• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "나인플러스IT"에 대한 통합 검색 내용이 25개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
혼합 오더 메시 커브
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (10)   이번 호에서는 CFD에 유한요소법을 활용해 더 적은 요소 수로 해석 정확도를 높일 수 있는 곡선형 혼합 오더 메시(Mixed Order Mesh)를 생성하는 방법을 살펴본다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   High-Order 메시 커브는 전산유체역학(CFD) 솔버 커뮤니티에서 유한요소법(FEM)을 활용하는 사람들에게 큰 도움이 될 새로운 기술이다. 유한요소기법은 유한 체적 및 유한 미분 방법과 같은 기존 CFD 방법보다 적은 요소 수로 정확도를 높인다. 선형 요소의 가장자리, 면, 내부에 버텍스(새로운 자유도)를 추가로 도입하여 정확도를 높일 수 있다. 곡선 지오메트리에 인접한 요소의 경우 이러한 새로운 자유도가 지오메트리에 위치해야 하므로 원래 선형 요소의 모양이 변경된다. 메시가 점성이 있는 경계를 향해 요소들이 모여 있는 경우 이 과정은 더 어렵다. 또한 내부 요소의 가장자리와 면은 요소 반전을 방지하기 위해 경계 요소 곡률에 따라 곡선을 만들어야 한다. 케이던스 피델리티 포인트와이즈(Cadence Fidelity Pointwise)에서 사용하는 WCN 스무딩에 대한 연구를 통해 혼합 오더 메시(Mixed Order Mesh)를 사용하여 지오메트리 곡률을 해결할 수 있다. 요소는 곡률이 심한 지오메트리 근처에서는 최대 4차 다항식(quartic)까지 올라갈 수 있으며, 곡률이 심한 지오메트리에서 멀리 떨어진 곳에서는 선형을 유지한다. 메시 평활화 방법은 비용 함수를 사용하여 원하는 요소 모양과 양의 자코비안을 각 요소에 적용한다. 요소가 지오메트리 근처에서 곡선이 될 때 점성 메시 간격이 유지된다. 결과는 복잡한 3D 구성에 대해 표시된다.   지오메트리 선형 메시를 올리고 표면 곡률에 따라 곡선을 그리려면 지오메트리에 쉽게 액세스하고 강력한 초기화 및 평활화 프로세스가 필요하다. 초기화 중에 고차 노드가 지오메트리에 정확하게 배치되고 메시 평활화 중에 표면에 유지되도록 하려면, 지오메트리에 대한 표면 검색작업이 필요하다. 엘리베이트 및 스무딩을 위한 지오메트리 액세스는 메시링크 API¹) 를 통해 제공된다. 메시링크는 지오메트리 및 메시 데이터를 관리하기 위한 라이브러리로, 메시 생성 및 메시 적응 애플리케이션과 관련된 함수를 쿼리할 수 있는 간단한 인터페이스를 제공한다.   혼합 오더 커브 프로세스 혼합 오더 메시 커브는 유효한 선형 메시로 시작하는 프로세스를 사용한다. 프로세스의 주요 구성 요소는 <그림 1>의 순서도에 나와 있다. 이 백서 전체에서 요소의 차수 또는 다항식 차수는 선형, 이차, 입방체와 같은 Q1~4 명명법을 사용하여 표시되며, 이차 요소는 각각 Q1, Q2, Q3, Q4이다. 고차 요소는 라그랑지안 기저 함수를 사용하여 요소의 가장자리, 면, 내부에 고차 노드를 고르게 분포시킨다. 이러한 물리적 노드는 하위 요소와 요소 모양을 적용하기 위해 WCN 방식에 필수이다.   그림 1. 혼합 오더 메시 커브 프로세스의 순서도에는 가장 안쪽 고도 루프를 통과하는 여러 경로가 포함되어 있다. 진입 지점에 따라 색상으로 구분된 화살표를 따라가게 된다.   고도 프로세스는 입력된 선형 메시에서 시작하여 사용자가 요청한 최종 차수인 Qfinal에 도달할 때까지 최대 차수인 Qmax를 한번에 하나씩 증가시킨다. 각 차수 패스동안 먼저 표면 요소와 볼륨 요소의 편차를 테스트한다. 고차 점이 지오메트리에서 너무 많이 벗어나는 서피스 요소(허용 오차 기준)는 높이가 올라가고, 그 섭동이 볼륨에 퍼진다. 마지막으로, 요소 반전을 수정하고 엘리베이션 프로세스에서 생성된 요소의 품질을 개선하기 위해 WCN 메시 스무딩이 수행된다. 각 스무딩 반복 후 각 볼륨 요소의 편차를 다시 테스트하여 추가 높이 조정이 필요한지 여부를 결정한다. 이 프로세스는 모든 요소가 편차 기준을 충족하거나 최종 정도에 도달할 때까지 반복되며, 메시 평활화 프로세스가 수렴한다. 품질 제약 조건은 인접한 요소가 한 차수 이상 차이가 나지 않도록 보장한다. 최종 출력은 같은 차수의 요소 간에 공유되는 고차 노드가 포함된 메시이다. 그러나 차수가 다른 요소 간에 공유되는 면과 가장자리는 동일한 인터페이스 노드를 공유하지 않다. 따라서 내보내기 전에 이러한 인터페이스에서 형상 적합성을 적용한다.   요소 편차 메트릭 편차 메트릭(Deviation Metric)은 엘리먼트 엘리베이션 프로세스 및 메시 스무딩 프로세스의 일부로, 엘리먼트 엘리베이션 프로세스를 제어한다. 편차 메트릭은 곡선 경계 또는 다른 볼륨 요소에 인접한 요소의 가장자리와 면에 있는 테스트 노드의 변위를 측정한다. 이러한 테스트 노드의 변위가 임계값 거리를 초과하면 해당 요소에 상승 플래그가 지정된다. 높이를 트리거하는 임계값은 요소 내의 최소 선형 에지 길이에 입력 편차 임계값 파라미터(일반적으로 1~5%)를 곱한 값이다.   서피스 요소 편차 곡선 경계에 인접한 요소의 경우 편차 메트릭은 6차 가우스 구적법 점 위치에 배치된 테스트 노드를 사용한다. 그런 다음 테스트 노드를 지오메트리에 투영하고, 원래 위치와 투영된 위치 사이의 거리를 측정한다. 편차량은 <그림 2>에서 선형 삼각형의 중심(청록색)에 있는 테스트 노드를 곡선 지오메트리 표면(주황색)에 투영하여 보여준다.   그림 2. 지오메트리에 투영된 표면 요소의 중심에 있는 테스트 노드     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-07-04
CAD&Graphics 2024년 7월호 목차
  INFOWORLD   People&Company 17 머티리얼라이즈 윌프리드 반크란 의장 3D 프린팅에 대한 새로운 시각이 성장 기회를 만들 것 36 트림블 코리아 김동준 상무 설계부터 운영까지, AI로 건설산업 전반의 혁신 지원   Focus 20 PLM/DX 베스트 프랙티스 컨퍼런스 2024, 제조산업의 디지털 전환 전략과 사례 소개 28 지멘스 DISW, “디지털 엔지니어링으로 자동차 개발을 혁신” 30 매스웍스, 디지털 제품 개발 위한 MBD 비전 제시 32 미르, 물류/자재 관리 혁신 위한 자율이동로봇 기술 소개 34 AWS-에티버스, “클라우드 ∙ AI ∙ 디지털 트윈이 제조 엔지니어링의 미래 이끈다”   New Products 39 게임 및 비주얼 콘텐츠 제작 전반의 기능과 편의성 강화 유니티 6 프리뷰 48 산업 디자이너를 위한 시각화 기능 향상 트윈모션 2024.1 52 기계/제조 분야의 활용성 높인 2D CAD 지더블유캐드 2025 54 HDD급 용량과 SSD 성능을 겸비한 스토리지 솔루션 샌디스크 데스크 드라이브 56 이달의 신제품   On Air 58 캐드앤그래픽스 CNG TV 지식방송 지상중계 레빗을 활용한 배관설계 패러다임 전환 59 캐드앤그래픽스 CNG TV 지식방송 지상중계 AI 시대의 로봇 기술 트렌드와 발전 방향   Column 60 디지털 지식전문가 조형식의 지식마당 / 조형식 디지털 엔지니어링의 히든 챔피언, 디지털 스레드 그리고 인생 디지털 스레드 63 현장에서 얻은 것 No.17 / 류용효 PLM과 챗GPT의 활용 방안   66 New Books   Directory 123 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA    AEC 68 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 랭체인 아키텍처 및 동작 메커니즘 분석 74 새로워진 캐디안 2024 살펴보기 (7) / 최영석 캐디안 2024 SE의 시작 페이지 기능 77 복잡한 모델에서 인사이트를 얻고 설계 의사결정을 돕는 직스캐드 (4) / 이소연 파일 비교 기능 80 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (3) / 천벼리 3D 비주얼 스타일 86 GPT 시대의 교육과 학습 / 양승규 GPT 시대의 슬기로운 AI 생활을 위해   Manufacturing 92 미래 공장을 위한 스마트 기계 르네상스 / 오병준 디지털 기반의 새로운 생산 환경과 제조 혁신   Analysis 96 앤시스 워크벤치를 활용한 해석 성공사례 / 김재은 우주발사체 하우징의 금속 적층제조 공정 시 과열 영역 예측 및 해결 방안 101 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (11) / 나인플러스IT 혼합 오더 메시 커브 106 시뮤텐스 소프트웨어를 활용한 복합소재 해석 (4) / 씨투이에스코리아 고급 복합재 후변형 시뮬레이션을 위한 시뮤워프   Mechanical 109 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (2) / 김주현 매스캐드 프라임 10.0 업데이트   Reverse Engineering 116 문화유산 분야의 이미지 데이터베이스와 활용 사례 (7) / 유우식 필사본 고서 데이터베이스     캐드앤그래픽스 2024년 7월호 목차 from 캐드앤그래픽스  
작성일 : 2024-06-27
전기/기계 엔지니어의 역량을 강화하는 통합 AI 열 해석
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (10)   케이던스 셀시우스 스튜디오(Cadence Celsius Studio)는 전자 시스템의 열 해석과 열 응력, 전자 제품 냉각을 해결하기 위한 AI 기반 열 플랫폼이다. 현재 제공되는 제품은 대부분 포인트 툴 솔루션으로 구성되어 있지만, 셀시우스 스튜디오는 전기 및 기계/열 엔지니어가 형상 단순화, 조작, 변환 없이 단일 플랫폼 내에서 동시에 설계 및 해석할 수 있는 통합 플랫폼으로 완전히 새로운 접근 방식을 도입했다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   셀시우스 스튜디오는 전열 공동 시뮬레이션, 전자 냉각, 열 응력을 하나의 솔루션으로 통합한다. 또한 설계 중 다중 물리 분석으로 셀시우스 스튜디오를 원활하게 사용할 수 있으므로, 설계자는 설계 프로세스 초기에 열 무결성 문제를 발견하고 이상적인 열 설계를 발견하기 위해 생성형 AI 최적화와 새로운 모델링 알고리즘을 효율적으로 활용할 수 있다. 그 결과 협업이 개선되고 설계 반복이 줄어들며 예측 가능한 설계 일정이 가능해지는 간소화된 워크플로를 통해 처리 시간을 단축하고 출시 기간을 단축할 수 있다.   셀시우스 스튜디오의 주요 이점 셀시우스 스튜디오는 복잡한 열 해석, 열 응력, 전자 냉각 등의 문제를 해결할 수 있다.    매끄러운 통합 셀시우스 스튜디오는 케이던스의 버추소, 알레그로, 이노베이티브, 옵티멀리티 및 AWR 구현 기술과 통합된다.   디자인 인사이트 전체 설계 공간을 빠르고 효율적으로 탐색하여 최적의 설계에 수렴할 수 있도록 통합된 옵티멀리티 AI(Optimality AI) 기반 기술을 통해 지원한다.   시스템 레벨의 열 해석 전체 시스템 분석을 위해 유한 요소법(FEM)과 전산 유체 역학(CFD)을 결합한다.   생산성 향상 기존 솔루션보다 최대 10배 빠른 성능을 달성하는 대규모 병렬 실행을 제공한다.   셀시우스 스튜디오의 솔루션 구성 전열(Electrothermal) 해석 셀시우스 스튜디오는 다양한 ECAD 및 MCAD 파일 형식을 지원하며, 전기 및 열 시뮬레이션을 위한 재료 및 부품 관리자를 제공한다. 정적 및 과도 전열 공동 시뮬레이션을 모두 제공하며 케이던스의 클래리티, 시그리티, 스펙터 솔버와 원활하게 통합된다.     기구 응력(Mechanical Stress) 셀시우스 스튜디오는 선형 및 비선형 재료 구조 모델뿐만 아니라 뒤틀림 및 응력 분석을 위한 정적 및 준정적 솔버, 수분 솔버, 고온고습(HTHH) 분석을 지원한다. 설계자는 설계 조립 공정과 재료 고장 및 신뢰성 분석을 위한 다단계 시뮬레이션을 수행할 수 있다. 3D-IC 뒤틀림/응력 시뮬레이션을 위한 글로벌 및 로컬 모델이 있다.     머신러닝/인공지능(ML/AI) 셀시우스 스튜디오는 열 설계 및 관리를 위한 AI 기반 최적화와 DFM 검증을 위한 몬테카를로 분석 및 민감도 연구, 열 RC 및 컴팩트 모델 생성 및 네트워크 시뮬레이션을 통합한다. 메타모델 칩/패키지/서버는 빠른 열 성능, 특성화 및 평가를 제공한다.   전자 냉각(Electronic Cooling) 셀시우스 스튜디오는 전체 전자 시스템의 열 효율을 최적화하기 위한 전자 냉각 시뮬레이션을 제공한다.       ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-06-03
CDA&Graphics 2024년 6월호 목차
  17 THEME. 제조기업이 말하는 스마트 혁신 전략과 추진 과정   제조 혁신의 미래 : 포스코의 디지털 트윈 추진 사례 설계부터 운영까지 : LG의 스마트 공장 구축 여정과 사례 생산성을 넘어서는 가치 추구 : 현대차/기아의 스마트 공장 추진 현황   INFOWORLD    New Products 29 비주얼 콘텐츠 제작의 퍼포먼스 · 품질 · 생산성 향상 언리얼 엔진 5.4 34 건축 설계-시공 워크플로 개선 및 건설 생산성 강화 올플랜 2024-1 서비스 릴리스 36 하드웨어 기반 반도체 개발 검증 솔루션 벨로체 CS 45 이달의 신제품   Case Study 38 발레오, SXSW에서 차량 내 XR 레이싱 게임 공개 자율주행 시대의 새로운 사용자 경험을 제시하다   Focus 40 폼랩, “제조산업에서 3D 프린팅의 가능성 넓힌다” 42 AWS, 산업 혁신 지원하는 포괄적 클라우드/AI 기술 소개   Column 48 디지털 지식전문가 조형식의 지식마당 / 조형식 디지털 AI 전환 시대의 디지털 엔지니어링 이니셔티브 51 책에서 얻은 것 No. 20 / 류용효 컨셉맵으로 미래 그리기   On Air 56 캐드앤그래픽스 CNG TV 지식방송 지상중계 생성형 AI LLM과 스테이블 디퓨전 최신 기술 및 활용 동향 57 캐드앤그래픽스 CNG TV 지식방송 지상중계 다양한 산업군에서의 HPC on AWS 58 캐드앤그래픽스 CNG TV 지식방송 지상중계 생성형 AI 시대의 BIM 기술과 스마트 건설 59 캐드앤그래픽스 CNG TV 지식방송 지상중계 산업별 DX/PLM 전략과 생성형AI 혁신 60 캐드앤그래픽스 CNG TV 지식방송 지상중계 미래를 선도하는 혁신 제조 기술의 활용 가능성 61 News 66 New Books   Directory 115 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 68 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈소스 LLaVA 기반 멀티모달 생성형 AI 서비스 만들기 72 새로워진 캐디안 2024 살펴보기 (6) / 최영석 캐디안 2024 SE의 새로운 기능 소개 76 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (2) / 천벼리 아레스 AI 어시스트 112 복잡한 모델에서 인사이트를 얻고 설계 의사결정을 돕는 직스캐드 (3) / 이소연 사용성을 강화하는 QPro 및 LANDY 연동   Reverse Engineering 83 문화유산 분야의 이미지 데이터베이스와 활용 사례 (6) / 유우식 고서 자형 데이터베이스   Mechanical 94 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (1) / 김성철 크레오 11.0에서 향상된 주요 기능 소개 100 산업 디지털 전환을 위한 버추얼 트윈 (2) / 최윤정 자동차 산업에서 3D익스피리언스 카티아의 활용법   Analysis 80 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (10) / 나인플러스IT 전기/기계 엔지니어의 역량을 강화하는 통합 AI 열 해석 104 앤시스 워크벤치를 활용한 해석 성공사례 / 김은자 앤시스 플루언트 GPU 솔버의 소개와 활용 108 시뮤텐스 소프트웨어를 활용한 복합소재 해석 (3) / 씨투이에스코리아 복합재 성형-구조 연계 해석을 위한 시뮤드레이프       캐드앤그래픽스 2024년 6월호 목차 from 캐드앤그래픽스
작성일 : 2024-05-31
CADENCE_ASME Turbo Expo 2024 Lunch & Learn
<행사 안내> *행사 업체 : CADENCE (NUMECA / Fine Turbo / Fidelity CFD / Pointwise 개발 및 공급 업체) *행사 내용 : CADENCE ASME Turbo Expo 2024 Lunch & Learn *날짜 및 시간 : Monday, June 24 (12:00 - 13:30) *장소: Aloft Hotel (outside of ExCeL Main Entrance) One Eastern Gateway, Royal Victoria Dock, London E16 1FR - Room Tactic 1-4 *비고 : 점심 제공 (무료), Turbomachinery 최신 기술 소개와 커뮤니케이션  *접수하기 : 등록 링크   (무료) 등록하신 분들께서는   참석 인원 확인 및 원활한  현장 안내를 위해 '나인플러스IT 담당자( cfd@npit.co.kr )'에게 등록/참석하신다는 메일을 보내주시면 감사하겠습니다.   How can you perform industrial-level turbomachinery CFD simulations more easily? Join us for our annual Lunch & Learn event to learn about the latest advancements in CFD simulation and our completely upgraded user experience in the Cadence Fidelity Turbo platform.  Register below to discover: ·New improvements to our solvers in Fine and Fidelity CFD and the simplified transition between platforms ·The new Cadence Millennium M1 CFD Supercomputer, a unique combination of high-fidelity simulation software with GPU-powered hardware solving high-fidelity aerodynamics, aeroacoustics, and combustion at unprecedented speeds ·First integration of our CFD workflows into the Cadence Optimality Intelligent System Explorer, enabling multi-disciplinary analysis and optimization Date: Monday, June 24  Time: 12:00 - 13:30  Location: Aloft Hotel (outside of ExCeL Main Entrance) One Eastern Gateway, Royal Victoria Dock, London E16 1FR - Room Tactic 1-4  Lunch will be provided.  Don’t miss out and save your seat today. Seats are limited and will be reserved on a first-come, first-served basis. Any registrations after seats are filled will be placed on a wait list. SAVE MY SEAT We look forward to your attendance!
작성일 : 2024-05-10
미래 자동차 설계를 위한 DNS, LES, RANS 시뮬레이션
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (9)   이번 호에서는 다양한 유형의 난류 모델과 사용 시기, 그리고 복잡한 형상을 위한 고충실도 난류 모델링에 있어 케이던스의 밀레니엄 M1 CFD 슈퍼컴퓨터가 어떻게 혁신을 가져오는지에 대해 소개한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   자동차 산업은 거의 매일 새로운 혁신과 개발이 등장하며 끊임없이 발전하고 있다. 자동차 업계는 전기 구동 차량과 대량 생산이 증가하는 추세에 발맞춰, 보다 지속 가능한 미래를 만들기 위해 노력하고 있다. 2022년 전 세계 자동차 생산량은 5.7% 증가하여 8540만 대를 생산할 것으로 예상된다. 그러나 업계는 여러 디자인 또는 새로운 헤드라이트, 스플리터, 사이드 스커트 추가와 같은 아주 작은 디자인 변경에 대해서도 풍동 테스트 또는 프로토타입 테스트를 수용하면서 연비 기준을 충족해야 하는 과제에 직면해 있다. 그 결과, 항력 계수 등 관심 있는 유동장 정보와 성능 관련 수치를 예측하여 필요한 실험 횟수를 크게 줄일 수 있는 시뮬레이션 기반 접근 방식이 점점 더 인기를 얻고 있다. 유체 흐름의 난류를 이해하고 전산 유체 역학(CFD) 시뮬레이션을 통해 동일한 난류를 재현하려면 다양한 난류 모델을 사용해야 한다. 자동차 애플리케이션과 리소스 가용성에 따라 적합한 난류 모델을 선택하면 설계 주기를 단축하는 데 도움이 될 수 있다.      유체의 난류 모델링 난류는 압력과 속도의 혼란스러운 변화를 특징으로 하는 불규칙한 흐름을 일컫는 용어이다. 우리는 일상 생활에서 난류를 경험하며 공기 역학, 연소, 혼합, 열 전달 등과 같은 다양한 엔지니어링 응용 분야에서 중요한 역할을 한다. 하지만 유체 역학을 지배하는 나비에-스토크스 방정식은 매우 비선형적인 편미분 방정식이며 난류에 대한 이론적 해법은 존재하지 않는다. 난류는 광범위한 공간적, 시간적 규모를 포함하기 때문에 모델링과 시뮬레이션이 어려울 수 있다. 일반적으로 큰 와류는 난기류에 의해 생성된 에너지의 대부분을 전달하고 작은 와류는 이 에너지를 열로 발산한다. 이 현상을 ‘에너지 캐스케이드’라고 한다. 수년에 걸쳐 다양한 난기류 모델링 접근법이 개발되었으며, 가장 일반적인 세 가지 접근법을 간략히 설명하면 다음과 같다.   직접 수치 시뮬레이션(DNS) DNS에서는 모델이나 근사치 없이 미세한 그리드와 매우 작은 시간 단계를 사용하여 모든 규모에서 난기류를 해결한다. DNS의 계산 비용은 엄청나게 높지만 결과는 가장 정확하다. DNS 시뮬레이션은 난류장에 대한 포괄적인 정보를 제공하기 위한 ‘수치 실험’으로 사용된다.   대규모 와류 시뮬레이션(LES) 이름에서 알 수 있듯이 이 난류 모델링 기법은 큰 소용돌이를 해결하고 보편적인 특성을 가진 작은 소용돌이를 모델링한다. LES 시뮬레이션은 최소 길이 스케일을 건너뛰어 계산 비용을 줄이면서도, 시간에 따라 변화하는 난기류의 변동 요소를 자세히 보여준다.   레이놀즈-평균 나비에-스토크스 모델(RANS) RANS 방정식은 나비에-스토크스 방정식의 시간 평균을 취하여 도출되었다. 난기류 효과는 미지의 레이놀즈 응력 항을 추가로 모델링하여 시뮬레이션한다. RANS 시뮬레이션은 평균 흐름을 해결하고 난류 변동을 평균화하므로 다른 두 가지 접근 방식보다 훨씬 비용 효율적이다.   올바른 선택 - DNS, LES 또는 RANS 올바른 난류 모델을 선택하는 것은 모든 시뮬레이션의 중요한 측면이며, 이는 주로 시뮬레이션의 목적, 흐름의 레이놀즈 수, 기하학적 구조 및 사용 가능한 계산 리소스에 따라 달라진다. 학술 연구의 경우 DNS 시뮬레이션은 난류의 근본적인 메커니즘과 구조를 이해하는데 가장 적합한 결과를 제공한다. DNS는 레이놀즈 수가 낮은 경우에 적합하지만, 막대한 시간과 리소스가 필요하기 때문에 대부분의 산업 분야에서는 실용적인 선택이 아니다. 반면에 LES는 일반적으로 레이놀즈 수가 높은 복잡한 형상을 포함하는 산업용 사례를 처리하는데 적합한 옵션이다. LES가 생성하는 고충실도 결과물은 경쟁이 치열한 자동차 시장에서 중요한 한 차원 높은 성능 개선이 가능한 설계를 가능하게 한다. RANS 시뮬레이션은 LES에 비해 근사치의 범위가 넓기 때문에 정확도가 떨어진다. 그러나 정확도와 계산 비용 간의 균형으로 인해 RANS는 계산 리소스와 시뮬레이션 시간이 제한된 업계 사용자에게 일반적인 솔루션이다. 이 방법은 또한 짧은 시간 내에 여러 사례를 분석해야 할 때 널리 사용된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02
CAD&Graphics 2024년 5월호 목차
  INFOWORLD   Focus 17 디지털 제조 & 뿌리산업 컨퍼런스, 디지털 기술 기반의 제조산업 혁신 및 성장 전략 소개 22 빌드스마트포럼 2024, Al와 메타버스의 시너지로 변화하는 AEC 탐구 24 마이다스아이티, 제조산업을 위한 CAE 기술과 솔루션 로드맵 제시 26 로크웰 오토메이션, AI·클라우드 접목한 디지털 제조 기술 소개 28 한국산업지능화협회, ‘2024 스마트공장엑스포와 산업지능화 콘퍼런스’ 개최 51 오라클, 모던 데이터 플랫폼 및 데이터베이스 혁신 전략 발표 54 델 테크놀로지스, AI 시대 겨냥한 기업용 PC 제품군 소개 56 레노버, “더 많은 CPU 코어로 워크스테이션 성능 높인다”   People&Company 30 한국알테어 이승훈 기술 총괄 본부장 더욱 빠르고 효율적인 제품 개발을 위한 AI 기술 본격화 추진 33 데이터킷 필리프 블라슈 CEO CAD 데이터 변환과 상호운영성 기술로 한국 시장 공략 강화   Case Study 36 책임감 있는 AI 활용 및 향상된 모델 훈련 유니티 뮤즈의 텍스처/스프라이트 생성 및 파운데이션 모델 New Products 40 리브랜딩과 함께 건축 설계의 생산성 강화 캐드마스터 2025 44 AI로 생산성 높이는 기업용 PC 프로세서 라이젠 프로 8040/8000 시리즈 46 AI 기반 워크플로 강화하는 전문가용 GPU RTX A400/A1000 48 콘텐츠 생성의 퍼포먼스와 효율 강화 언리얼 엔진 5.4 프리뷰 58 이달의 신제품   Column 62 디지털 지식전문가 조형식의 지식마당 / 조형식 디지털 엔지니어링의 프레임워크와 네 가지 스피어 64 책에서 얻은 것 No. 19 / 류용효 기업 성장 맵 – 엔비디아 편   On Air 73 캐드앤그래픽스 CNG TV 지식방송 지상중계 배터리 산업 동향과 배터리 최적화를 위한 설계/시뮬레이션 기술 60 New Books 68 News   Directory 123 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 74 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈AI CLIP 모델의 이해/코드 분석/개발/사용 82 복잡한 모델에서 인사이트를 얻고 설계 의사결정을 돕는 직스캐드 (2) / 이소연 포인트 클라우드 기능 85 새로워진 캐디안 2024 살펴보기 (5) / 최영석 캐디안 2024의 스크립트 기능 88 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (1) / 천벼리 아레스 캐드 2025의 새로운 기능   Reverse Engineering 94 문화유산 분야의 이미지 데이터베이스와 활용 사례 (5) / 유우식 고지도 데이터베이스   Analysis 103 시뮤텐스 소프트웨어를 활용한 복합소재 해석 (2) / 씨투이에스코리아 시뮤필의 복합재 수지 해석 기능 소개 106 앤시스 워크벤치를 활용한 해석 성공사례 / 노은솔 PyMAPDL의 기초부터 활용까지 110 산업 디지털 전환을 위한 버추얼 트윈 (1) / 안치우 1D 시뮬레이션을 위한 카티아 다이몰라 120 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (9) / 나인플러스IT 미래 자동차 설계를 위한 DNS, LES, RANS 시뮬레이션   Mechanical 114 제품 개발 혁신을 가속화하는 크레오 파라메트릭 10.0 (12) / 김주현 사용자 정의 피처의 생성 및 활용   캐드앤그래픽스 2024년 5월호 목차 from 캐드앤그래픽스  
작성일 : 2024-04-30
CFD 시스템 설계 및 분석 가속화를 위한 밀레니엄 M1
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (8)   전산 유체 역학(CFD) 시뮬레이션은 긴 설계 주기를 단축하고 비용이 많이 드는 실험 횟수를 줄이기 위해 널리 사용되어 왔다. 하지만 기존 CFD 솔버 기술과 컴퓨팅 리소스의 정확도와 속도 제한으로 인해 CFD 분석의 잠재력이 제한되었다. 이러한 문제로 인해 일반적으로 CFD 사용자는 효율적인 가상 엔지니어링을 수행하지 못했다. 턴키 CFD 솔루션인 케이던스 밀레니엄 M1(Millennium M1) CFD 슈퍼컴퓨터는 대형 와류 시뮬레이션(LES)을 위한 케이던스 피델리티(Fidelity) LES 솔버와 같은 그래픽 처리 장치(GPU) 상주 CFD 솔버와 확장 가능한 고성능 컴퓨팅(HPC) 하드웨어의 조합으로 이러한 장애물을 극복하여 전례 없는 성능을 발휘한다. 고품질 합성 데이터의 신속한 생성을 통해 제너레이티브 AI(generative AI)는 정확도 저하 없이 최적의 시스템 설계 솔루션을 빠르게 식별할 수 있다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   밀레니엄 M1은 처리 시간을 며칠에서 몇 시간으로 단축하여 항공우주, 자동차, 발전 및 터보 기계 애플리케이션에서 LES의 실제 적용 범위를 확장한다.   그림 1. 케이던스 밀레니엄 M1 CFD 슈퍼컴퓨터   밀레니엄 M1의 주요 효과 밀레니엄 M1은 설계 시간 및 컴퓨팅 리소스 절약 효과를 가져다줄 수 있다.   GPU 가속  고성능의 GPU 상주 CFD 솔버가 최저 전력 소비로 빠른 시간 내에 결과를 제공한다.   턴키 솔루션 바로 사용할 수 있는 단일 CFD 슈퍼컴퓨팅 솔루션을 위해 피델리티 CFD 소프트웨어와 HPC 하드웨어를 결합한다.   최적화된 성능 확장 가능한 HPC 아키텍처와 최신 GPU 상주 솔버가 최적의 시스템 성능을 위해 튜닝되었다.   뛰어난 확장성  빠른 처리 시간을 위해 애플리케이션에 따라 스택형 컴퓨팅 노드를 확장할 수 있다.   표 1. 밀레니엄 M1은 자동차, 항공우주 및 터보 기계 애플리케이션을 위한 당일 시뮬레이션 처리 시간을 제공한다.   밀레니엄 M1의 특징 밀레니엄 M1은 CFD 슈퍼컴퓨팅을 위한 통합 하드웨어 및 소프트웨어 플랫폼이다.   GPU 가속 GPU 가속화는 항공우주, 자동차, 터보 기계 및 기타 여러 산업에 막대한 영향을 미치며 고충실도 CFD를 혁신하고 있다. CFD에 GPU 컴퓨팅을 활용하면 엔지니어링 효율성을 높일 수 있다. 주어진 컴퓨팅 투자에 대해 피델리티 LES 솔버는 CPU 대비 최대 10배의 처리량 증가를 제공한다. 고정된 시뮬레이션 처리량의 경우, CPU 컴퓨팅 대비 GPU 컴퓨팅의 에너지 요구량 감소는 약 17배이다.   그림 2. 합동 타격 미사일(JSM) 기체용 밀레니엄 M1의 피델리티 LES 확장성 확장성 밀레니엄 M1은 외부 공기역학 및 항공 음향에서 연소 및 다중 물리학에 이르기까지 애플리케이션 전반에 걸쳐 거의 선형에 가까운 확장을 제공한다. 이 제품은 두 개의 GPU 노드에서 14시간 이내에 착륙 구성의 실제 항공기를 정확하게 시뮬레이션하는 등, 빠른 시간 내에 결과를 얻을 수 있는 대규모 LES 시뮬레이션을 지원한다.   고충실도 LES 밀레니엄 M1의 피델리티 LES 솔버는 고급 수치 방법과 모델을 결합하여 GPU 가속을 통해 비용 효율적이고 높은 처리량의 시뮬레이션을 제공한다. 고유한 솔버 이산화가 최신 서브 그리드 스케일 및 벽 모델링과 결합되어 그리드 해상도에 높은 견고성을 제공하는 LES 기능을 제공한다.   그림 3. 다양한 메시 크기에 대한 샌디아 플레임 D 실험과 Fidelity CharLES 결과 비교     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-04-01
CAD&Graphics 2024년 4월호 목차
  17 THEME. 플랜트·조선 산업 혁신을 위한 디지털화 전략   Part 1. 디지털 기술로 플랜트·조선 산업을 혁신하다 데이터 기반의 업무 혁신, 건설산업의 새로운 시작 클라우드 서비스를 통한 대내외 보안 환경 조성 경쟁력 있는 플랜트를 위한 설비 관리 전략 스마트 디지털 리얼리티와 스마트 야드형 공사 정보 디지털 백본 구축 해양의 미래 : 자율운항 선박의 혁신과 시뮬레이션의 중요성 디지털 전환 여정을 위한 3D CAD 기반 디지털 트윈 구축의 4단계   Part 2. 디지털 트윈의 구축과 활용을 위한 기술 디지털 트윈 가속화를 위한 3D 엔지니어링 데이터 경량 시각화 솔루션 3D 스캔 데이터를 효과적으로 분석하고 활용하는 방법 플랜트 BIM 배관 공사의 필수 아이템 Ez-ISO Strand7 R3 : 범용 유한요소 해석 프로그램   Infoworld   Column 55 책에서 얻은 것 No. 19 / 류용효 커넥팅 80 디지털 지식전문가 조형식의 지식마당 / 조형식 제조업 디지털 전환과 디지털 엔지니어링, 디지털 PLM   Case Study 58 해외 소장 문화재의 ‘디지털 귀향’ 프로젝트 언리얼 엔진과 에픽 에코시스템으로 이뤄낸 문화유산 디지털 경험 62 최신 렌더링 기능의 사용 돕는 URP 3D 샘플 고품질 그래픽스의 효율적인 제작 및 스케일링 방법 제시   Focus 64 지멘스 DISW, “솔리드 엣지로 지능형 제품 설계를 실현한다” 66 모두솔루션, 지스타캐드 시장 확대 및 파트너십 강화 전략 소개 68 슈나이더 일렉트릭, 데이터 플랫폼으로 EV 배터리 시장 공략 70 한국산업지능화협회, “산업 디지털 전환을 주도하기 위해 다방면의 활동 강화” 72 레노버, “클라우드부터 에지까지 폭넓은 AI 포트폴리오 제공” 74 생성형 AI와 협업 툴의 만남, ‘플로우 3.0’ AI Now   New Products 76 이달의 신제품   On Air 78 캐드앤그래픽스 CNG TV 지식방송 지상중계 SIMTOS 2024와 디지털 제조 혁신 트렌드   82 New Books 84 News   Directory 131 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 87 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 로컬 호스트 LLM 오픈소스 기반 BIM 전문가 챗봇 서비스 만들어보기 94 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2024 (12) / 천벼리 아레스 커맨더의 사용자 인터페이스 108 새로워진 캐디안 2024 살펴보기 (4) / 최영석 구성선 및 자유선 기능 128 복잡한 모델에서 인사이트를 얻고 설계 의사결정을 돕는 직스캐드 (1) / 이소연 직스캐드 2024의 최신 기능 업데이트   Reverse Engineering 100 문화유산 분야의 이미지 데이터베이스와 활용 사례 (4) / 유우식 한지 데이터베이스   Mechanical 111 제품 개발 혁신을 가속화하는 크레오 파라메트릭 10.0 (11) / 김주현 매스캐드 프라임 9.0 사용하기 Ⅰ   Analysis 97 시뮤텐스 소프트웨어를 활용한 복합소재 해석 (1) / 씨투이에스코리아 복합소재 공정 전반의 가상 프로세스 체인 118 앤시스 워크벤치를 활용한 해석 성공사례 / 김선명 전기자동차용 헤어핀 모터 코일의 DfAM 및 금속 적층제조 프로세스 124 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (8) / 나인플러스IT CFD 시스템 설계 및 분석 가속화를 위한 밀레니엄 M1     캐드앤그래픽스 2024년 4월호 목차 from 캐드앤그래픽스  
작성일 : 2024-03-28
[무료다운로드] 연비와 공기역학 : 자동차 디자인의 음과 양
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (7)   자동차의 공기역학은 연비 향상과 소음 감소 등의 목표를 달성하기 위한 방법으로서 고려되었다. 공기역학 성능을 향상시키기 위해 자동차 업계는 축소 모델링과 풍동 실험을 거쳐 현재는 CFD 시뮬레이션을 적극 활용하고 있다. CFD 시뮬레이션은 유동 이론과 컴퓨터 기술의 발전에 힘입어 복잡한 차체를 시뮬레이션하고 최적의 설계를 결정하는 데에 도움을 준다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   클래식 모델 T부터 상징적인 아메리칸 머슬카에 이르기까지 자동차의 디자인은 수년에 걸쳐 다양한 요인에 의해 형성되었다. 기술 발전, 소비자 선호도, 정부 규제 등이 모두 영향을 미쳤다. 하지만 그 중에서도 가장 큰 영향을 미친 요소는 연비이다. 1973년 석유 금수 조치의 여파로 도입된 기업 평균 연비(CAFE : Corporate Average Fuel Economy) 기준은 자동차 제조업체가 연비에 집중하도록 만들었다. 처음에는 평균 14.2mpg의 연비를 의무화했던 CAFE 표준은 이후 업데이트되어, 현재는 2032년까지 차량 전체 평균 58mpg를 목표로 하고 있다. 자동차 제조업체들이 이러한 야심찬 목표를 달성하기 위해 노력함에 따라 공기역학의 역할이 점점 더 중요해지고 있다. 과거에는 자동차 디자인을 테스트하고 개선하기 위해 축소 모델링 기법을 사용했다. 오늘날에는 전산 유체 역학(CFD)과 같은 정교한 컴퓨터 시뮬레이션이 자동차의 공기역학을 최적화하는 데에 사용된다. 현대 자동차의 날렵한 라인에 감탄할 때, 단순히 외형만이 아니라 모든 곡선과 윤곽이 연료 효율을 극대화하고 공기 저항을 최소화하도록 세심하게 설계되었다는 사실을 떠올려 보는 것도 좋을 것이다.   자동차 디자인 100년 들여다보기 1900년~1930년 1900년대 초반의 자동차는 특별한 미학을 염두에 두고 디자인되지 않았다. 자동차는 주로 실용적인 목적으로 제작되었다. 1908년 최초의 대량 생산 자동차인 포드의 모델 T가 출시되면서 자동차 산업의 판도가 완전히 바뀌었다. 모델 T는 4기통 엔진을 탑재하고 연비가 13~21마일로 오늘날의 평균적인 자동차보다 약간 낮았다. 하지만 이 차를 차별화한 것은 경제성이었다. 1910년 780달러였던 모델 T의 가격은 1924년에 290달러로 떨어졌다. 이는 대량 생산을 통해 달성한 비용 절감 덕분에 가능했다.   ▲ 포드 모델 T   1930년~1940년 1930년대에 들어서면서 세계는 대공황에 빠졌다. 주식 시장은 폭락했고, 미국 자동차 산업은 특히 큰 타격을 받아 신차 판매가 75%나 급감했다. 설상가상으로 1920년 갤런당 30센트였던 연료 가격이 1929년에는 21센트로 급격히 하락했다. 자동차 생산량도 타격을 받아 1929년 540만 대에서 1932년 340만 대로 감소했다. 자동차의 비용 효율을 높이기 위해서는 분명 무언가 조치가 필요했다. 이때부터 자동차 제조업체들은 공기역학에 대해 생각하기 시작했다. 엔진을 바꾸는 대신 자동차의 디자인을 간소화하여 효율을 높였다. 항공과 아르데코(Art Deco)에서 영감을 받은 새로운 자동차 디자인은 깔끔하고 단순한 외관을 선호했다. 30대 중반에는 폭스바겐 비틀, 크라이슬러 에어플로우, 1938년 팬텀 코르세어 등 상징적인 공기역학 차량이 탄생했다.   ▲ 부가티 타입 57 그랜드 레이드(1935년)   1940년~1950년 1940년대 초, 세계대전이 발발하면서 자동차 제조업체들은 군용 차량 부품 생산에 주력할 수밖에 없었다. 그 결과 가정용 자동차 생산은 중단되었고 자동차 소유율은 73%까지 급감했다. 하지만 제2차 세계대전 참전용사들은 이 어려운 시기에 드래그 레이싱에 참여하기 시작했다. 1950년대가 되어서야 산타아나 활주로에서 최초의 공식 드래그 레이스가 열렸다. 이 대회는 빠르게 인기를 얻었고, 1951년에는 전국에 있는 수많은 레이싱 클럽을 감독하기 위해 전미 핫로드 협회(NHRA : the National Hot Rod Association)가 설립되었다. 전쟁이 끝나자 자동차 업계는 폰툰 스타일을 도입하여 작은 혁명을 일으켰다. 이 새로운 스타일은 현대 자동차 디자인의 기초가 되었다. 그러나 이 폰툰은 공기 저항을 가중시켜 평균 연비가 15~20마일로 낮아졌다.   1950년~1960년 1950년대에는 자동차 디자인의 세계가 양분되었다. 미국 자동차 디자이너들은 항공기와 우주선에서 영감을 받아 각지고 박스형의 디자인을 만들며 미래를 생각했다. 반면, 유럽의 자동차 디자이너들은 공기 저항의 과학에 집착하여 최대한 유선형의 자동차를 만들기 위해 노력했다.   ▲ 재규어 C-타입   1956년 6월 29일, 고속도로 건설을 위해 무려 250억 달러가 지원되는 연방 원조 고속도로 법이 통과되었다. 미국 자동차는 갑작스럽게 이 새로운 고속도로의 고속 주행에 최적화되어야 했다. 이러한 초점의 변화는 더 날렵하고 공기역학적인 모델이 중심이 되는 새로운 자동차 디자인 시대로 이어졌다.   ■ 상세한 기사 내용은 PDF로 제공됩니다. 해당 기사는 한시적으로 무료로 제공됩니다.   
작성일 : 2024-03-05