• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "드라이브트레인"에 대한 통합 검색 내용이 11개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
개념 설계부터 최종 제품까지 다물체 동역학 해석을 위한 심팩
산업 디지털 전환을 위한 버추얼 트윈 (7)   이번 호에서는 다물체 동역학 해석(MBS) 소프트웨어인 심팩(Simpack)의 전반적인 기능과 성능 및 주요 적용 분야를 소개하고자 한다.  심팩은 이미 일본/미국/유럽과 같은 선진국 및 전 세계적으로 자동차, 철도, 풍력 등 핵심 산업에서 널리 사용되고 있으며, 국내에서도 점차 도입되면서 다물체 동역학계를 선도하려는 움직임을 보이고 있다. 심팩은 기존의 다물체 동역학 해석 프로그램이 수행할 수 없었던 복잡한 시스템에 대한 접근성을 높이고, 개념 설계부터 최종 제품까지 일관된 해석을 제공함으로써 비용 절감, 성능 예측, 제품 성능 향상 등의 다양한 가치를 제공할 수 있게 되었다.    ■ 임상혁 다쏘시스템코리아 시뮬리아 브랜드팀에서 다물체 동역학 해석 기술을 담당하고 있는 인더스트리 프로세스 컨설턴트이다. 한국항공대학교 학사와 석사 과정을 마쳤다.  홈페이지 | www.3ds.com/ko   다물체 동역학 해석(MBS : Multi-body Simulation)이란 자동차, 철도, 풍력 터빈 등 기계 시스템의 거동 및 하중을 구현, 예측 및 최적화하는데 사용하는 해석을 말한다. 보통 하나의 시스템은 여러 개의 단품으로 이루어지는데, 각각의 단품은 시스템의 일부가 될 때 단품 자체일 때와는 다른 거동 및 다양한 하중을 받는다. 전체 시스템의 거동 및 하중을 예측하기 위해서, 그리고 각 단품에 작용하는 하중을 예측하고 이를 최소화하기 위해서 시스템 전체에 대한 해석은 반드시 필요하다. 심팩은 1987년도에 독일 우주항공센터(DLR)와 MAN Technology에 의해 처음 개발이 시작되어 1993년도에 상용화를 개시하였다. 이후로 BMW, 다임러, JLR, 지멘스, 알스톰, 베스타스 등 자동차, 레일, 풍력 터빈 산업 관련 기업에 의해 선택을 받아왔으며 2014년도에 다쏘시스템의 일원이 되었다.   그림 1   심팩의 특징 실시간 시뮬레이션 심팩의 가장 큰 특징은 실시간(real-time) 시뮬레이션 능력이 탁월하며, 고유의 빠르고 강인한 솔버로 인해 경쟁 제품이 따라올 수 없을 정도의 실시간 시뮬레이션 수행 능력을 보여준다는 것이다. 심팩은 기존의 많은 제품들이 사용하는 사전 정의된(predefined) 템플릿 모델 방식이 아닌 3D로 구현된 상세 모델을 그대로 사용한다. 따라서, 실시간 구현을 위한 선형화와 같은 별도의 모델 단순화가 불필요하다. 실시간 시뮬레이션에는 유연체를 포함한 고주파 및 고자유도 모델도 사용 가능하며, 비선형 또는 주파수에 의존하는 부싱(bushing)이나 고무 마운트까지도 별도의 선형화와 같은 단순화 없이 사용이 가능하다. 이는 단순화 작업 시간을 줄여줄뿐만 아니라, 시뮬레이션 모델 검증 시 흔히 발생하는 모델 변수 외의 다른 경우의 수를 줄여주어 모델 검증을 용이하게 해 준다. 또한, 단순한 해석부터 전혀 다른 성격의 해석, 그리고 복잡한 해석까지 동일한 단일 모델을 이용하여 해석할 수 있게 되어 결과의 일관성을 보장한다.    그림 2    NVH 해석 심팩은 상세 드라이브트레인 모델링(기어, 베어링, 샤프트 등) 요소를 바탕으로 구동 시스템의 내부에서 발생하는 가진력 해석을 수행할 수 있다. 이와 더불어 고주파 영역에서의 정확한 해석이 가능한 솔버 및 다양한 라이브러리로 제공되는 분석 기법(주파수 분석, Campbell diagram 등)을 바탕으로 NVH 해석이 가능하다.    그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-12-05
리커다인 2025 : 동역학 솔버 기능 강화 및 툴킷 개선 
개발 및 공급 : 펑션베이 주요 특징 : 지속적인 솔버 개발을 통한 접촉 기능 향상, 마찰열을 고려한 유연 다물체 동역학 해석, 열전도 및 열응력을 고려한 동역학 해석 개선, DriveTrain 툴킷 개선 등  사용 환경(OS) : 64비트 윈도우 10/11    2024년 11월, 리커다인 2025(RecurDyn 2025)가 새롭게 출시되었다. 지속적인 솔버 개선을 통해 이번 버전에서도 다양한 솔버 관련 기능이 강화되었다. 접촉 성능이 향상되었으며, 유연체를 포함한 동역학 모델의 열해석이 강화되었다. 또한, 드라이브트레인(DriveTrain)의 지속 개발을 통해 이번에도 기능 개선이 이루어졌다.  이러한 개선 사항들을 좀 더 자세히 소개하면 다음과 같다.    솔버 기능 강화  지오 콘택트 개선  리커다인의 강력한 접촉 요소인 지오 콘택트(Geo Contact)의 다양한 성능이 향상되었다. 특히 접촉점의 수가 자주 변경되는 접촉 모델에 대해 보다 안정적이고 정확한 해석을 수행할 수 있다. 또한, Sliding & Stiction 마찰 옵션을 모든 지오 콘택트에서도 사용할 수 있도록 개선되었다. 이를 통해 지오 콘택트를 이용한 접촉 모델에서도 Stiction 옵션을 이용하여 미끄러짐이 없는 정지 마찰 상태를 시뮬레이션할 수 있다.  그리고 강체의 접촉에 대해서도 컨투어(contour)를 통해 Sliding Velocity와 Pressure Velocity 결과를 확인할 수 있게 되어, 접촉 모델에서 마모 특성을 효율적으로 분석할 수 있다.    그림 1. 접촉점의 수가 자주 변경되는 경우 MPM 옵션 사용 권장    프리미티브 콘택트 개선 각 형상에 대한 전용 접촉 요소로서 빠르고 정확한 접촉 계산이 가능한 프리미티브 콘택트(Primitive Contact)에 대해서도 개선이 이루어졌다. 토러스(torus)와 실린더(cylinder) 형상에 대한 전용 접촉 요소인 Tours In Cylinder Contact가 새롭게 추가되어, Tripod Type CV Joint와 같은 시스템에서 더욱 빠르고 정확한 접촉 해석을 수행할 수 있다.    그림 2. Tours In Cylinder Contact를 이용한 Tripod CV Joint    또한, Cone To Cylinder Contact 사용 시 콘(cone)과 실린더의 면과 면 간 접촉도 고려할 수 있도록 개선되었다. 그리고 모든 프리미티브 콘택트에 대하여 Force Vector, Normal Force, Friction Force에 대한 시각적인 표시가 되도록 개선되었다.    그림 3. Cone To Cylinder Contact    지오 롤 콘택트  롤러(실린더)에 시트를 감는 롤 투 롤(roll to roll) 시스템을 위한 전용 접촉 요소인 지오 롤 콘택트(Geo Roll Contact)가 새롭게 추가되었다. 유연체에 대한 전용 접촉으로 유연체로 구성된 시트의 두께 정보와 감겨 있는 횟수를 활용하여, 시트가 롤러에 감기는 현상을 빠르게 해석할 수 있다.    그림 4. 지오 롤 콘택트를 이용한 시트 적층 해석   이 기능을 이용하면 롤 투 롤 시스템에서 시트 적층 시 발생하는 시트의 장력 변화, 시트의 적층에 따른 두께 증가에 의한 거동 변화 등을 고려한 해석을 빠르게 수행할 수 있다.    MFBD 기능 강화  프릭션 히트  지오 콘택트를 통해 유연체에 접촉 마찰로 인해 발생하는 열을 고려한 해석을 수행할 수 있게 되었다. 지오 콘택트에 추가된 프릭션 히트(Friction Heat) 기능을 이용하여 접촉에 의한 마찰로 인해 발생하는 열과 열전도에 의한 열응력을 고려한 MFBD(Multi Flexible Body Dynamics : 유연 다물체 동역학) 해석을 수행할 수 있다.    그림 5. 프릭션 히트를 이용한 브레이크의 마찰열 해석   열해석 개선 유연체의 열전도에 의한 열응력을 동역학 해석에 실시간으로 적용할 수 있는 FFlex Thermal에 대하여 열해석에 소요되는 시간을 줄이기 위한 기능이 추가되었다. FFlex 보디의 열변형 고려 여부를 선택할 수 있게 함으로써, 열해석 시 해석 시간을 단축할 수 있다. 또한, 새롭게 추가된 서멀 부스트(Thermal Boost) 옵션을 이용하여 온도장의 정상 상태에 빠르게 도달시킴으로써, 보다 효율적인 해석을 수행할 수 있다.    그림 6   Patch Constraint  Patch Constraint 기능이 새롭게 추가되어 두 유연체를 연결할 수 있게 되었다. 이 기능을 통해 두 FFlex 보디가 접합된 것처럼 모델링하고 시뮬레이션할 수 있다.    그림 7. Patch Constraint를 이용한 유연체 접합    제어 기능 강화  코링크의 파이썬 기능 개선  리커다인의 다물체 동역학 해석 환경에 통합된 제어 해석 툴킷 인 코링크(CoLink)의 파이썬(Python) 기능이 개선되었다. 기본으로 내장된 파이썬 패키지에 넘파이(NumPy)가 추가되었으며, 기본 내장된 파이썬 외에도 사용자가 설치한 파이썬 패키지를 지정하여 활용할 수 있게 개선되었다.  또한, 리커다인 리눅스 스탠드얼론 솔버(RecurDyn Linux Standalone Solver)를 사용할 때에도 코링크의 파이썬을 사용할 수 있게 되었다.    툴킷 기능 강화  드라이브트레인 개선  리커다인 드라이브트레인 툴킷의 GearKS로 만든 기어쌍에 대한 Mesh Stif fness를 확인할 수 있게 개선되었다. 또한 BearingKS로 만든 베어링에 대한 Rotational Resistance 기능이 추가되어, 축 방향 회전에 대한 베어링의 구름 저항을 고려한 해석을 수행할 수 있다.    그림 8. 기어쌍에 대한 Mesh Stiffness      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-11-04
지멘스 심센터, 차세대 e-드라이브 소음진동 테스트에 채택
지멘스 디지털 인더스트리 소프트웨어는 e-드라이브(electric drive) 제조업체인 이모터스(Emotors)가 지멘스 엑셀러레이터(Siemens Xcelerator) 산업용 소프트웨어 포트폴리오의 테스트 솔루션을 활용해 하이브리드, 플러그인, 완전 전기차(EV)를 위한 e-드라이브 시스템 개발과 개선을 지속해 왔다고 발표했다. 이모터스는 프랑스에 본사를 두고 있으며 2018년 스텔란티스와 니덱 리로이-소머의 합작 투자로 설립됐다. 이모터스는 푸조, 오펠, DS 오토모빌, 지프 등 스텔란티스 브랜드를 위한 차세대 e-드라이브를 개발했다. 이모터스가 직면하고 있는 과제 중 하나는 엄격하고 변화하는 고객 사양을 충족하는 것이다. 전기차, 전기 드라이브트레인, e-드라이브를 위한 새로운 범위의 사운드를 설계할 때 특히 NVH(소음·진동·불쾌감) 음향 분야에서 더욱 까다로운 요구 사항을 충족해야 한다. 여기에는 맞춤형 실내외 사운드스케이프, 정숙함을 보장하는 주행 경험, 보행자 경고 시스템(PWS) 또는 음향 차량 경고 시스템(AVAS) 등이 포함된다. 이모터스는 이러한 문제를 해결하기 위해 지멘스의 솔루션을 사용하고 있다. 여기에는 고속 데이터 수집 기능과 통합 테스트, 분석, 그리고 모델링 툴을 결합한 테스트 기반 엔지니어링용 심센터 테스트랩(Simcenter Testlab) 소프트웨어가 포함된다. 또한 다중 물리 측정을 위한 테스트 데이터 수집 솔루션을 제공하는 음향, 진동, 내구성 엔지니어링용 심센터 스카다스(Simcenter SCADAS) 하드웨어도 함께 활용된다. 더불어 가진점, 구조, 진동 음향 주파수 응답 기능을 측정하도록 설계된 음향과 진동 가진(vibration excitation) 시스템 제품군을 종합적으로 활용하고 있다.     이모터스의 보나뱅튀르 은동 구메조 NVH 테스트 매니저는 “우리는 고객의 NVH 요구 사항을 충족하기 위해 테스트랩에서 고전적인 실험적 모달(modal) 분석을 수행한다. 주파수, 모달 모양, 댐핑과 같은 모달 파라미터를 추출하고, 이 정보를 시뮬레이션 팀에 제공해 이모터스 제품의 NVH 작동을 확실하게 예측할 수 있도록 한다. 심센터 테스트 솔루션은 채널 설정부터 최종 측정 분석까지 주요 작업을 단계별로 쉽게 수행할 수 있도록 도와준다”고 말했다. 이모터스의 세드릭 플라세 CTO는 “우리가 가진 지식의 핵심은 전기차 고객을 위한 차세대 e-드라이브를 설계하고, 프로토타입을 제작하는 우수한 개발 능력과 더불어 이를 대량으로 생산할 수 있는 능력이다. 자동차 업계에서 매우 잘 알려진 전략인 플랫폼 개발이 바로 이 부분에서 경쟁력을 갖추는 데 도움이 된다. 우리는 많은 것을 디지털로 설계하지만 디지털 모델만으로는 모든 작업을 수행할 수 없다. 시장 출시 기간을 단축하고 정확성을 높이려면 테스트 측정 데이터로 모델을 보정해야 한다. NVH 테스트 엔지니어들이 시중에 나와 있는 모든 툴을 벤치마킹한 결과, 지멘스 툴이 우수하다는 것을 알 수 있었다”고 말했다.
작성일 : 2024-04-22
앤시스 워크벤치를 활용한 해석 성공 사례
자동차 조향 시스템의 래틀 소음 분석   자동차의 조향 장치(steering system)에서 회전운동을 직선운동으로 변환하는 랙 앤드 피니언 기어는  소음 발생 원인이 된다. 이번 호에서는 앤시스 모션 드라이브트레인(Ansys Motion Drivetrain)을 이용한 NVH 해석을 진행하여 문제의 원인을 분석하는 방법에 대해 소개하고자 한다.  ■ 이상혁 태성에스엔이 구조3팀 수석 매니저로, Ansys Mechanical & Motion 기술지원을 담당하고 있다. 이메일 | shlee@tsne.co.kr 홈페이지 | www.tsne.co.kr   주행 중 발생하는 자동차의 소음 및 진동은 엔진, 변속기, 기어 시스템 등 여러 복합적인 요소의 상호작용으로 발생한다. 따라서 정확한 해석기법을 통해 각 요인별 진동 특성을 파악하고 개선하는 작업이 중요하다. 특히, 기어의 진동 및 소음은 크게 와인 소음(wine noise)과 래틀 소음(rattle noise) 두 가지로 구분되며, 모두 비선형 접촉으로 이루어진다. 따라서 비선형 소음진동 특성을 고려하여 해석을 진행하고 결과를 분석할 수 있는 소음진동 해석 툴킷(Ansys Motion, Drivetrain Toolkits)을 이용하면 기어에서 발생하는 다양한 소음진동 원인들을 분석할 수 있다.   조향 시스템의 원리 조향 장치(steering system)는 운전석의 조향 핸들을 회전시키고 각 링크기구를 움직여 좌우 앞바퀴의 방향을 바꾸어 차량의 주행 방향을 제어할 수 있도록 해 주는 장치이다. 즉, 핸들부터 바퀴까지 이어지는 부품들이 조향 장치에 해당하며, <그림 1>과 같이 핸들, 조향 축, 랙 앤드 피니언 기어, 타이로드, 너클 암 등의 부품으로 이루어져 있다.  자동차에서 축을 중심으로 회전하는 부품은 ‘암’, 밀거나 당기는 부품을 ‘로드’라고 하는데, 만약 운전자가 핸들을 돌리게 되면 핸들에 연결된 조향 축이 회전하게 되고 그 끝에 달린 피니언 기어가 회전하게 된다. 이 때 피니언 기어는 랙 기어와 톱니가 맞물려 있어, 핸들의 회전 운동을 왕복운동으로 변환하여 좌우로 움직인다. 이러한 랙의 움직임은 타이로드에 전달되고 다시 너클 암에서 최종적으로 바퀴의 방향을 바꾼다.    그림 1. 조향 장치의 구성   이런 조향 장치를 구성하는 부품의 대부분은 마찰에 의하여 동력을 전달하는 기어 구조와 회전력을 전달하는 링크 구조로 되어 있어 소음 및 진동이 발생할 가능성이 높으며, 발생 시 운전자가 쉽게 인식할 수 있다. 전동식 파워 조향 장치는 기어의 마모에 의한 유격, 제조 공차 등에 의한 백래시(backlash)의 증가 및 이로 인한 진동이나 소음, 특히 구조적으로 타 부품과의 공차, 마찰에 의하여 발생하는 소음인 래틀 소음이 발생하며 이런 소음은 운전자에게 불쾌한 소음뿐만 아니라 불안감을 유발할 수 있다. 그럼 기어에서 발생하는 래틀 소음에 대해서 간략하게 살펴보도록 하자.   랙/피니언 기어의 소음진동 원인 기어의 래틀 소음은 백래시에 의해 발생하는 소음의 한 종류이다. 백래시란 <그림 2>와 같이 기어, 나사, 톱니바퀴 등 서로 맞물려 운동하는 기계장치에서 원활한 기어 물림을 위해 꼭 필요한 여유 공간이다. 기어 시스템에서 반드시 필요한 백래시이지만, 때에 따라 시스템 공진주파수 영역과 겹치며 기어 치의 앞뒷면이 충돌해 소음진동을 일으키는 주요 원인으로 작용하기도 하는데, 이를 대표하는 소음진동 특성을 래틀 소음이라고 한다.  
작성일 : 2022-12-02
리커다인 2023 : 솔버 개선 및 다물체 동역학 해석 기능 강화
개발 및 공급 : 펑션베이 주요 특징 : 지속적인 솔버 개발을 통해 Static 솔버 성능과 접촉 해석 속도가 대폭 향상, 지오메트리의 관계에 따른 형상 업데이트, 모델의 단위계 변환, 개선된 해석 결과 녹화 기능, 모델 단위계 변환 기능, 리커다인의 유연체와 파티클웍스의 유체 입자 간 양방향 열전달 해석 지원, 기본 형상에 대하여 최적의 메시를 생성하는 기능, 드라이브트레인 개선 등 사용 환경(OS) : 64비트 윈도우 8/10   새롭게 출시되는 RecurDyn 2023(리커다인 2023) 버전에서는 2년여의 지속적인 연구 개발을 통해 N-R Static 솔버 성능과 접촉 해석 속도가 대폭 향상되었다. 또한, DOE나 최적화에 활용할 수 있도록 지오메트리(geometry)의 계층 관계에 따른 형상 업데이트 기능이 추가되었다. 이 외에도 RecurDyn의 유연체와 Particleworks(파티클웍스)의 유체 입자 간 양방향 열전달 해석이 가능하게 되었으며, 기본 형상에 대한 최적의 메시(mesh)를 생성해 주는 Primitive Auto Mesh(프리미티브 오토 메시)가 추가되었다. 그 밖에 Endless Simulation 기능이 추가되고 DriveTrain(드라이브트레인) 툴킷의 개선과 해석 결과 녹화 기능의 개선이 이루어졌다.   솔버 기능 강화 Static Solver 개선 및 FFlex Static RecurDyn 솔버는 매 버전마다 지속적으로 개발되어 개선을 거듭하고 있다. N-R Static 솔버의 경우 2년여의 연구 개발을 통해 성능이 대폭 향상되었다. 이전에 비해 훨씬 안정적이고 정확하게 정적 평형상태를 계산할 수 있으며, 강체와 RFlex 보디(Modal method)는 물론 FFlex 보디(Nodal method)가 포함된 비선형 MFBD 모델의 정적 해석도 지원한다.   그림 1. 접촉을 수반한 MFBD 모델의 정적 평형 상태를 빠르고 정확하게 계산   특히, FFlex 보디가 포함된 모델의 정적 해석을 수행할 수 있는 FFlex Static의 경우, 유연체에 대한 구조 해석을 통해 정적 상태의 변형 및 응력 확인이 가능하며, FFlex 보디의 Self Contact는 물론 다른 보디 간의 접촉까지 고려한 MFBD 모델의 정적 해석을 지원한다. 또한 유연체의 변형된 형상이 필요한 경우, 정적 해석과 Extract 기능을 활용하면 손쉽게 변형된 형상을 만들 수 있다.   그림 2. 팽팽하게 당긴 상태 계산   그림 3. 트랙링크의 정적 해석   그림 4. 섀시 구조 해석   그림 5. 초기 평형상태 계산   이를 통해 자동차, 굴착기와 같은 모델의 초기 평형 상태를 사전에 계산함으로써 해석 속도와 정확도를 개선하고, 동적 조건을 고려하기 전 정적 해석을 이용한 사전 튜닝을 통해 전체적인 해석 시간을 줄일 수 있다. 또한, 관성의 효과가 작은 모델의 경우 준정적 해석(quasi-static analysis)을 이용하여 모델의 거동을 빠르게 확인할 수 있으며, 시스템의 가동 범위(range of motion)나 보디 간의 간섭을 정적 해석으로 예측할 수 있다.   그림 6. Quasi-static을 이용한 로봇 거동 확인   접촉 해석의 다중 프로세서 처리 지원 RecurDyn에서 접촉을 해석할 수 있는 Geo Surface Contact 요소의 알고리즘 개선 및 다중 프로세서 처리(SMP) 지원을 통해 접촉 성능이 약 50% 개선되었다. 이에 따라 Geo Surface Contact가 많이 사용된 시스템의 경우 해석 시간이 최대 40~50% 단축된다. RecurDyn 2023에서 별도의 모델 수정 없이 향상된 접촉 알고리즘이 적용된다.   그림 7   RecurDyn의 동역학 모델에서는 접촉이 사용되는 것이 일반적이기 때문에 대부분의 모델의 해석 속도가 개선된다. 또한 강체는 물론 FFlex, RFlex와 같은 유연체가 포함된 MFBD 모델에서도 향상된 접촉 성능을 경험할 수 있다.   그림 8. Clutch 모델 접촉 성능 31% 개선   그림 9. Web Handling 모델 접촉 성능 33% 개선   이러한 접촉 성능 개선은 연속적으로 일정한 접촉력이 발생할 때, 혹은 접촉 요소가 많고 지속적으로 접촉이 발생할 때, FFlex 계산량보다 접촉 계산량이 많을 때 더욱 유용하게 작용한다.   MFBD 기능 강화 FFlex Thermal과 Particleworks의 양방향 열유체 연성해석 RecurDyn의 유연체와 Particleworks의 유체 입자 간의 양방향 열전달 해석을 지원한다. Particleworks에서 계산한 HTC(Heat Transfer Coefficient) 및 유체의 온도 정보를 설정된 시간 스텝에 따라 RecurDyn의 유연체의 온도 정보와 교환하며, 각 온도 조건을 유체 및 고체의 열전달 해석의 경계조건으로 사용한다. 두 소프트웨어는 전용 인터페이스를 통해 완전히 양방향으로 정보를 주고받는다.   그림 10   이 기능을 활용하여 유체에 의한 FFlex 보디의 냉각 및 가열 상태, 그에 따른 구조체의 팽창 및 수축을 예측할 수 있다. 또한, FFlex Thermal 개선으로 노드(node)의 온도를 확인할 수 있는 Expression 함수가 추가되어, 노드의 시간에 따른 온도 변화를 확인할 수 있다.   메셔(mesher) 개선 Sphere, Box, Cone 형상에 대한 최적의 메시를 생성해 주는 Primitive Auto Mesh 기능이 새롭게 추가되었다. RecurDyn에서 생성한 Sphere, Box, Cone 지오메트리를 지정할 수 있으며, 형상에 맞는 고품질 메시를 생성할 수 있다.   그림 11   Professional(MBD) 기능 강화 지오메트리의 계층 관계에 따른 형상 업데이트 RecurDyn에서 지오메트리를 생성할 때 Curve → Surface → Solid 순서로 작업을 진행할 수 있다. 이때 계층 구조(hierarchy)가 적용되는 지오메트리의 경우, 상위 지오메트리를 수정하면 하위 지오메트리도 그에 따라 업데이트되도록 개선되었다.   그림 12   Curve의 형상을 수정하면 서피스(surface) 혹은 솔리드(solid)까지 업데이트되기 때문에, RecurDyn에서 보다 다양한 형상을 사용자가 모델링하고 손쉽게 수정할 수 있다. 이를 활용하여 DOE, AutoDesign 등을 통한 형상 최적화도 수행할 수 있다.   시뮬레이션 모델의 단위계 변환 RecurDyn 2023부터는 모델 생성 후에도 모델의 유닛(unit)을 변경할 수 있게 되었다. 새롭게 추가된 Change Model Units 기능을 통해 RecurDyn 모델의 Force, Mass, Length, Time에 대한 유닛을 자유롭게 변경할 수 있다. 또한 사용자 정의 유닛을 직접 생성하여 사용할 수도 있다. 이를 통해 언제든지 필요에 따라 모델 단위계를 변경할 수 있어, 서로 다른 나라의 엔지니어와 기술적 대응이나 교류를 할 때 해당 나라에 맞는 단위계로 손쉽게 변경하여 작업 및 결과 학인을 할 수 있다.   그림 13   Endless Simulation RecurDyn에서 해석을 수행할 때 Simulation End Time의 지정 여부를 결정할 수 있게 되었다. End Time 비활성화 시, End Time을 별도로 지정하지 않고 사용자가 Stop을 누를 때까지 시뮬레이션이 계속 진행된다. 이 기능을 Stop Condition 기능과 함께 사용하면 특정 조건을 만족할 때까지 시뮬레이션이 종료되지 않도록 할 수 있다.   해석 결과 녹화 기능 개선 기존의 해석 결과 녹화 기능이 개선되었다. 녹화 영역을 사용자가 직접 선택하거나 전체 화면으로 설정할 수 있게 되어, 다양한 결과 그래프가 포함된 애니메이션을 녹화할 수 있다.   그림 14   툴킷 기능 강화 DriveTrain 개선 GearTrain의 생성 방법이 개선되어 2개의 선기어와 1개의 캐리어가 사용되는 라비뇨식 기어를 생성할 수 있다. 또한, Rack&Pinion의 생성 및 시뮬레이션 지원하여 KISSsoft Z13 파일로 가져오기 및 저장이 가능하다. 이렇게 생성한 Rack&Pinion도 다른 기어와 마찬가지로 KISSsoft를 이용한 접촉 계산, 기어 메타 모델을 이용한 계산을 지원한다.   그림 15   그리고 Contact Pressure, SV(Sliding Velocity), PV(Pressure Velocity)를 RecurDyn 컨투어를 통해 확인할 수 있게 개선되어, 시간에 따른 변화를 직관적으로 파악할 수 있게 되었다.   그림 16   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2022-11-01
RecurDyn V9R3, 드라이브 트레인 솔루션 추가 및 MFBD 성능 향상
  개발 및 공급 : 펑션베이 주요 특징 : 기어, 베어링, 샤프트 등으로 구성된 드라이브 트레인을 위한 전용 솔루션인 DriveTrain 추가, 정밀하고 균일한 메시 생성을 위한 다양한 기능 개선, MFBD의 전처리/후처리 관련 성능 강화, 더욱 직관적인 모델 분석을 위한 Relation Map 리뉴얼, 강체에 대한 Contact Pressure 확인 기능 추가 등 사용 환경(OS) : 윈도우 7/8/10(64비트) 2019년 11월 출시된 RecurDyn(리커다인)의 새로운 버전 V9R3에서는 기어, 베어링 샤프트 등으로 이루어진 드라이브 트레인의 여러 요소들을 손쉽게 모델링하고 시뮬레이션할 수 있게 해주는 DriveTrain(드라이브트레인)이 새롭게 추가되었다. 또한, 더욱 효과적인 시뮬레이션을 위한 전처리 및 후처리 기능 개선, 유연 다물체 동역학(Multi Flexible Body Dynamics: MFBD) 해석 관련 성능 개선 등 다양한 개선이 이루어졌다.  이러한 기능 개선을 통해 RecurDyn은 더욱 깊고 폭 넓은 설계를 할 수 있는 동역학 시뮬레이션 환경을 제공한다.   DriveTrain 새롭게 추가된 DriveTrain은 기어, 베어링 샤프트 등으로 이루어진 드라이브 트레인의 여러 요소들을 손쉽게 모델링하고 시뮬레이션할 수 있게 해주는 RecurDyn 기반의 솔루션이다.   그림 1. DriveTrain 관련 기능   3단계 시뮬레이션 프로세스   그림 2. DriveTrain 시뮬레이션 프로세스   DriveTrain은 GearKS, BearingKS, Shaft 등 총 3개의 툴킷으로 구성되어 있다. 기어, 베어링, 샤프트를 손쉽게 생성할 수 있는 모델러와 이에 특화된 솔버, 그리고 전용 후처리 기능을 이용하여 사용자는 손쉽게 드라이브 트레인 시스템을 시뮬레이션하고 분석할 수 있다.   키소프트와 기술 제휴   그림 3. 키소프트와 기술 제휴   특히 GearKS와 BearingKS의 경우, Gleason(글리슨)의 KISSsoft(키소프트)와 기술 제휴를 통해 개발되어 RecurDyn의 동역학 해석 솔버는 물론, KISSsoft의 Gear Analytic Contact 및 풍부한 베어링 라이브러리를 활용할 수 있다. 이를 통해, 소음, 진동 평가에 필요한 전달오차(Transmission Error)를 비롯한 다양한 결과를 빠르고 정확하게 계산할 수 있다.   그림 4. 풍부한 베어링 라이브러리 지원   다양한 후처리 기능 다양한 후처리 기능을 통해 전달 오차, 캠벨 다이어그램(Campbell diagram), 접촉 압력(Contact pressure), 기어 이빨의 응력과 변형을 확인할 수 있다. 또한, 기어의 백래시 영향 분석, 래틀(Rattle) 및 와인(Whine) 소음 분석을 위한 진동 결과 확인, 샤프트의 응력과 변형 등을 모두 RecurDyn 내에서 확인할 수 있다.    그림 5. DriveTrain의 다양한 결과 분석   모델링 편의성 및 동역학 기능 강화 이번 RecurDyn V9R3의 전처리, 후처리 관련 기능 개선은 단순 편의성 향상을 넘어 더욱 심도 있는 시뮬레이션을 할 수 있게 도와준다.   Relation Map 리뉴얼 Relation Map(릴레이션 맵)이 개체(보디, 조인트, 접촉, 힘 등) 간의 관계를 보다 쉽게 파악할 수 있도록 개선되었다. 새로운 다이어그램 옵션을 통해 왼쪽에서 오른쪽의 순서로 연결관계를 표시할 수 있다. 그리고 개체 별 아이콘을 지원하여 강체, 유연체, 조인트, 힘, 접촉, 그룹 등을 서로 다른 아이콘으로 표시해 준다.    그림 6. Relation Map의 새로운 다이어그램 또한, 선택된 개체와 연결된 선을 강조하는 하이라이트 기능이 추가되었으며, Default, Name, Type의 총 3가지 정렬 방식으로 개체를 정렬할 수 있다. 다이어그램에서 선택한 개체에 대하여 마우스 우 클릭을 통해 손쉽게 속성 창을 확인할 수 있다. 이러한 기능들이 복잡한 RecurDyn 모델에서 더욱 직관적이고 편리하게 연결관계를 분석할 수 있도록 도와준다.   캠벨 다이어그램(Campbell Diagram) 회전체의 진동특성을 분석하기 위해 사용되는 캠벨 다이어그램 기능이 새롭게 개발되었다.   그림 7. 리커다인의 캠벨 다이어그램   이전 버전에서 제공되었던 캠벨 다이어그램에 비해 가볍고 빨라진 차트를 이용하여 회전체의 회전 속도 변화에 따른 진동 특성을 빠르고 편리하게 확인할 수 있다.  특히, 새로운 3D 그래프 기능을 통해 RPM, Frequency, Amplitude의 3차원 데이터 그래프를 직관적으로 확인할 수 있다. 또한 Order Line, Section View 등의 기능을 통해 여러 진동 특성을 새로운 그래프에서 손쉽게 확인할 수 있다.   그림 8. RPM vs. Frequency   그림 9. RPM vs. Order   강체를 위한 접촉 압력 Geo Surface Contact를 이용하여 정의한 강체의 접촉에 대하여 접촉 압력(Contact Pressure)을 확인할 수 있다.    그림 10. 강체의 접촉 압력 확인   이를 통해, 전체 시스템의 동역학적 거동에 의한 특정 부품의 내구도 영향을 유연체 모델로 구성하지 않더라도 쉽고 빠르게 파악할 수 있다.   MFBD 기능 강화 RecurDyn 내에서 더욱 정밀하고 균일한 패턴의 메시를 생성할 수 있도록 개선되었다. 또한, MFBD(Multi Flexible Body Dynamics: 유연 다물체 동역학) 관련 전처리, 후처리 기능 및 성능 개선이 이루어졌다.   메셔 기능 개선 메셔(Mesher)의 다양한 기능이 개선되었다. 먼저, 메셔 기능 관련 아이콘들이 일반적인 메시 작업 프로세스에 맞게 순서가 변경되었다.   그림 11. 메셔 작업 프로세스   Extrude/Spin/Sweep Manual Mesh에 대하여 다양한 타겟 개체 선택 및 생성 옵션을 추가하여 균일한 패턴의 베벨 기어나 헬리컬 기어 등의 메시를 손쉽게 생성할 수 있다.    그림 12. RecurDyn V9R3의 Sweep Manual Mesh   또한, Line Set, Patch Set에 대해서도 임프린트(Imprint)가 가능하도록 개선된 것은 Flex Merge 기능을 사용할 때에도 유용하며, 특정 부위에 대해 좀 더 정밀하거나 균일한 패턴의 메시를 생성하는 데에도 활용될 수 있다.   그림 13. 임프린트를 활용한 정밀 메시   Local Remesh 기능도 개선되어 이제 여러 면(Face)을 선택해 동일한 요소 사이즈로 리메시할 수 있다.   그림 14. RecurDyn V9R3의 Local Remesh 개선   MFBD 성능 개선 FFlex와 RFlex의 전처리, 후처리 관련 다양한 기능이 추가되어 작업의 편의성이 향상되었다. 사용하지 않는 재질(Material)과 속성(Property)을 자동으로 삭제하는 기능이 추가되었으며, 빔(Beam)에 대한 Node Set, BC, Output 생성 시 Add/Remove(Continuous) 선택 기능에서 Patch, Line 타입을 지원한다.   또한, 기존 Export Contour Data 기능에 대하여 플롯(Plot)의 범례(Legend) 표시를 개선하여 구체적인 정보를 표시하며, 노드(Node)를 기준으로 선택할 때 Node/Patch/Line/Element Set을 선택할 수 있도록 개선되었다.   그림 15. RecurDyn V9R3의 Export Contour Data 개선   FFlex와 RFlex의 전처리 및 후처리 성능도 향상되었다. 먼저 전처리 작업 속도가 기존 버전 대비 1.5~2배 빨라졌다. 대용량 유연체 모델 파일의 오픈 속도 및 유연체 편집 모드와 어셈블리 편집 모드 간 전환 속도 역시 평균 1.5~2배 빨라졌다. 특히 Solid10 요소가 많은 경우, 최대 5배까지 속도가 향상된다.   그림 16. 편집 모드 전환 속도 개선   후처리의 경우 평균 2배의 속도 개선이 이루어졌다. FFlex 유연체가 포함된 모델의 솔버 파일의 생성속도는 약 2.5배 이상의 개선이 이루어졌다. 유연체의 결과 파일 생성의 경우, 해석 완료 후 후처리 및 Output Regenerator 실행 속도가 약 2배 이상 빨라졌다. 또한 애니메이션 파일 가져오기 및 유연체 애니메이션 재생 시, 요소의 개수가 10만 개 이상인 유연체가 포함된 모델의 경우에 대해서도 많은 속도 향상이 이루어졌다.   Orthotropic2D, Anisotropic2D 물성치 추가 RecurDyn FFlex의 Shell 요소를 위한 물성치로 Anisotropic2D와 Orthotropic2D가 추가되었다. Anisotropic2D의 경우 Nastran의 MAT2, Orthotropic2D의 경우 Nastran의 MAT8에 대응된다. 특히 Orthotropic2D의 경우, 기존의 Orthotropic에서 Transverse Shear Modulus를 사용할 수 있도록 개선된 물성치이다. 모두 Shell4 Element에 적용할 수 있다.   RecurDyn Temperature Load 파일 RecurDyn FFlex에서 Thermal Load(열 하중)를 적용할 때, 외부 구조해석 소프트웨어에서 해석한 열 해석 결과를 CSV 파일 포맷의 RTL(RecurDyn Temperature Load) 파일로 가져와 열 응력/변형률을 고려한 유연체의 변형과 응력을 확인할 수 있다.     기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2019-11-01
다풀을 활용한 해석 성공 사례
DAFUL/DriveTrain을 이용한 비선형 진동특성 평가 방법   다풀/드라이브트레인(DAFUL/Drivetrain)은 “소음, 진동 분석을 구조-동역학 해석 방법으로 어떻게 평가할 것인가”라는 물음에서 출발해 비선형 NVH(Noise, Vibration and Harshness) 평가라는 새로운 접근법을 제시했다. 이번 호에서는 비선형 NVH 평가를 가능케 하는 다풀/드라이브트레인에 대해 자세히 알아보고자 한다.   ■ 강호진 태성에스엔이 DAFUL팀의 팀장으로, 구조동역학 해석 기술 및 이론 교육 업무를 담당하고 있다. 이메일 | hjkang@tsne.co.kr 홈페이지 | www.tsne.co.kr   다물체 동역학 해석은 다른 해석 분야에 비해 그 역사가 비교적 짧아, 저변이 많이 확대되어 있지 않다. 그러나 최근에는 공학적 목표가 시스템 레벨의 해석으로 변해감에 따라 그 수요가 증가하고 있다. 특히 로봇이나 자동차와 같은 시스템 동역학 해석을 필요로 하는 산업이 각광받는 지금의 상황에서 동역학 해석의 필요성은 더욱 높아지고 있다. 이러한 새로운 변화의 시작점에 다풀(DAFUL)이 있다. 다풀은 기존의 다물체 동역학 해석 방법에 FEM(Finite Element Method : 유한요소법) 기술을 통합하여 기계 시스템의 동적 거동과 유연체의 변형을 동시에 평가할 수 있는 해석 솔루션이며, 다양한 산업 분야에서 활용되고 있다.   그림 1. 다풀의 해석 영역 및 적용 가능 산업 분야  
작성일 : 2018-11-01
[포커스] 버추얼모션, 다풀 유저 콘퍼런스 개최
첨단 기술로 더 편리하고 강력하게, CAE의 새로운 도약 이끈다 버추얼모션(www.virtualmotion.co.kr)이 7월 13일 ‘2017 다풀 유저 콘퍼런스’를 진행했다. 이번 행사에서 버추얼모션은 다풀(DAFUL)의 발전 방향과 함께 메모리, 속도, 해석 정확도 등에 초점을 둔 차세대 솔버 기술 개발에 대해 소개했다. 또한 국내외의 다양한 CAE 활용 사례도 선보였다.   ■ 정수진 편집장 sjeong@cadgraphics.co.kr   해석 정확도와 퍼포먼스 높인 자이언트 모델 솔버 개발 버추얼모션이 개발한 동역학 해석 솔루션인 다풀(DAFUL)은 지난 2007년 첫 버전을 발표한 이후 꾸준히 향상되어 왔으며, 올 연말에는 6.2 버전을 선보일 예정이다. 또한 2011년에는 더욱 손쉽게 해석을 수행할 수 있는‘ 다풀 메시프리(DAFUL MeshFree)’를 선보였다. 메시프리는 단일 보디의 소변형 해석을 시작으로 시스템의 구조동역학, 대변형, 열해석까지 기능을 확장하고 있다.   버추얼모션의 배대성 대표는 “CAE 엔지니어의 수고와 시간을 덜 수 있도록 메모리 및 속도 문제를 해결하는 것이 다풀의 최우선 과제”라면서“ 최근 불고 있는 4차 산업혁명의 바람과 함께 CAE 분야에서도 기술 발전을 통해 새로운 도약이 필요한 시점”이라고 짚었다.   이번 유저 콘퍼런스에서 버추얼모션은 대규모의 모델을 효과적으로 해석할 수 있는 ‘자이언트 모델 솔버(GMS)’를 소개했다. 자이언트 모델 솔버는 정확도, 속도, 메모리, 병렬처리에 중점을 두고 있다. 정적해석과 동적 접촉해석 등에서 속도를 높이고 메모리 사용량을 줄인 것이 특징이다. 32GB 메모리를 탑재한 PC에서 620만 개의 자유도를 해석할 수 있으며, HPC 환경에서는 더욱 높은 퍼포먼스를 제공한다.   ▲ 다풀 6.2 버전에서 선보일 '자이언트 모델 솔버'는 해석의 정확도와 속도를 높이면서 메모리 사용량을 줄이고, 병렬처리를 효과적으로 지원하는데 중점을 둔다. NVH 특화 해석 제품 및 다양한 해석 사례 소개 이번 콘퍼런스에서는 다풀의 최근 기술 개발 사항과 함께 섀시 통합 성능 해석, 경량형 시트 익스텐션 모듈의 동특성 해석, 진동리퍼의 기진력 분석, 웨이퍼 이송 로봇의 동적 거동 해석, 체인 CVT의 성능예측 기법 등 해석 적용 사례가 소개되었다. 버추얼모션의 김완구 이사는 다풀 드라이브트레인(DAFUL/Drivetrain) 툴킷의 새 기능 및 사용성을 소개했다. 다풀 드라이브트레인은 NVH 관련 컴포넌트로 시작해 신뢰성 평가와 상세 거동분석 기능을 제공하고 있으며, 소음진동 평가를 위한 플랫폼을 지향하고 있다. 다풀 드라이브트레인에서 최근 추가된 기능으로는 ▲기어 해석의 정밀도 향상 ▲사이클로이드(cycloid) 기어에 대한 해석기법 및 일반 기어 해석 강화 ▲소음진동 평가를 위한 가속도 컨투어를 포함한 후처리 기능의 향상 ▲모드 컨트리뷰션(Mode Contribution)을 이용한 소음진동 해석 성능 개선 등이 있다. 김완구 이사는 “향후 사운드 압력 해석, 새로운 기어 타입 지원, 베어링 상세 모델의 풀 3D 거동 구현 등이 다풀 드라이브트레인에 추가될 예정”이라고 소개했다. 해외 제조업체의 CAE 프로세스와 전략 또한 일본의 자동차 부품 기업인 덴소(Denso)의 CAE 프로세스에 관한 내용이 소개되어 관심을 모았다. 1949년 설립한 덴소는 우리나라를 포함해 190개의 해외 자회사를 갖고 있다. 자동차 부품의 OEM 생산으로 시작해 현재는 차량 에어콘, 자율주행, 안전 등 여러 분야의 기술을 개발하고 있다. 덴소에서 CAE 부문을 총괄하는 아카이케 시게루 이사는 “1980년대에는 CAE가 소수의 전문가를 위한 도구라는 인식이 강했다. 이후 프리젠테이션 도구나 설계 참고자료 등 CAE의 역할이 확대되고, 현재는 일부 물리 시제품을 대체하는 역할까지 한다”면서 “덴소는 사내 CAE 확산에 중점을 두고 업무 환경 내에 CAE를 녹여내는 전략을 추진하고 있다”고 소개했다. 덴소가 주목하고 있는 최근의 CAE 트렌드로는 전기차(EV) 및 하이브리드 자동차(HEV) 관련 해석, 다물리 연성해석, 재료 설계를 위한 해석이다. 이에 따라 덴소는 각각의 CAE 활용 방향을 설정하고, 협업을 위한 방법론을 개발해 현장에 적용하는 프로세스를 진행하고 있다. 특히 산학연계를 통해 활용 가능한 기술을 정립하고, 이를 소프트웨어로 전개하는 것이 눈에 띈다. 시게루 이사는 “다풀의 경우에는 EV/HEV에서 소음을 줄이기 위해 컴프레서, 구동 벨트 시스템, 서플라이 펌프 등의 해석에 적용하고 있다”고 설명했다. 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2017-08-02
제조 경쟁력을 위한 엔지니어링 SW 기술개발 기반구축 사업 (3)
엔지니어링 소프트웨어 개발 사례 - 버추얼모션 구조 변형과 동적 거동이 직접적인 물리적 원인이 되는 소음,진동에 대한 분석을 구조-동역학 해석 방법으로 가능할까?이에 대한 근본적인 질문에서 출발하여 수 많은 어려운문 제 를 부 딪 히 고 다 양 한 사 례 수 행 을 통 해 다 풀드라이브트레인( D A F U L / D r i v e t r a i n )이 개발되었다.DA F U L / D r i v e t r a i n은 기어, 베어링, 샤프트, 케이스로이루어진 각종 기어 시스템의 진동-소음을 시간영역에서해석할 수 있는 설계/해석 통합 소프트웨어이다. 유연체모 델 링 의 편 의 성 을 최 대 한 살 릴 수 있 는 메 시 프 리(MeshFree) 해석 기법을 지원하기 때문에 어려운 메시 작업없이 CAD만 가지고 진동해석을 수행할 수 있다. 김완구 E-mail | wgkim@virtualmotion.co.kr 홈페이지 | www.virtualmotion.co.kr 버추얼모션 전략기술개발 센터의 센터장이며, DAFUL/Drivetrain 개발 책임자이다. 구조 모델링을 위한 무요소법 무요소법은 격자(Mesh)를 생성하지 않고 절점(Node)만으로 해석하는 방법으로, FEM(유한요소법)이 개발된 이후로 꾸준하게FEM의 한계를 극복하기 위해 오늘날까지 연구되어 왔고 유동 해석과 파손 해석 등에서 활용되고 있는 해석 기법이다. 그러나 응력과변형률이 중요한 구조해석 분야에서 개발된 무요소법은 다양한 형상과 경계 조건에 적용할 수 있도록 일반화시키는데 실패하여 제대로 상용화되지 못하였다. 다풀 메시프리(DAFUL/MeshFree)는 절점을 생성하는 특화된 방법과 기존 무요소법이 해결하지 못한 경계조건의 연속성 문제를 해결하여 어느 형상, 경계 조건이든지 대응할 수 있도록 일반화하는데 성공하여 상용화할 수 있었다. 그림 1. 메시프리 해석 기술 사실 메시프리의 장점은 기존의 무요소법이 추구하는 것과 동일하다. 하중-변형 관계, 구조물의 고유치, 그리고 내구 수명 등 구조물에 대한 모든 해석에는 격자(Mesh) 생성이라는 필수적인 작업이동반되어야 한다. 한편 격자 생성은 해석의 선행 작업임에도 불구하고 전체적인 프로세스 상 많은 비중(통상적으로 30%)을 차지한다는 문제가 있다. 이는 빈번하게 발생하는 설계 변경에 대응하기 어렵게 만들뿐 아니라 엔지니어의 염원인 설계 자동화 프로세스에도큰 걸림돌이 된다. 기사 상세 내용은 PDF로 제공됩니다. 
작성일 : 2017-03-31