• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "나인플러스IT"에 대한 통합 검색 내용이 36개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
CAD&Graphics 2025년 1월호 목차
  18 THEME. 디지털 전환을 이끄는 제품 개발・제조 기술의 혁신 혁신과 지속가능성을 위한 제조 기술로 진화하는 3D 프린팅 / 김태화 제품 개발 검증의 가속화를 위한 AI 시뮬레이션 프레딕터 / 이종학 최적설계의 대중화 : 더 쉽게 더 알차게 / 최병열 디지털 전환의 성공을 위한 CAE, AI/ML과 디지털 리얼리티 플랫폼 / 전완호   INFOWORLD   Editorial 17 엔지니어링 패러다임 전환 : AI+IoT가 이끄는 산업 혁신   People&Company 34 지멘스 디지털 인더스트리 소프트웨어 존 폭스 부사장 “솔리드 엣지 2025로 중소기업 제품 개발의 디지털화 도울 것”   New Products 37 제품 개발의 생산성 향상부터 SaaS 지원 확대까지 솔리드 엣지 2025 / 솔리드 엣지 X 40 산업 표준에 기반한 차세대 선박 설계 설루션 ShipConstructor 43 애니메이션/가상 프로덕션/모바일 게임 개발 기능 강화 언리얼 엔진 5.5 74 이달의 신제품   Culture 62 구글코리아가 만든 창의와 혁신의 축제, 2024 유튜브 웍스 어워즈 코리아   Case Study 48 언리얼 엔진으로 만든 버추얼 아이돌 플레이브 통합 시각화 파이프라인으로 새로운 경험 제공 53 적층제조를 활용한 외슬러의 제품 혁신 3D 프린팅과 래티스 디자인의 결합   On Air 55 캐드앤그래픽스 CNG TV 지식방송 지상중계 우주를 향한 기술 개발과 혁신의 미래 64 캐드앤그래픽스 CNG TV 지식방송 지상중계 인공지능 시대, 건축 기술의 혁신과 도전 과제   Focus 56 KOIIA 산업데이터스페이스 기술위원회 발족 세미나 개최 58 유니버설 로봇, 협동 로봇 기반의 자동화 플랫폼 비전 제시 60 델, 새롭게 진화할 2025년 AI 기술 전망 소개   Column 65 디지털 지식전문가 조형식의 지식마당 / 조형식 디지털 철학과 디지털 지속가능성을 시작하다 68 현장에서 얻은 것 No.19 / 류용효 AI와 PLM의 융합이 가져올 미래   72 New Books   Directory 131 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 75 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 생성형 AI 기반 BIM 전문가 시스템 개발해 보기 82 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (9) / 천벼리 BIM 도면 분할 84 새로워진 캐디안 2025 살펴보기 (2) / 최영석 라이브 업데이트 기능 소개   Mechanical 87 제조 산업의 설계와 가공 혁신을 위한 기술 / 지더블유캐드코리아 ZWCAD LM/MFG, ZW3D를 통한 설계 프로세스 개선   Visualization 90 산업 분야를 혁신하는 실시간 3D의 힘 / 유니티 코리아 유니티를 활용한 산업 VR & AR 구현 전략과 비전   Reverse Engineering 98 시점 – 사물이나 현상을 바라보는 눈 (1) / 유우식 호기심   Analysis 105 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (17) / 나인플러스IT 피델리티 CFD로 메시 어댑테이션 향상 108 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (8) / 김성철 메커니즘 다이내믹 시뮬레이션 소개 114 앤시스 워크벤치를 활용한 해석 성공 사례 / 정세훈 해석 사례로 살펴보는 플루언트의 iFSI 기능 118 초보자에서 전문가까지 만족시키는 유동 해석 프로그램 시메릭스MP / 케이더블유티솔루션 시메릭스MP의 해석 과정 소개 122 모델 기반 개발의 추진 방법과 적용 사례 / 오재응 MBD의 기능에 기반한 플랜트와 제어 모델 연계 개발 128 모델링 및 시뮬레이션을 사용한 BMS 개발 / 이웅재 안전한 전기차 배터리 관리 시스템의 설계를 위한 M&S
작성일 : 2024-12-27
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅱ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (16)   터보 기계는 흐르는 유체와 회전하는 요소 사이에서 에너지 전달이 일어나는 기계에 초점을 맞춘 기계공학의 한 분야이다. 이러한 장치는 많은 산업 분야에서 중추적인 역할을 한다.이번 호에서는 지오메트리 준비를 위한 팁과 메시의 생성/변형/세분화에 대한 내용을 소개한다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   효과적인 지오메트리 준비를 위한 팁 지오메트리 생성 후에는 안정적인 터보 기계 시뮬레이션을 달성하기 위해 효과적인 모델 준비가 필수이다. 이 프로세스를 관리하는 데 도움이 되는 팁을 다음과 같이 소개한다.  지오메트리 정리 및 수리 : CAD 모델에서 틈새, 겹침 또는 중복된 가장자리를 복구한다. 양질의 메시를 생성하려면 깨끗하고 빈틈없는 지오메트리가 필요하다.  메시 최적화 : 날카로운 모서리나 모서리에 필렛을 추가하고 지오메트리를 분할하여 로컬 메시를 세분화할 수 있도록 한다.  가능한 경우 단순화 : 연구 중인 유동 물리학에 필수적이지 않은 작은 피처와 디테일을 제거한다.  매개변수화 : 설계 연구를 위해 치수를 쉽게 변경할 수 있도록 지오메트리를 매개변수화한다. 이러한 팁을 따르면 엔지니어는 터보 기계 형상이 최고 수준의 표준에 맞게 준비되었다고 확신할 수 있다.   메시 생성 지오메트리 생성 및 준비 외에도 전처리에는 복잡한 형상을 위한 메시 생성이 포함되며, 이는 종종 터보 기계 CFD 워크플로의 병목 현상이 된다. 터보 기계 구성 요소의 복잡성과 작동의 동적 특성으로 인해, 정확한 시뮬레이션 결과를 얻기 위해서는 정밀하고 잘 구성된 메시가 필요하다. 자동화 및 템플릿 기반 접근 방식을 활용하면 이 단계의 효율성을 높이고 전반적인 생산성을 높일 수 있다.   메시 생성의 기본 사항 메시 생성은 계산 영역을 셀 또는 요소라고 하는 작은 영역으로 세분화하여 그 위에 지배 방정식을 푸는 프로세스이다. 잘 구성된 그리드는 필수적인 흐름 특징과 물리적 현상을 포착하는 정확하고 효율적인 터보 기계 시뮬레이션을 보장한다. [참고] 피델리티 오토메시를 통한 향상된 터보 기계 메싱 피델리티 오토메시(Fidelity Automesh) 소프트웨어 패키지는 회전 기계 메싱을 위한 툴로, 피델리티 오토그리드를 통한 자동화된 멀티블록 구조형 메싱과 피델리티 헥스프레스를 통한 비정형 메싱 기능을 제공한다. 모든 유형의 터보 기계 애플리케이션을 위한 템플릿을 갖춘 이 설루션은 메시 프로세스를 간소화하여 복잡한 지오메트리를 손쉽게 처리하고 고품질 메시를 빠른 시간 내에 제공한다. 피델리티 오토메시로 시뮬레이션 워크플로를 가속화하여 설계 혁신과 최적화에 집중할 수 있다.   그림 1. (a) 풍력 터빈의 구조화된 메시, (b) 로터 블레이드 팁의 하이브리드 메시   메시 유형 터보 기계 시뮬레이션에 사용되는 주요 메시 유형과 기법은 다음과 같다.  Structured : 일정한 간격의 그리드 포인트로 구성된 구조화된 메시(그림 1-a)는 일관된 패턴을 사용하며, 종종 격자형 구조와 유사하다. 예측 가능한 흐름 패턴이 있는 영역에서는 고품질 해상도를 제공하지만, 복잡한 지오메트리에서는 구현하기가 어려울 수 있다.  멀티블록 : 계산 도메인은 구조화된 격자로 개별적으로 메시 처리된 여러 개의 간단한 블록으로 나뉜다. 이 방법을 사용하면 복잡한 도형에 대해 국소적인 세분화가 용이하고 그리드를 쉽게 생성할 수 있다.  Unstructured : 이러한 메시는 불규칙한 패턴으로 구성되며 2D에서는 삼각형, 3D에서는 사면체로 구성되는 경우가 많다. 복잡한 형상에 적합한 비정형 메시는 복잡한 모델에 쉽게 적용할 수 있지만, 중요한 흐름 영역에서 해상도가 저하되는 경우가 있다.  Hybrid : 구조화된 메시와 구조화되지 않은 메시의 장점을 결합한 하이브리드 메시(그림 1-b)는 경계 레이어와 같이 더 높은 해상도가 필요한 영역에는 구조화된 그리드를 사용하고, 복잡한 기하학적 영역에는 구조화되지 않은 그리드를 사용한다.  Conformal : 이 기술은 지오메트리의 여러 부분에 걸쳐 메시가 연속되도록 하여 인접한 메시 블록 사이의 간격과 중첩을 제거한다. 컴프레서나 터빈의 블레이드와 같이 간격이 좁은 구성 요소 사이의 흐름을 정확하게 캡처하는 데에 필수이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-12-05
CAD&Graphics 2024년 12월호 목차
  18 THEME. 제조·건축 디자인의 미래를 그리는 인공지능과 디지털 트윈 AI 주도의 디자인을 바라보는 관점 : 프로세스와 사례 중심으로 / 고성찬 생성형 AI와 제조 디자인의 현재 그리고 미래 / 유훈식 이미지 생성을 넘어 : 모빌리티 디자인에서 생성형 AI의 동향과 숙제 / 박현준 제조 및 건설 산업의 패러다임을 바꾸는 디지털 트윈의 혁신 / 이문규 디지털 혁신의 시대, 건축가와 엔지니어를 위한 협업 도구 / 이경선 제조 산업의 디지털 트윈을 위한 리얼타임 렌더링 / 진득호   INFOWORLD   Editorial 17 2024년을 되돌아보며 : AI, 산업을 재정의하다   People&Company 45 시각화 콘텐츠 제작을 위한 토털 설루션 제공하는 맥슨 지브러시, 시네마4D, 레드 자이언트로 만나는 새로운 크리에이티브 경험   Case Study 68 항공기 부품 제조 혁신에 기여하는 적층제조 3D 프린팅으로 만들어진 GE의 LEAP 연료 노즐 70 산업 분야에서 효과적인 협업을 돕는 몰입형 3D 기술 몰입형 3D 협업 앱으로 워크플로 및 생산성 개선   Column 86 현장에서 얻은 것 No.19 / 류용효 익숙함을 넘어 편리함으로 90 디지털 지식전문가 조형식의 지식마당 /조형식 스마트에서 혁신으로   Focus 48 CAE 컨퍼런스 2024, 제조 혁신을 위한 CAE와 AI의 융합 전략 소개 53 빌드스마트 콘퍼런스 2024, AI/로봇공학/디지털 도구를 통한 건설의 미래 탐색 56 다쏘시스템, “버추얼 트윈으로 지속 가능한 디지털 전환 이끈다” 58 앤시스, “시뮬레이션과 AI의 결합 및 접근장벽 낮추는 기술 개발 강화할 것” 73 AWS, 인더스트리 위크 통해 산업의 디지털 전환과 클라우드 혁신 전략 제시 76 인텔, AI PC 위한 프로세서와 생태계로 혁신의 문을 열다 78 연세대와 IBM의 양자 혁명 : 한국 첫 양자컴퓨터 설치의 의미와 미래 80 콘진원, ‘AI로 만나는 새로운 콘텐츠 세상’... AI 콘텐츠 페스티벌 2024 개최   New Products 60 제조 및 기계 설계를 위해 최적화된 CAD 설루션 ZWCAD LM 2025 / ZWCAD MFG 2025 64 온프레미스 기반의 AI 알고리즘 솔루션 Stochos 66 통합 디지털 콘텐츠 마켓플레이스 팹   On Air 82 캐드앤그래픽스 CNG TV 지식방송 지상중계 자동차 산업에서의 다중소재 접합 및 조립 해석 기술 동향 83 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조산업의 디지털 혁신을 위한 헥사곤 설루션 활용 전략 84 캐드앤그래픽스 CNG TV 지식방송 지상중계 클라우드 기반 데이터 리비전과 GIS 통합 설루션 85 캐드앤그래픽스 CNG TV 지식방송 지상중계 마커리스 증강 및 자동 라우팅 기술을 통한 미래 BIM 전략   Directory 139 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 93 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 딥러닝 모델 개발 프로세스 기록/분석/가시화 및 모델 튜닝하기 98 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (8) / 천벼리 BIM 도면의 상세 보기 132 디지털 데이터의 정리에 관하여 / 양승규 효율과 생산성을 높이기 위한 파일 관리 팁 136 새로워진 캐디안 2025 살펴보기 (1) / 최영석 최신 버전의 주요 기능 소개   Reverse Engineering 101 문화유산 분야의 이미지 데이터베이스와 활용 사례 (12) / 유우식 안료 데이터베이스   Mechanical 110 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (7) / 김성철 메커니즘 디자인 소개   Analysis 115 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (16) / 나인플러스IT 터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅱ 118 금속 적층제조의 최적화를 위한 앤시스 애디티브 / 박준혁 적층 공정의 파라미터 최적화를 위한 애디티브 사이언스 기능 124 SimericsMP for NX CAD의 해석 과정 소개 / 케이더블유티솔루션 CAD 프로그램 내부에서 유동 해석 직접 진행하기 128 산업 디지털 전환을 위한 버추얼 트윈 (7) / 임상혁 개념 설계부터 최종 제품까지 다물체 동역학 해석을 위한 심팩       캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2024-11-26
터보 기계 시뮬레이션을 위한 엔지니어 가이드 I
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (15)   터보 기계는 흐르는 유체와 회전하는 요소 사이에서 에너지 전달이 일어나는 기계에 초점을 맞춘 기계공학의 한 분야이다. 이러한 장치는 많은 산업 분야에서 중추적인 역할을 한다.  이번 호에서는 성능 최적화, 안전성 보장, 효율성 향상을 위한 정확한 시뮬레이션의 중요성을 강조하면서 터보 기계 시뮬레이션의 복잡성에 대해 살펴본다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   오늘날의 기술 중심 세계에서는 터보 기계의 동작을 정확하게 예측하는 것이 무엇보다 중요하다. 이를 통해 항공기 추진 시스템에 결함이 없고, 에너지 시스템은 최소한의 낭비로 최대 출력을 제공하며, 전 세계 산업은 수요에 따라 흔들리지 않는 기계에 의존할 수 있다. 하지만 이러한 노력은 간단하지 않다. 여러 층의 복잡성, 기본 원리에 대한 이해, 고급 계산 기술의 적용이 필요하다.  이번 호부터 소개할 가이드에서는 터보 기계의 시뮬레이션 프로세스를 설명하고자 하는데, 이론적 토대와 실제 적용 사례를 모두 조명하는 것을 목표로 한다. 내용은 풍부하고 상세하지만, 전문성을 향상하고자 하는 전문가, 한계를 뛰어넘고자 하는 연구자, 핵심을 파악하고자 하는 초보자를 위해 명확하게 구성되어 있다.  향후 연재할 가이드를 통해 터보 기계 시뮬레이션의 원리, 방법론, 향후 발전 방향에 대해 살펴본다. 단순한 지식 전달을 넘어 이 분야에 대한 깊은 이해를 심어주는 것이 목표이다.    터보 기계의 기초  터보머신을 시뮬레이션하려면 유체 역학 및 열역학에 대한 기본적인 이해가 필요하다. 이 장에서는 이러한 정교한 기계의 시뮬레이션을 안내하는 핵심 원리, 터보 기계의 유형 및 주요 구성 요소에 대해 설명한다.    기본 원리  터보머신의 핵심은 로터라고 하는 회전 메커니즘을 통해 에너지를 전달하는 장치를 말한다. 공기, 증기, 물, 휘발유, 디젤, 고온 가스 등 지속적으로 흐르는 유체가 회전하는 구성 요소(예 : 블레이드, 베인, 임펠러)와 상호작용하여 유체에서 에너지를 추출하거나 유체에 전달한다. 이러한 에너지 전달은 유체 속도, 압력, 때로는 온도의 변화로 나타나며, 기계적 작업 결과물 또는 유체 에너지의 증가로 이어진다. 디지털 시대에는 전산 유체 역학(CFD)이 터보 기계를 시뮬레이션하는 주요 수단 이 되었다.  많은 CFD 소프트웨어는 다음에 정의된 유체 운동에 보존 법칙을 적용하여 도출된 나비에-스토크스(Navier-Stokes) 방정식을 기반으로 한다.  질량 보존(연속성 방정식) : 이 법칙은 닫힌 시스템에서는 질량이 생성되거나 소멸될 수 없다는 것을 말한다. 유체의 경우, 이는 질량이 부피에 들어오는 속도와 부피에서 나가는 속도가 같아야 하며, 부피 내에 축적된 질량은 모두 같아야 함을 의미한다. 이 원리는 연속성 방정식으로 이어진다.  운동량 보존(뉴턴의 운동 제2법칙) : 유체에 적용되는 뉴턴의 제2법칙으로, 유체 요소의 운동량 변화율은 그 요소에 작용하는 힘의 합과 같다는 것을 말한다. 이러한 힘에는 유체 요소의 표면에 작용하는 압력 힘과 유체 내의 점성 응력이 모두 포함된다. 운동량 보존 법칙이 유체에 적용되면 운동량 방정식이 성립한다.  에너지 보존(열역학 제1법칙) : 이 법칙에 따르면 에너지는 생성되거나 파괴될 수 없으며, 한 형태에서 다른 형태로만 전달되거나 변환될 수 있다. 유체 역학에서 이 보존 법칙은 전도, 대류 및 유체 내의 열원이나 흡원으로 인한 열 에너지 전달을 설명하는데 적용된다. 비압축성(밀도가 일정한) 및 등온성(온도가 일정한) 흐름의 경우 열 효과는 나비에-스토크스 방정식에 나타나지 않는 경우가 많다. 그러나 압축성 및 비등온성 흐름의 경우 에너지 방정식을 나비에 스토크스 방정식과 결합하여 유체 내의 온도장 및 열 전달을 설명할 수 있다.  이 세 가지 보존 법칙은 나비에-스토크스 방정식의 핵심을 이루며 편미분 방정식으로 표현된다. 나비에-스토크스 방정식은 특히 복잡한 경계 조건의 경우 해석적으로 풀기 어려운 경우가 많다. 따라서 근사 해를 구하기 위해 수치적 방법을 자주 사용한다. 나비에-스토크스 방정식을 수치적으로 풀면 터보 기계 내부의 유체 흐름 특성에 대한 통찰력을 얻을 수 있다.   그림 1. 다단 원심 컴프레서의 계산 모델에서 흐름이 간소화된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-11-04
CAD&Graphics 2024년 11월호 목차
  INFOWORLD   Editorial 17 가을이다, 책과 함께 떠나보자   Case Study 18  자전거 개발의 혁신을 추구하는 피나렐로 금속 3D 프린팅으로 부품 경량화와 고난도 설계 달성 20 부동산 시장에 변화를 일으키고 있는 베로 디지털 트윈으로 부동산 개발부터 관리까지 시각화   Focus 23 코리아 그래픽스 2024, 생성형 AI와 3D 기술이 이끄는 디자인 혁신 비전 소개 28 헥사곤 ALI, “디지털 혁신의 핵심은 데이터의 가치 확장” 30 SAP, “비즈니스 혁신 위한 AI의 가능성 더욱 넓힌다” 32 시놀로지, 기업 시장 겨냥한 스토리지 및 백업 설루션으로 국내 시장 성장세 강화 34 유니티, “산업 분야의 실시간 3D 및 디지털 트윈 구축과 활용 지원 확대”   New Products 37 동역학 솔버 기능 강화 및 툴킷 개선 리커다인 2025 40 제품 개발 가속화하는 3D 설계/엔지니어링 애플리케이션 솔리드웍스 2025 42 AI 적용한 전기 CAD 솔루션 일렉트릭스 AI 44 초고속∙대형 포맷의 SLA 3D 프린터 폼 4L 46 차세대 기업용 PC를 위한 AI 프로세서 라이젠 AI 프로 300 시리즈 58 이달의 신제품   On Air 48 캐드앤그래픽스 CNG TV 지식방송 지상중계 새로운 트렌드, 산업 데이터 스페이스와 제조업의 변화 49 캐드앤그래픽스 CNG TV 지식방송 지상중계 전기/전장 부문 DX의 장애 요소와 해결 방안 제시 50 캐드앤그래픽스 CNG TV 지식방송 지상중계 AI와 CAE 융합을 통한 차세대 제조 혁신 전략   Column 51 책에서 얻은 것 No.23 / 류용효 AI 트렌드 2025 : 세 권의 책을 통해 본 미래 전망 54 디지털 지식전문가 조형식의 지식마당 / 조형식 스마트 혁신 엔지니어링   60 New Books 62 News   Directory 131 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 69 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 대규모 언어 모델의 핵심 개념인 토큰, 임베딩과 모델 파인튜닝에 대해 74 새로워진 캐디안 2024 살펴보기 (11) / 최영석 캐디안 2024 SE 자료실의 리스프 소개 118 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (7) / 천벼리 아레스 캐드 2025의 실시간 협업   Visualization 78 기업용 AR 및 VR의 놀라운 효과 / 유니티 코리아 산업 분야에서 혼합현실을 통해 측정 가능한 결과를 도출하는 방법   Reverse Engineering 84 문화유산 분야의 이미지 데이터베이스와 활용 사례 (11) / 유우식 도자기 데이터베이스   Analysis 95 앤시스 워크벤치를 활용한 해석 성공 사례 / 정준영 ASME BPVC, Section-VIII, Division-2, 5.4 항에 근거한 좌굴 해석 108 산업 디지털 전환을 위한 버추얼 트윈 (6) / 이아라 모드심을 통한 자동차 B-필러 개념 설계 적용방안 검토 114 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (15) / 나인플러스IT 터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅰ 121 화제가 되고 있는 모델 기반 개발을 함께 배우기 / 오재응 모델 기반 개발의 이점과 진행 과정에서의 해결 과제   Mechanical 102 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (6) / 박수민 크레오 파라메트릭 11의 인터페이스 개선사항   PLM 127 영업 성공 리더십 – 솔루션/가치 영업 활동 프로세스 (2) / 홍승철 솔루션을 ‘소울루션’으로 : B2B 솔루션/가치 영업 활동 프로세스       캐드앤그래픽스 2024년 11월호 목차 - 생성형 AI와 3D 기술이 이끄는 디자인 혁신 비전 from 캐드앤그래픽스     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2024-10-28
항공 음향 시뮬레이션을 위한 엔지니어 가이드 Ⅲ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (14)   항공 음향학은 난류 유체 운동 또는 표면과 공기역학적 힘의 상호작용으로 인한 소음 발생을 연구하는 학문이다. 이번 호에서는 효과적인 항공 음향 시뮬레이션을 위한 전략과 실제 사례에 대해 살펴본다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   경계 및 초기 조건 지오메트리 및 메시 프로세스에 이어 음파가 반사되지 않고 빠져나갈 수 있는 경계를 지정한다. 일반적인 방법으로는 변수를 감쇠시켜 경계 반사를 방지하는 스펀지 레이어 또는 파동을 기하급수적으로 감쇠시키는 비반사 레이어인 PML(Perfectly Matched Layers : 완벽하게 일치하는 레이어)이 있다. 그런 다음 흐름 시나리오에 따라 유입, 유출, 벽 및 기타 조건을 설정한다. 시뮬레이션 유형에 따라 초기 흐름 또는 노이즈 필드를 제공해야 할 수도 있다.   솔버 선택 솔루션 전략은 문제의 복잡성, 원하는 정확도, 사용 가능한 리소스에 따라 선택해야 한다. 케이던스의 피델리티 찰스(Fidelity CharLES)는 시간 의존적인 간접 LES(Large Eddy Simulation) 방법론을 활용한다. 이러한 과도 시뮬레이션의 경우 가장 높은 관심 주파수를 포착하는 시간 간격을 선택하여 시간적 해상도가 충분한지 확인한다.   음향 유추 및 소스 올바른 음향 모델을 사용하는 것은 항공 음향 시뮬레이션의 정확성과 신뢰성을 위한 기본이다. 적절한 음향 유추는 소음원의 특성과 문제의 특정 요구 사항에 따라 결정되는 경우가 많다. 따라서 시뮬레이션에 올바른 소스 조건을 통합하는 것은 소음 발생으로 이어지는 물리적 현상을 나타내므로 매우 중요하다. 일부 시뮬레이션, 특히 직접 방법론(direct methods)을 사용하는 시뮬레이션에서는 와류 방출 또는 경계층 상호 작용과 같은 물리적 프로세스를 나타내는 명시적인 소스를 도입해야 할 수도 있다. 간접 방법에서는 소스 조건이 계산된 유동장에서 파생되는 경우가 많다. 예를 들어, 난류 통계는 RANS(Reynolds Averaged Navier-Stokes) 시뮬레이션에서 추출한 다음 항공 음향학적 유추에서 소스 조건으로 사용할 수 있다. 이러한 소스 용어가 작용하는 위치를 정확하게 정의하는 것이 중요하다. 회전하는 기계와 관련된 시나리오에서는 블레이드에 가까운 영역이 주요 소스 영역으로 지정될 수 있다.   후처리와 최적화 항공 음향 시뮬레이션을 수행하려면 전처리 및 시뮬레이션 단계만큼이나 후처리 및 최적화 단계도 중요하다. 계산이 완료되면 방대한 데이터 세트가 기다리고 있다. 피델리티 찰스는 시뮬레이션 데이터에 숨겨진 의미 있는 정보를 추출하는 데에 도움이 되도록 다음과 같은 후처리 도구를 제공하며, 모두 한 가지 목표를 염두에 두고 설계되었다. Quantitative Imaging : 시뮬레이션에서 직접 정량적 PNG 이미지를 생성한다. Modal Decomposition : 흐름과 음향 필드를 개별 모드로 분해한다. Ffowcs Williams-Hawkings Acoustic Predictions : 원거리 데이터에서 근거리 소음을 예측한다.   그림 1. 효율적인 초음속 비행체(ESAV)의 마하수 윤곽선 플롯   피델리티 찰스는 데이터 분석 기능을 제공할 뿐만 아니라 <그림 1>에 표시된 것처럼 시뮬레이션 데이터에 생명을 불어넣는 플롯, 등고선 지도, 그래픽 표현과 같은 고급 시각화 도구도 제공한다. 등고선 및 표면 플롯을 통해 압력 및 속도 필드에 대한 인사이트를 얻어 흐름 특징과 노이즈 원인을 정확히 파악할 수 있다. 스펙트로그램과 주파수 플롯을 사용하면 공명하는 톤 사운드와 혼란스러운 광대역 노이즈를 구분하는 데에 도움이 될 수 있다. 파티클 추적과 유선형 플롯은 난류 구조, 와류 및 기타 노이즈 생성 현상에 대한 그림을 그리는 또 다른 깊이 있는 레이어를 추가한다. 더 자세히 살펴보면, 특정 작업이나 프로세스를 사용자 지정 및 자동화하고, 변수 및 방정식을 생성하여 음압 레벨(SPL : Sound Pressure Level) 또는 난기류 강도 등 파생된 수치를 계산하여 시각적 인사이트를 정량화하기 위한 파이썬 API(Python API)와 내장 식 평가기를 찾을 수 있다. SPL과 같은 지표는 음향 핫스팟을 강조하며, 전체 음압 레벨(OASPL : Overall Sound Pressure Level)은 지정된 주파수 범위의 총 SPL을 측정한 값이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-10-07
CAD&Graphics 2024년 10월호 목차
  INFOWORLD   Editorial 17 AI 시대, 한국 제조 산업의 과제는?   Case Study 18 3D 프린팅으로 휴머노이드를 제작한 글룩 로봇 산업의 새로운 가능성을 제시하는 적층제조 20 영화감독이 채택한 언리얼 엔진 버추얼 프로덕션 포토리얼리즘의 장벽 낮추고 영화 제작의 비용 효율 향상   People&Company 23 한국IBM 이은주 사장 AI와 하이브리드 클라우드로 디지털 혁신 지원 26 아비바코리아 김상건 대표 산업 디지털 전환 위한 포괄적 소프트웨어 기술 제공 28 AI & 자율제조 전문기업 인터엑스 제조 데이터 스페이스 플랫폼을 통한 AI 자율제조 생태계 조성   Focus 30 알테어, ‘ATC 2024’에서 최신 AI/시뮬레이션/HPC 기술 공유 32 태성에스엔이, “CAE와 AI의 융합으로 제품 개발 혁신” 35 3D시스템즈, 제조산업을 위한 3D 프린팅 비전과 기술 소개 38 언리얼 페스트 2024, 콘텐츠 융합 시대를 위한 시각화 기술의 생태계 비전 선보여 51 IBM, 산업 혁신을 돕는 AI와 하이브리드 클라우드 기술 소개   Column 54 디지털 지식전문가 조형식의 지식마당 / 조형식 디지털 디톡스에서 디지털 안식년까지, 인간의 조건 56 현장에서 얻은 것 No.18 / 류용효 PLM에 AI를 품다   New Products 40 효율 높이고 다운타임 줄인 CNC 시뮬레이션 소프트웨어 베리컷 9.5 43 무선 통신 및 신호 처리 앱의 개발 간소화 지원 매트랩 2024b / 시뮬링크 2024b 44 멀티 머티리얼 산업용 3D 프린터 FX10 46 클라우드에서 회로도 자동 생성 이빌드 2025 48 AI PC 시대를 위한 성능 및 효율 제공 인텔 코어 울트라 200V 시리즈 프로세서 50 고정밀 3D 프린터와 후가공 시스템의 결합 오리진 2 / 오리진 큐어 65 이달의 신제품   On Air 68 캐드앤그래픽스 CNG TV 지식방송 지상중계 옴니버스를 통한 MEP 자동설계 AI 운용사례 69 캐드앤그래픽스 CNG TV 지식방송 지상중계 생성형 AI와 크리에이티브 콘텐츠의 융합   60 New Books 62 News   Directory 123 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 70 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 LLM RAG의 핵심 기술, 벡터 데이터베이스 크로마 분석 74 새로워진 캐디안 2024 살펴보기 (10) / 최영석  가져오기 기능 소개 Ⅱ 78 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (6) / 천벼리 더 나은 도면 작업을 위한 CAD 협업 기능   Visualization 83 AI로 실시간 3D 경험 만드는 유니티 뮤즈 / 유니티 코리아 LLM 통합으로 뮤즈 챗의 정확성과 신뢰성을 높이는 방법   Reverse Engineering 86 문화유산 분야의 이미지 데이터베이스와 활용 사례 (10) / 유우식 근대 서지 데이터베이스   Analysis 97 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (14) / 나인플러스IT 항공 음향 시뮬레이션을 위한 엔지니어 가이드 Ⅲ 102 설계자를 위한 해석 프로그램, 앤시스 디스커버리 / 김현재 디스커버리 익스플로어 스테이지의 유동해석 주요 업데이트 및 활용법   Mechanical 108 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (5) / 김주현 EZ 톨러런스 어낼리시스 알아보기   Manufacturing 115 산업 디지털 전환을 위한 버추얼 트윈 (5) / 박태준 혁신을 위한 MOM 솔루션의 필요성   PLM 120 영업 성공 리더십 - 솔루션/가치 영업 활동 프로세스 (1) / 홍승철 성과 중심의 가치 솔루션 영업 프로세스         캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기  
작성일 : 2024-09-30
항공 음향 시뮬레이션을 위한 엔지니어 가이드 Ⅱ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (13)   항공 음향학은 난류 유체 운동 또는 표면과 공기역학적 힘의 상호작용으로 인한 소음 발생을 연구하는 학문이다. 이번 호에서는 지난 호에 이어, 항공 음향 시뮬레이션과 관련된 구체적인 과제 및 기법에 대해 살펴본다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   Validation and Verification 모든 시뮬레이션과 마찬가지로, 실험 데이터 또는 분석 솔루션과 비교하여 결과를 검증하고 검증하는 것은 매우 중요하다. 이를 통해 시뮬레이션 결과의 정확성과 신뢰성을 보장할 수 있다. 검증은 계산 솔루션이 기본 수학적 모델을 정확하게 나타내는지 여부를 결정하는 과정과 관련이 있다. 반면에 검증은 수학적 모델이 물리적 현실을 얼마나 잘 포착하는지 평가한다. 검증의 주요 측면은 다음과 같이 그리드 수렴, 솔루션 일관성 및 코드 비교이다. Grid Convergence : 다양한 그리드 해상도에서 시뮬레이션(그림 1)을 수행하여 솔루션이 그리드 독립적인 상태에 접근하고 있는지 확인할 수 있다. 이는 그리드 이산화로 인한 수치 오류를 최소화하는 데 필수이다. Solution Consistency : 시간 단계, 초기 조건 또는 경계 조건과 같은 매개 변수가 약간 변경되었을 때 솔루션이 예상대로 작동하는지 평가하는 작업이 포함된다. Code Comparisons : 동일한 문제를 다루는 여러 시뮬레이션 코드의 결과를 평가(코드 간 비교)하면 솔루션의 일관성과 신뢰성에 대한 통찰력을 얻을 수 있다. 검증 외에도 시뮬레이션을 검증하는 주요 방법은 물리적 실험, 벤치마크 문제 및 불확실성 정량화를 통해 이루어진다. Physical Experimentation : 연구자는 시뮬레이션 결과를 실험 데이터와 비교하여 실제 시나리오에 대한 계산 모델의 충실도를 측정할 수 있다. Benchmarking Problems : 분석적 또는 널리 사용되는 솔루션이 존재하는 표준 문제에 대한 벤치마킹은 새롭거나 변경된 시뮬레이션 설정의 성능을 측정할 수 있는 수단을 제공한다. Uncertainty Quantification : 측정 오류, 모델 근사치 또는 경계 조건 추정에서 비롯된 불확실성을 인식하고 정량화하는 것은 중요하다. 이를 통해 시뮬레이션 결과에 대한 신뢰도를 보다 명확하게 파악할 수 있다.   그림 1. 고밀도 모터사이클 메시   항공 음향 시뮬레이션의 과제 항공 음향 시뮬레이션은 유체 역학 및 음향 현상을 포착하기 어렵기 때문에 수많은 과제를 안고 있다. 몇 가지 주요 과제는 다음과 같다. Wide Range of Scales : 항공 음향 현상은 광범위한 공간적, 시간적 스케일에 걸쳐 있다. 음파의 파장은 밀리미터에서 미터까지 다양하며, 소리를 생성하는 난류 구조의 크기도 매우 다양하다. 이러한 모든 스케일을 캡처하려면 매우 미세한 그리드 해상도와 긴 시뮬레이션 시간이 필요하다. Acoustic Wave Amplitudes : 관심 있는 항공 음향 신호는 난류의 유체 역학적 압력 변동보다 훨씬 낮은 진폭을 갖는 경우가 많다. 이러한 미묘한 음향파를 지배적인 흐름 구조와 구별하는 것은 어려운 일이다. Far-Field Propagation : 국부적인 공기역학 소스에 의해 생성된 소리는 먼 거리까지 전파될 수 있다. 소음원부터 멀리 떨어진 관찰자까지 전체 도메인을 시뮬레이션하려면 계산이 꽤 많이 소요된다. Complex Geometries : 실제 항공 음향 문제는 항공기 엔진이나 차량 외관과 같이 복잡한 기하학적 구조를 포함하는 경우가 많다. 이러한 형상을 모델링하고 유체 흐름과 소리 전파에 미치는 영향을 모델링하면 시뮬레이션이 복잡해진다. Boundary Conditions : 적절한 경계 조건의 선택과 구현은 매우 중요하다. 부정확하거나 지나치게 단순한 경계 조건은 허위 반사 또는 기타 비물리적 동작을 유발할 수 있다. Transient Nature : 많은 항공 음향 문제는 본질적으로 불안정(unsteady)하기 때문에 Transient 시뮬레이션이 필요하다.(그림 2) 이로 인해 계산적인 노력이 증가하고 통계적으로 의미 있는 결과를 얻기가 어렵다. Nonlinear Interactions : 많은 시나리오에서, 특히 높은 소음 수준에서는 비선형 공기역학적 및 음향학적 상호 작용이 발생한다. 이러한 비선형성을 시뮬레이션하려면 세부 사항과 계산 리소스에 대한 추가적인 주의가 필요하다. Multiphysics Interactions : 경우에 따라 항공 음향 시뮬레이션은 열 전달이나 연소와 같은 다른 물리적 효과도 고려해야 하므로 시뮬레이션 설정이 더욱 복잡해질 수 있다. Numerical Dissipation : 수치적 방법은 인위적인 소멸을 도입하여 관심 있는 음향 신호를 감쇠 시키거나 완전히 억제할 수 있다. 이러한 모든 문제는 항공음향을 정확하고 효율적으로 시뮬레이션하는데 따르는 복잡성을 강조한다. 이러한 과제를 해결하기 위한 노력은 이 분야의 지속적인 발전을 이끌며 계산 능력과 방법론의 경계를 넓혀 왔다.   그림 2. 일시적인 특성을 강조하는 비행 중인 항공기의 LES   항공 음향 시뮬레이션을 위한 솔루션 실제 엔지니어링 과제를 해결하든 기초 연구를 하든 올바른 시뮬레이션 소프트웨어를 선택하는 것은 매우 중요하다. 항공 음향 분야에서 정확하고 효율적인 시뮬레이션을 지원하는 소프트웨어 도구가 등장했다.  케이던스(Cadence)의 유동 시뮬레이션 소프트웨어인 피델리티 찰스(Fidelity CharLES)는 항공 음향을 포함한 고충실도 유동 분석을 위해 설계되었다. 찰스는 소산과 분산을 최소화하면서 불안정한 흐름을 시뮬레이션할 수 있는 최첨단 수치 기법과 모델을 통합하여 LES(Large Eddy Simulation)의 잠재력을 활용한다. 유한 체적법에 기반한 다양한 솔버 공식을 사용하여 저속, 고속 및 반응 유동을 포함한 다양한 유동 조건을 캡처하여 최적의 성능을 제공한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-09-03
CAD&Graphics 2024년 9월호 목차
  Infoworld   Editorial 17 인맥 다이어트 시대, 당신의 인맥은 안녕하신가?   Focus 18 AWS, 앱 개발부터 비즈니스 창출까지 돕는 생성형 AI 서비스 소개   People&Company 21 PTC코리아 이봉기 상무 제조산업의 성공적인 혁신 위한 디지털 스레드 기술과 전략 제공 24 서울미디어대학원대학교 유훈식 교수 디자인 방식을 바꾸는 게임 체인저, 생성형 AI와 발전방향 26 비트리 갤러리 정유선 대표 마음 맞는 좋은 작가, 컬렉터들과 함께 성장하고 싶다   New Product 29 AI 기반의 시뮬레이션 기능 및 워크플로 강화 하이퍼웍스 2024 30 AI 기반 멀티피직스 시뮬레이션 솔루션 앤시스 2024 R2 32 BIM 수량산출 작성 위한 엑셀 애드인 셀빔 35 500개 이상의 무료 캐릭터 애니메이션 제공 게임 애니메이션 샘플 프로젝트 52 이달의 신제품   On-Air 38 캐드앤그래픽스 CNG TV 지식방송 지상중계 테클라와 스케치업으로 건설 프로세스 혁신 39 캐드앤그래픽스 CNG TV 지식방송 지상중계 생성형 AI와 제조/건축 시각화 기술 및 트렌드 40 캐드앤그래픽스 CNG TV 지식방송 지상중계 산업 프로젝트를 위한 디지털 공급망 솔루션 구현   Column 41 프로토타입을 넘어선 3D 프린팅 / 요르겐 로더스 적층제조 채택을 가속화하는 것은 산업 전반의 책임 44 디지털 지식전문가 조형식의 지식마당 / 조형식 스마트 엔지니어링과 스마트 기술 46 책에서 얻은 것 No. 22 / 류용효 부를 창출하는 ChatGPT 활용전략   50 New Books   Directory 115 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   Reverse Engineering 53 문화유산 분야의 이미지 데이터베이스와 활용 사례 (9) / 유우식 금속활자본 고서 데이터베이스   AEC 66 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 공간정보 GIS 기반 IoT 데이터 분석 스타일 대시보드 만들고 서비스해보기 71 새로워진 캐디안 2024 살펴보기 (9) / 최영석 가져오기 기능 소개 74 모델에서 인사이트를 얻고 설계 의사결정을 돕는 직스캐드 (6) / 이소연 정북 일조권 사선제한 기능의 소개 77 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (5) / 천벼리 협업 및 공유를 개선하기 위한 DWG 도면의 QR 코드   Analysis 82 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (13) / 나인플러스IT 항공 음향 시뮬레이션을 위한 엔지니어 가이드 Ⅱ 86 가상 엔지니어링을 통한 디지털 R&D / 오재응 MBSE 적용을 위한 디지털 트윈과 가상 제품 개발 92 복잡한 구조물의 안전성 및 성능 검증 / 권순재 효율적인 구조 설계를 위한 SDC 베리파이어   Mechanical 99 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (4) / 김성철 판금 기능 소개 107 디지털 전환을 위한 전기 설계 발전 모델 / 구형서 제조 경쟁력을 높이는 설계 발전 모델, ROI, 전기 CAD 도입 방안   Manufacturing 104 산업 디지털 전환을 위한 버추얼 트윈 (4) / 황성수 델미아 오르템즈 : 효율적이고 정확한 생산 계획 및 스케줄 관리       캐드앤그래픽스 2024년 9월호 목차 from 캐드앤그래픽스     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기  
작성일 : 2024-08-27
[무료다운로드] 항공 음향 시뮬레이션을 위한 엔지니어 가이드
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (12)   항공 음향학은 난류 유체 운동 또는 표면과 공기역학적 힘의 상호작용으로 인한 소음 발생을 연구하는 학문이다. 이번 호에서는 항공 음향 시뮬레이션과 관련된 구체적인 과제 및 기법에 대해 살펴본다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   항공 음향을 예측하는 것은 단순히 소리의 근원을 정확히 찾아내는 것만이 아니라 다양한 시나리오에서 소리의 생성, 전파, 수신 뒤에 숨겨진 복잡한 메커니즘을 이해해야 한다. 간소화된 자동차 설계의 고주파 음향 방출부터 제트 추진 시스템의 저주파 소음 시그니처에 이르기까지, 각각은 엔지니어에게 고유한 과제와 통찰력을 제시한다. 항공 음향 시뮬레이션의 중요성은 설계 및 최적화 고려사항 그 이상으로 확장된다. 환경 규정 준수, 사용자 편의성 보장, 산업별 소음 표준 준수에 필수이다. 항공우주 및 자동차 등의 분야에서 급속한 발전이 이루어지면서 정확한 항공 음향 예측에 대한 중요성이 점점 더 강조되고 있다. 이번 호에서는 기초 지식과 고급 시뮬레이션 방법론을 연결하여 항공 음향학에 대한 자세한 개요를 살펴본다. 기본 원리, 항공 음향 소음원, 모델링 과제, 최신 툴과 기법, 시뮬레이션 설정 가이드라인, 포스트 프로세싱 인사이트, 실제 사례 연구 등을 다루고자 한다.   항공 음향학의 기초 항공 음향학(aeroacoustics)은 유체 역학과 음향학의 교차점에 서 있다. 그 동작을 능숙하게 시뮬레이션하려면 이 분야와 가장 관련 있는 기본 원리를 이해하는 것이 필수이다. 운동 방정식 특정 수학적 프레임워크는 유체 운동에 의해 생성되는 소리의 동작을 지배한다. 그 중심에는 선형화된 나비에-스토크스(Navier-Stokes) 방정식이 있다. 이 방정식의 전체 도출은 여기서 다루지 않지만, 이 방정식은 유체의 교란이 어떻게 음파를 생성하는지에 대한 본질을 파악할 수 있다. 파동 전파 음파는 매질에서 압축과 희박으로 전파된다. 이 전파에는 여러 가지 요인이 영향을 미친다. 매체의 탄성 및 밀도와 같은 속성은 음속과 감쇠에 영향을 줄 수 있다.  또한 온도, 고도, 습도와 같은 환경적 요인은 음파 전파에 다양한 영향을 미쳐 속도와 방향을 변경할 수 있다.  경계면과의 사운드 상호 작용 환경을 시뮬레이션할 때는 음파가 반사, 회절, 흡수를 통해 구조물과 어떻게 상호 작용하는지 이해하는 것이 중요하다. <그림 1>에서 볼 수 있듯이 반사는 음파가 경계를 만나면 반사되는 것으로, 반사각은 입사각과 같다. 파동이 장애물을 만나면 특히 파장이 장애물 크기에 비해 큰 경우 장애물 주변에서 휘어질 수 있다. 이를 회절이라고 정의한다. 일부 물질은 소리 에너지를 흡수하여 열로 변환하여 소리를 감쇠시킬 수 있는데, 이를 흡음이라고 한다.   그림 1. 방음벽에 의해 반사, 회절 또는 흡수되는 입사음   항공 음향 소음의 발생원 항공 음향 소리의 출처를 파악하는 것은 효과적인 시뮬레이션의 핵심이다. 많은 소스는 소리를 방사하는 방식에 따라 1차 소스(예 : 단극자(monopole), 쌍극자(dipole), 사중극자(quadrupole)) 또는 고차 소스로 분류할 수 있다. 우리가 인지하는 소음은 또한 두 가지 스펙트럼 유형, 즉 톤과 광대역으로 분류할 수 있다. 톤 노이즈는 노이즈 스펙트럼의 특정 주파수에서 뚜렷한 피크가 특징이며, 종종 흐름의 주기적 이벤트 또는 공명과 관련이 있다. 반면 광대역 노이즈는 광범위한 주파수에 걸쳐 발생하며, 톤 노이즈에서 볼 수 있는 뚜렷한 피크가 없는 보다 무작위적이고 난류적인 프로세스에서 발생한다.  항공 음향 노이즈의 주요 소스와 생성되는 소리의 스펙트럼 특성은 다음과 같다.   단극자 소스 단극자 소스(monopole source)는 풍선이 부풀어 오르거나 수축하는 것처럼 모든 방향으로 균일하게 방사된다. 주로 유체의 부피 변화와 관련이 있다. 연소 소음은 단극자 소스의 한 예이다. 연소 소음 : 엔진에서와 같이 급격한 연소 이벤트는 단극자 소스로 방사되는 급격한 볼륨 변화를 일으킬 수 있다.   쌍극자 소스 쌍극자 소스(dipole source)는 유체 흐름과 고체 경계와의 상호 작용에서 발생한다. 쌍극자 소스는 주로 두 개의 반대 방향으로 소리를 내며, 많은 시나리오에서 단극자 소스보다 더 강하다. 쌍극자 소스의 예로는 경계층 및 블레이드 소음과 유동으로 인한 진동이 있다. 경계층 노이즈 : 유체가 표면 위로 흐르면 경계층 난류가 표면에 변동하는 힘을 가하여 쌍극자 노이즈 방사를 유발할 수 있다. 유동 유도 진동 : 공기 탄성 플러터 또는 캐비티 공명과 같은 흐름과 구조물 간의 상호 작용은 쌍극자 소음 방사로 이어질 수 있다. 블레이드 소음 : 회전하는 기계에서 난류 유입과 블레이드 간의 상호 작용으로 인해 쌍극자 소음이 발생할 수 있다.   사중극자 소스 사중극자 소스(quadrupole source)는 난기류-난기류 상호 작용과 관련이 있다. 일반적으로 단극 및 쌍극자 소스보다 약하지만 고속, 난류 혼합 노이즈와 같은 고난류 시나리오에서 중요할 수 있다. 난류 혼합 소음 : 난류가 심한 고속 흐름에서는 서로 다른 난류 구조 간의 상호 작용으로 인해 사중극자 음파가 방사될 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-08-05