IoT) 데이터를 활용한 예측 유지보수, 품질 관리 등의 기능을 제공한다. 주요 차이점 및 시사점을 살펴보면, 각 기업은 자사의 강점과 비즈니스 목표에 맞는 AI 파트너를 선택하여 협력하고 있다. 주요 기술은 생성형 AI, 디지털 트윈, AR, 머신러닝 등 다양한 AI 기술을 활용하여 차별화된 기능을 제공하며, 차별화 포인트는 각 기업은 자사의 플랫폼과 강점을 기반으로 차별화된 가치를 제공한다. 다쏘시스템은 버추얼 트윈, 지멘스는 디지털 트윈, SAP는 ERP와의 통합, PTC는 제너레이티브 디자인과 AR에 중점을 두고 있다. 기대 효과로는 모든 기업의 공통적인 목표는 AI를 활용하여 제품 개발 기간을 단축하고, 품질을 향상시키며, 새로운 비즈니스 모델을 창출하는 것이다. 요약하면, 주요 PLM 기업들은 AI를 활용하여 제품 개발 과정을 혁신하고, 제조업의 디지털 전환을 가속화하고 있다. 각 기업은 자사의 강점과 시장 환경에 맞는 AI 전략을 추진하며, 경쟁적으로 AI 기술을 발전시켜 나갈 것으로 예상된다. 이러한 변화는 제조업의 미래를 변화시키고, 더욱 스마트하고 효율적인 생산 시스템 구축에 기여할 것이다. “AI는 단순한 기술이 아니라, 우리가 세상을 바라보는 방식을 바꾸는 도구다.” - 챗GPT   미래를 설계하는 AI : 다쏘시스템의 PLM 혁신 전략 다쏘시스템의 AI 전략은 산업계 전반에서 디지털 전환을 가속화하고, 혁신적인 제품 및 서비스 개발을 가능하게 하는 중요한 전환점에 있다. PLM(제품 수명주기 관리) 솔루션과 인공지능(AI)의 접목은 기업이 제품 개발, 제조, 공급망 관리, 그리고 고객 경험 등을 새로운 차원으로 끌어올릴 수 있는 잠재력을 지니고 있다. 2024년 7월 ‘다쏘시스템-미스트랄AI와 파트너십 체결… 3D익스피리언스에 LLM 제공해 고성능 생성형 AI 경험 제공’이라는 소식이 알려졌다. 미스트랄 AI는 프랑스의 언어 모델 개발 및 관련 서비스 제공 기업이다. 양적은 물론 질적인 면에서도 유럽권을 선도하고 있는 인공지능 업체이며, 아파치 라이선스 기반의 오픈소스 정책을 통한 확장 정책을 펼치고 있다. 활성 매개변수를 통한 높은 효율성을 위주로 홍보하고 있다. 2023년 4월, 구글 딥마인드와 메타의 파리 연구소에서 근무하던 임직원들이 설립했다. 2023년 6월, 에릭 슈밋 등의 투자자들로부터 2억 4000만 유로의 기업 가치를 평가받으며 1억 500만 유로 투자를 조달했다는 소식이 알려졌다. 다쏘시스템과 미스트랄 AI 두 회사가 어떤 전략을 시장에 내어 놓을지 알아보고자, 전략과 주요 내용을 홈페이지 등에서 찾아서 기업 성장 맵으로 만들어 보았다.    그림 1. 기업 성장 맵 ‘다쏘시스템의 AI 협업 전략’(Map by 류용효) (클릭하면 큰 그림으로 볼 수 있습니다.)   다쏘시스템과 미스트랄 AI의 협업 전략 : LLM 기반의 혁신 미스트랄 AI는 LLM(대규모 언어 모델) 기술을 중심으로 하는 AI 솔루션을 제공하며, 다쏘시스템의 3D익스피리언스 플랫폼과 결합하여 PLM 솔루션의 기능을 대폭 강화할 계획이다. 이 협업을 통해 다쏘시스템은 PLM 솔루션 내에서 AI를 활용한 예측 분석, 데이터 통합, 그리고 사용자 정의 경험을 가능하게 하여, 제조 및 설계 프로세스 전반에 걸친 혁신을 도모하고 있다. 미스트랄 AI의 LLM은 대규모 언어 모델링 기술을 기반으로 하여, 자연어 처리 및 생성에 뛰어난 성능을 발휘한다. 이를 통해 다쏘시스템의 고객들은 제품 설계와 개발 단계에서 더욱 직관적이고 효율적인 방법으로 데이터를 관리하고 활용할 수 있게 된다. 예를 들어, AI는 방대한 설계 데이터를 분석하여 최적의 설계 방안을 제시하거나, 공급망의 위험 요소를 사전에 식별하여 대응 방안을 마련하는 데 도움을 줄 수 있다. 다쏘시스템은 자체 클라우드 서비스인 아웃스케일(OUTSCALE)을 통해 AI 솔루션을 안전하게 운영할 수 있는 인프라를 제공하고 있다. 특히 아웃스케일은 미스트랄 AI와의 결합을 통해 데이터 보안과 시스템 성능을 극대화하는 역할을 하게 된다. 이로 인해 다쏘시스템은 고객들에게 고도의 데이터 보호와 동시에 신속한 처리 능력을 보장할 수 있게 되었다. 예를 들어, 아웃스케일의 보안 클라우드 환경에서 AI 모델을 훈련시키고 배포할 수 있는 능력은 민감한 데이터를 다루는 산업군에서 특히 중요하다. 이는 생명 과학, 헬스케어, 금융 등과 같은 분야에서 AI의 활용을 촉진하는데 중요한 요소로 작용할 것이다. 아웃스케일의 성능 최적화와 더불어, 다쏘시스템의 고객들은 다양한 AI 응용 프로그램을 유연하게 운영하고 관리할 수 있게 된다.    AI와 PLM의 결합 : 미래 산업의 핵심 기술로 자리매김 AI와 PLM의 결합은 미래 산업의 디지털 전환을 이끄는 핵심 기술로 자리매김할 것이다. 다쏘시스템의 전략은 이 두 기술의 강점을 최대한 활용하여, 산업 전반에 걸쳐 혁신을 가속화하는 것이다. 예를 들어, AI는 제품의 수명주기 전반에서 발생하는 데이터를 실시간으로 분석하고, 이를 통해 제품 개발과 생산 효율성을 극대화하는데 기여할 수 있다. 이와 같은 데이터 중심의 접근 방식은 특히 복잡한 공급망 관리, 고객 맞춤형 제품 개발, 그리고 지속 가능성 목표 달성에 있어 중요한 역할을 한다. AI는 다양한 데이터를 통합하고 분석하여, 기업이 보다 신속하고 정확한 의사 결정을 내릴 수 있도록 지원한다. 또한, AI는 다양한 시나리오 분석을 통해 기업이 미래의 변화에 대비할 수 있는 능력을 향상시킨다.   상업적 적용과 라이선스 문제 : 새로운 비즈니스 모델의 필요성 다쏘시스템의 AI 전략은 상업적 적용 및 라이선스 문제에 있어서도 중요한 변화를 예고하고 있다. 특히, 미스트랄 AI의 기술을 상업적으로 활용하기 위해서는 적절한 라이선스 계약이 필요하다는 점에서, 새로운 비즈니스 모델의 도입이 필요할 것으로 보인다. 이는 AI 기술의 상용화와 관련된 법적, 윤리적 문제를 해결하기 위한 중요한 단계로, 다쏘시스템이 미래의 비즈니스 환경에서 경쟁력을 유지하는 데에 있어 필수 요소이다. 예를 들어, AI 기술을 활용한 제품 개발이 증가함에 따라, 기업들은 AI 기술에 대한 라이선스 비용과 사용 조건을 명확히 이해하고, 이를 기반으로 한 비즈니스 전략을 수립할 필요가 있다. 다쏘시스템은 이러한 변화에 발맞추어 고객들에게 명확하고 투명한 라이선스 정책을 제공함으로써, AI 기술의 도입과 확산을 지원하고 있다.   디지털 혁신의 촉매제로서의 AI 다쏘시스템의 AI 전략은 단순한 기술 도입을 넘어, 디지털 혁신의 촉매제로서 작용하고 있다. PLM 솔루션과 AI의 결합은 제조업 및 설계 산업 전반에 걸쳐 새로운 가능성을 열어주고 있으며, 기업들이 경쟁력을 강화하고 시장에서의 입지를 공고히 하는데 중요한 역할을 할 것이다. 다쏘시스템은 이러한 전략을 통해 고객들에게 더욱 강력한 도구와 솔루션을 제공함으로써, 미래 산업의 디지털 전환을 선도하고자 한다. “변화에 대한 저항이 아닌, 변화에 대한 준비가 기업을 성공으로 이끈다.” - 챗GPT   마무리하면서 이 글을 쓰면서 또 한 번 씁쓸하지는 마음이 있다. 생성형 AI가 나왔을 때, 한국에서는 지구 어느 나라보다도 뜨겁게 이슈가 되었다. 하지만, 2년의 시간이 흘러 우리는 여전히 어디로 가야 할 지 모르는 미궁 상태로 보인다. 기업이든 솔루션 회사든 결단이 필요하고, 새로운 시장을 개척하는 용기가 필요해 보인다. 정부 지원이나 작은 스케일로 접근하는 우리나라의 접근 방식이 글로벌 시대의 변화에 맞는가 하는 의문은 계속 생긴다. 생성형 AI 역시 외국 기업에서 또 다시 큰 비중을 차지해 나가며, 만들어지는 솔루션을 또 다시 우리나라 기업에서는 도입해야만 할 것 같아 보인다. 뭐가 문제일까? 세계 속에서 주목할 만한 우리의 소프트웨어는 게임 외에는 없을까? 여전히 따라가야만 할까? 하지만 우리나라 기업의 저력은 디테일함에서 온다고 믿는다. 떄론 무모한 질문 때문에 한국을 ‘도깨비 나라’라고 부르던 외국인도 있었지만, 지금은 사정이 달라질 것 같다. 지금은 질문을 많이 그리고 디테일하고 창의적인 방향으로 하는 시대임에는 분명하다. 변화의 준비, 그리고 무모함이 우리를 또 한 번 크게 변화시키지 않을까 생각해 본다.   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-10-04
IBM, 차세대 IBM Z 메인프레임 시스템을 위한 AI 가속 프로세서 발표
IBM은 ‘핫 칩스(Hot Chips) 2024’에서 곧 출시될 IBM 텔럼(Telum) II 프로세서와 IBM 스파이어 엑셀러레이터(Spyre Accelerator)의 아키텍처 세부 사항을 공개했다. 이 새로운 기술은 차세대 IBM Z 메인프레임 시스템의 처리 용량을 확장하도록 설계되었으며, 기존 인공지능(AI) 모델과 거대 언어 AI 모델을 함께 사용할 때 새로운 AI 앙상블 방식을 통해 속도를 높일 수 있도록 지원한다. 대규모 언어 모델(LLM)을 활용하는 많은 생성형 AI 프로젝트가 개념 증명에서 생산 단계로 넘어가면서 전력 효율적이고 안전하며 확장 가능한 솔루션에 대한 요구가 우선 순위로 떠올랐다. 8월에 발표된 모건 스탠리의 연구에 따르면 향후 몇 년 동안 생성형 AI의 전력 수요가 매년 75%씩 급증해, 2026년에는 스페인 전체가 2022년에 소비한 에너지 사용량만큼을 소비하게 될 것으로 예상됐다. 많은 IBM 고객들은 적정한 규모의 파운데이션 모델을 지원하기 위한 아키텍처 결정과 AI 워크로드를 위해 설계된 하이브리드 클라우드 접근 방식이 점점 더 중요해지고 있다고 말한다. 이번에 공개된 IBM 텔럼 II 프로세서는 차세대 IBM Z 시스템을 구동하도록 설계된 칩으로, 1세대 텔럼 칩에 비해 증가한 클럭(주파수) 및 메모리 용량, 40% 증가한 캐시 및 통합 AI 가속기 코어, 데이터 처리에 일관성을 제공하는 부속 데이터 처리 장치(DPU)가 특징이다. IBM은 새로운 프로세서가 업계의 복잡한 트랜잭션 요구 사항을 충족함으로써 LLM을 위한 엔터프라이즈 컴퓨팅 솔루션을 지원할 것으로 기대하고 있다. 텔럼 II 프로세서 칩의 새로운 데이터 처리 장치(DPU)는 메인프레임의 네트워킹 및 스토리지를 위한 복잡한 IO 프로토콜을 가속화하도록 설계되었다. DPU는 시스템 운영을 간소화하고 주요 구성 요소의 성능을 향상시킬 수 있다. IBM 스파이어 엑셀러레이터는 텔럼 II 프로세서를 보완하기 위해 추가 AI 연산 능력을 제공한다. 텔럼 II와 스파이어 칩은 함께 작동해 여러 개의 머신러닝 또는 딥러닝 AI 모델을 인코더 LLM과 결합하는 앙상블 방식의 AI 모델링을 지원하기 위한 확장 가능한 아키텍처를 형성한다. 각 모델 아키텍처의 강점을 활용함으로써 앙상블 AI는 개별 모델에 비해 더 정확하고 강력한 결과를 제공할 수 있다. 핫 칩 2024 컨퍼런스에서 선공개된 IBM 스파이어 엑셀러레이터 칩은 별도 옵션으로 제공될 예정이다. 각 엑셀러레이터 칩은 75와트 PCIe 어댑터를 통해 부착된다. 스파이어 엑셀러레이터는 다른 PCIe 카드처럼 고객의 요구에 따라 확장이 가능하다.  텔럼 II 프로세서는 차세대 IBM Z 및 IBM 리눅스원 플랫폼의 중앙처리장치가 될 것이며, 향후 IBM Z 및 리눅스원 고객에게 제공될 예정이다. 현재 기술 프리뷰 단계의 IBM 스파이어 엑셀러레이터도 함께 제공될 것으로 예상된다. 텔럼 II 프로세서와 IBM 스파이어 엑셀러레이터는 삼성 파운드리에서 높은 성능과 전력 효율성을 제공하는 5nm 공정 노드를 기반으로 제작될 예정이다. IBM은 이 두 제품이 함께 작동해 비즈니스 가치를 실현하고 새로운 경쟁 우위를 창출하도록 설계된 다양한 AI 기반 활용 사례를 지원할 것으로 전망하고 있다. 또한, 앙상블 방식의 AI를 통해 고객이 더 빠르고 정확한 예측 결과를 얻을 수 있으며, 이번에 발표된 특징이 결합된 처리 능력으로 생성형 AI 활용 사례를 위한 발판을 마련할 것으로 기대했다. IBM의 티나 타르퀴니오(Tina Tarquinio) IBM Z 및 리눅스원 제품 관리 담당 부사장은 “IBM은 강력한 로드맵을 통해 증가하는 AI 수요를 비롯한 기술 트렌드에서 앞서 나갈 수 있는 기반을 마련했다”면서, “텔럼 II 프로세서와 스파이어 엑셀러레이터는 고성능, 보안, 전력 효율성이 뛰어난 엔터프라이즈 컴퓨팅 솔루션을 제공하도록 설계되었다. 수 년간 개발해온 이러한 기술은 차세대 IBM Z 플랫폼에 도입되어 고객이 LLM과 생성형 AI를 대규모로 활용할 수 있게 할 것”이라고 말했다.
작성일 : 2024-08-27