• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "격자"에 대한 통합 검색 내용이 663개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
IBM 엑스포스 보고서, “정보 탈취형 악성코드 이메일 작년 대비 84% 증가”
IBM이 발표한 ‘2025 엑스포스 위협 인텔리전스 인덱스 보고서(2025 X-Force Threat Intelligence Index)’에 따르면, 사이버 공격자들이 더 교묘한 수법을 사용하며 기업에 대한 랜섬웨어 공격은 감소한 반면, 눈에 띄지 않는(lower-profile) 자격 증명 도용은 급증했다. IBM 엑스포스는 사이버 공격자들이 신원 탈취 공격을 확대하는 수단으로 인포스틸러 악성코드를 포함한 이메일을 주로 활용하고 있으며, 2024년 이러한 유형의 이메일이 전년 대비 84% 증가했다고 밝혔다. 2025 보고서는 IBM 엑스포스에서 관찰한 신규 및 기존 트렌드와 공격 패턴을 추적하고 침해 사고 대응, 다크 웹 및 기타 위협 인텔리전스 소스에서 얻은 정보를 바탕으로 작성했다. 2023년은 생성형 인공지능(Gen AI)의 본격적인 확산이 시작된 한 해였다. 예견되었던 대로, 사이버 공격자들은 AI를 활용해 웹사이트를 제작하거나, 딥페이크 기술을 피싱 공격에 접목시키기 시작했다. IBM 엑스포스는 공격자들이 생성형 AI를 활용해 피싱 이메일을 작성하거나 악성 코드를 제작하는 사례를 포착하기도 했다. IBM 엑스포스는 과거 보고서에서 하나의 AI 설루션 시장 점유율 50%에 가까워지거나 시장이 소수의 3개 이하 설루션으로 재편되면, 공격자 입장에서는 특정 AI 모델이나 설루션을 노리기가 더 쉬워지고 그만큼 공격할 유인도 커진다고 밝혔다. 아직 그 시점에 도달하지는 않았지만, 도입 속도는 빠르게 증가하고 있다. 실제로, 2024년 기준 최소 하나 이상의 비즈니스에 AI를 도입한 기업의 비율은 72%로, 전년 대비 55% 이상 증가한 것으로 나타났다. 2024년에는 AI를 겨냥한 대규모 공격이 발생하지는 않았다. 보안 전문가들은 사이버 공격자들이 악용하기 전에 취약점을 선제적으로 식별하고 보완하기 위한 대응에 속도를 내고 있다. IBM 엑스포스가 AI 에이전트 구축 프레임워크에서 원격 코드 실행 취약점을 발견한 사례처럼, 이와 같은 문제는 앞으로 더욱 빈번해질 것으로 보인다. 2025년 AI 도입이 확대될 것으로 예상됨에 따라, 공격자들이 AI를 겨냥한 특화된 공격 도구를 개발할 유인도 커지고 있다. 이에 따라 기업들은 데이터, 모델, 활용 방식, 인프라 등 AI 전반에 걸친 보안을 초기 단계부터 강화하는 것이 필수이다.     지난해 가장 많은 공격은 주요 기반시설 조직을 대상으로 감행됐다. IBM 엑스포스가 대응한 2024년 전체 공격 중 70%가 주요 인프라 조직에서 발생했으며, 이 중 4분의 1 이상이 취약점 악용으로 인한 공격이었다. 주요 인프라 조직들은 기존 기술에 대한 의존과 느린 보안 패치 적용으로 인해 여전히 보안 위협에 직면해 있는 것이다. 다크웹 포럼에서 자주 언급된 공통 취약점 및 노출(CVEs)을 분석한 결과, 상위 10개 중 4개가 국가 차원의 지원을 받는 공격자를 포함한 정교한 위협 그룹과 연관된 것으로 나타났다. 해당 취약점들의 악용 코드는 여러 포럼에서 공개적으로 유통되고 있었으며, 이는 전력망, 의료 시스템, 산업 설비 등을 노린 공격의 확산으로 이어지고 있다. 이처럼 금전적 목적의 공격자와 국가 차원의 위협 세력이 정보를 공유하는 흐름은, 패치 관리 전략 수립과 위협 사전 탐지를 위한 다크웹 감시의 중요성을 더욱 부각시키고 있다. 또 다른 주목할 만한 공격은 인포스틸러(infostealer, 정보 탈취형 악성코드)를 활용한 공격이다. 2024년에 인포스틸러를 활용한 이메일은 전년 대비 84% 증가했으며, 2025년 초기 데이터에 따르면 이는 더욱 급증하는데, 주간 발생 건수가 2023년 대비 180% 이상 증가한 것으로 예상된다. 자격 증명 피싱과 인포스틸러를 통해 신원 공격은 저렴하고, 확장 가능하며, 수익성이 좋아졌다. 인포스틸러는 데이터를 빠르게 유출할 수 있어 타깃 지점에 머무는 시간을 줄이고, 포렌식 흔적을 거의 남기지 않는다. 2024년에 다크웹에서 800만 개 이상의 광고가 상위 5개의 인포스틸러만을 위한 것이었으며, 각 광고에는 수백 개의 자격 증명이 포함될 수 있다. 또, 사이버 공격자들은 다크웹에서 다중인증(MFA)을 우회하기 위해 중간자 공격(AITM) 피싱 키트와 맞춤형 AITM 공격 서비스를 판매하고 있다. 손상된 자격 증명과 다중인증 우회 방법이 만연하다는 것은 수요 또한 높다는 것을 의미하며 이러한 추세는 멈출 기미가 보이지 않는다. 지역으로 살펴보면, 2024년 한 해 동안 IBM 엑스포스가 전 세계적으로 대응한 사이버 공격 중 약 34%가 아시아태평양에서 발생하며 아태 지역이 세계에서 가장 많은 사이버 공격을 경험한 것으로 나타났다. 데이터 도용(12%), 인증정보 탈취(10%), 갈취(extortion, 10%) 등이 순위가 높은 공격 대상이었다. 일본은 전체 조사 대상 인시던트의 66%를 차지했으며, 한국, 필리핀, 인도네시아, 태국이 각각 5%의 비율을 차지했다. 분야별로는 제조업이 공격 대상의 26%를 차지하며 4년 연속 사이버 공격이 가장 많이 발생한 산업으로 집계됐다. 특히 랜섬웨어 피해 사례가 가장 많았으며, 시스템 중단에 대한 허용 범위가 극히 낮은 산업 특성상 암호화 공격에 대한 범죄자의 수익성이 여전히 높은 것으로 분석된다. 한국IBM 컨설팅 사이버보안서비스 사업총괄 이재웅 상무는 “사이버 공격은 이제 더욱 조용하고 치밀해지고 있다. 공격자들은 파괴적인 행위 없이 자격 증명을 탈취해 기업 시스템에 접근하며, 인포스틸러와 같은 악성코드를 통해 빠르게 데이터를 유출하고 흔적을 남기지 않는다”고 말하며, “이러한 저위험·고수익 공격이 확산되는 지금, 기업은 단순 방어를 넘어, 인증 시스템 강화와 위협 사전 탐지 체계를 통해 공격 표적이 되지 않도록 대비해야 한다”고 강조했다.
작성일 : 2025-04-24
앤시스 플루언트를 이용한 혈류 해석 워크플로
앤시스 워크벤치를 활용한 해석 성공 사례   다양한 산업에서 제품 설계 및 안정성 평가를 위한 실험에 많은 비용과 노력이 소요됨에 따라, 가상의 공간에서 사용자가 원하는 실험 환경을 구성하여 결과를 도출하는 방식이 증가하고 있다. 또한, 해석을 많이 활용하지 않던 산업군에서도 시뮬레이션을 도입하는 단계에 있다. 그 중 바이오 산업에서는 환자의 CT 정보를 기반으로 한 혈류 해석과 임플란트 해석에 대한 수요가 증가하고 있다. 해석 결과를 바탕으로 안정성과 구조적 성능을 평가하고, 이를 임상 결과 데이터로 보완하는 과정이 이루어지고 있다. 이번 호에서는 3D 슬라이서(3D Slicer)와 앤시스 플루언트(Ansys Fluent)를 활용하여 혈관 모델링부터 혈류 해석까지의 워크플로를 소개하고자 한다.   ■ 김지원 태성에스엔이 FBU-F1팀의 매니저로, 열 유동 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   현재 대부분의 기업이 시뮬레이션을 적극 적용하고 있으며, 특히 바이오 산업에서는 환자의 CT 정보를 기반으로 한 혈류 분석에 대한 수요가 증가하고 있다. 이러한 분석은 혈관 협착증 및 인조혈관의 안정성과 구조적 성능을 평가하는 새로운 방법으로 중요한 역할을 한다. CT와 MRI 기술의 발달로 체내 모습을 3D 영상으로 시각화할 수 있게 되면서, 유체역학과 의학 간 융합 연구의 발전이 기대되고 있다. 특히 혈관 질환의 발생 원인을 규명하기 위해 혈류 해석을 기반으로 혈류 역학적 특성을 분석하는 추세다. 또한, 비침습적 방법을 활용하여 환자의 혈관을 진단하고 평가하는 기술이 주목받고 있다. 이번 호에서는 혈류 해석을 수행하기 위해 주요 혈관 모델링 툴을 활용한 혈관 추출 방법, 혈액의 물성치 설정, 그리고 경계 조건 설정 과정에 대해 다루고자 한다.   전처리(Pre-Processing) 대동맥 혈관의 3차원 영상 및 모델링 앤시스의 모델링 툴에는 환자의 3D CT 영상을 STL 파일로 직접 추출하는 기능이 존재하지 않는다. 따라서 이번 호에서는 상용 프로그램인 3D 슬라이서를 사용한다. 3D 슬라이서는 의료 이미징 데이터를 시각화하고 분석하는 오픈소스 소프트웨어 플랫폼으로 영상 분석, 3D 모델링, 디자인 등을 통해 종합적인 의료 영상 처리를 수행하는 전문 소프트웨어다. 이를 통해 DICOM 파일을 기반으로 3D 형상을 추출할 수 있다.    그림 1. 3D 슬라이서에서 혈관 추출   <그림 1>은 3D 슬라이서를 이용하여 혈관을 추출한 과정이다. CT 촬영 시 혈관 조직을 명확하게 구분하기 위해 조영제를 주입하면, HU(Hounsfield Units) 수치로 표현되어 특정 HU 값 범위에서 혈관을 쉽게 추출할 수 있도록 구성된다. 또한, 유동 해석을 위해 격자를 생성하는 과정에서 모델링 단계에서 패싯(facet)을 스무딩(smoothing)하는 옵션을 적용하여 형상을 정리한다. 혈관 모델링이 완료된 후, DICOM 파일을 STL 파일로 변환한다.    대동맥 혈관의 3차원 영상 및 모델링 앤시스 스페이스클레임(Ansys SpaceClaim)에서 변환한 STL 파일을 가져오면 패싯을 확인할 수 있으며, 이를 볼륨(volume) 형태로 변환하는 과정을 진행한다. 볼륨 형태로 변환하기 위해 모델을 확인하면, <그림 2>와 같이 돌출되거나 뚫린 패싯 등 변환이 어려운 영역이 존재한다.   그림 2. Faulty facet areas   그림 3. Converting from facet to volume   솔브(Solve) 혈액 물성치 이번 호에서는 혈류 해석을 수행하기 위해 플루언트를 사용하며, 혈액의 거동을 수치적으로 해석하기 위해 혈액의 밀도와 점성 계수를 입력한다. 혈액은 전단 응력에 따라 점도가 변하는 비뉴턴 유체이며, 이러한 특성을 반영하기 위해 Carreau 모델을 적용한다. Carreau 모델은 비뉴턴 유체의 점성 거동을 정의하는 구성 방정식이며, 이는 <그림 4>의 수식과 같이 계산된다.   그림 4. Carreau 모델 수식     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
전자장비 방열을 위한 팬 단순화 원리와 해석 적용 방법
앤시스 워크벤치를 활용한 해석 성공 사례   전자장비에서 발생하는 열을 배출하기 위해서 팬(fan)은 중요한 역할을 한다. 특히 단위 부피당 발열량이 크고 부품 간의 공간이 넉넉치 않은 협소한 고집적 전자장비에서는 팬의 활용이 필수이다. 좁은 공간에서 자연대류에만 의존할 경우, 기류가 막혀 열이 정체되고 과열로 이어질 수 있다. 이 때 팬이 있으면 강제대류로 열전달 매커니즘을 바꾸어 주고, 히트싱크에서 핀의 간격이 좁은 경우에도 방열 효율을 크게 높일 수 있다. 팬이 포함된 해석을 하기 위해서는 어떠한 이슈가 있고, 이를 해결하기 위한 방법은 무엇이 있는지 이론적 내용과 함께 살펴보자.   ■ 전상우 태성에스엔이 EBU-LF팀의 매니저로, 열유동 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다.  홈페이지 | www.tsne.co.kr   그림 1. 단순화를 적용하지 않은 팬   팬의 단순화 일반적으로 생각하는 팬의 모습은 <그림 1>의 모습이다. 하지만 해석에 적용할 때는 블레이드의 모양을 있는 그대로 살려서 해석에 반영하기보다는, <그림 2>처럼 면으로 단순화하여 적용하는 경우가 대부분이다. 회전체 모사 방법으로 무빙 메시(moving mesh) 또는 MRF(moving reference frame)를 적용하는 방법도 있으나 이번 글에서는 논외로 한다. 팬을 원 모양의 2차원 면으로 단순화하면 얻을 수 있는 이점이 크다. 블레이드 형상의 특성 상 날개가 전체적으로 얇을 뿐만 아니라 끝단 부분은 더욱 뾰족한 모양이다. 이런 생김새는 요소의 종횡비를 크게 하고, 요소 품질이 떨어지거나 심할 경우 마이너스 볼륨 격자가 생성될 위험도 있어 사용자가 신경 써서 메시를 생성해야 한다. 최근에는 우수한 요소 생성 알고리즘 덕분에 자동 메시 생성으로 잘 해결되는 경우도 있으나, 요소 개수 및 해석 소요 시간 측면에서도 단순화하는 것이 압도적으로 유리하다.   그림 2. 팬의 단순화 적용 전(왼쪽)과 후(오른쪽)   형상의 단순화는 팬 뿐만 아니라 다른 상황에도 자주 사용된다. 스펀지처럼 구멍이 많은 다공성 매질이나 타공판이 겹겹이 쌓인 그릴에도 형상 단순화를 적용할 수 있다. 이는 유동 해석 관점에서는 유동 저항이 주된 관심사이기 때문에 가능하다. 국소적인 각각의 구멍에서 속도와 압력을 모두 정확히 구현하기보다는 시스템 레벨에서의 유동 양상을 알고 싶을 때는, 다공성 매질 전체에 대한 저항을 정의하면 구멍 모양을 모두 살리지 않은 육면체 또는 면으로 단순화할 수 있다.    팬의 단순화 원리 제법 복잡하게 생긴 팬을 어떻게 2차원 동그라미 하나로 대체할 수 있는 것인지, 그 원리를 조금 더 자세히 알아보자.  유체는 진행 경로에 따라서 점점 압력이 떨어진다. 점점 떨어지다가 팬을 만나면 압력이 다시 올라간다. 팬은 유동 경로의 중간에서 승압 효과를 내는 것이다. 유체가 팬을 지나기 직전의 압력과 지나간 직후의 압력의 차이를 알 수 있다면, 해석 상에서 팬의 영향을 그래프 하나로 대체할 수 있다.   그림 3. 팬에 의한 승압 효과   유동 해석을 하면 결국 풀고자 하는 변수는 해석 영역 내부 각 위치에서의 속도와 압력이다. 따라서 팬에 의해서 압력이 어떻게 변하는지를 미리 알 수 있다면, 즉 유체가 팬을 통과하기 전과 통과한 이후의 압력차를 알 수 있다면, 그리고 이를 해석에 반영한다면 팬의 모양 자체는 중요하지 않게 된다. 이는 팬이 포함된 시스템 전체의 유동 양상이 중요한 경우에 적절하다.  만약 시스템 전체의 유동 양상을 알고자 하는 것이 아니라, 블레이드의 모양이나 종류에 따른 팬 자체의 성능 테스트를 할 때는 단순화를 적용하는 것은 적절하지 않다. 이 때는 블레이드의 모양이나 rpm 등에 따라서 차압이 달라질 것이기 때문에, 무빙 메시 또는 MRF 방법을 적용한 해석이 필요하다.   그림 4. 팬 성능 테스트 해석 형상     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-03-06
파수, 2월 올해 첫 신입 공채 시작
파수가 고용노동부와 중소벤처기업부가 공동으로 주관하는 ‘청년일자리 강소기업’에 선정됐다. 올해를 포함, 수차례 청년친화기업으로 인정받아 온 파수는 2월에 올해 첫 신입사원 공개채용을 진행한다. 청년일자리 강소기업은 기존 고용노동부의 ‘청년친화 강소기업’ 제도에서 발전된 형태로, 중소/중견기업에 대한 청년층의 인식 개선과 양질의 일자리 정보 제공을 목적으로 고용노동부와 중소벤처기업부가 함께 선정한다. 청년 고용률과 기업 경쟁력을 종합적으로 평가하며, 구체적으로는 청년고용유지율과 증가율, 일과 삶의 균형, 초임 등은 물론 기업의 성장성, 수익성 안정성 등을 기준으로 선정한다. 고용노동부의 발표에 따르면 실제 올해 청년일자리 강소기업에 선정된 기업들은 청년고용 증가와 평균임금, 매출액 증가율 등에서 일반 기업보다 우수한 실적을 보였다. 여러 해에 걸쳐 청년친화 강소기업으로 선정된 바 있는 파수는 새롭게 변경된 제도에서도 청년일자리 강소기업으로 인정받았다. 파수는 지난해 총 세 차례에 걸쳐 신입사원 공개채용을 진행했으며, 이 외에도 산학협력 인턴십, 글로벌 인턴십 등 다양한 채용 제도를 운영하는 등 청년 고용 창출에 적극 기여하고 있다. 파수의 올해 첫 신입사원 공개채용은 2월 24일에 시작된다. 지원서는 3월 9일까지 파수 홈페이지를 통해 접수가능하다. 면접 과정을 거친 합격자는 4월부터 3개월 간의 채용연계형 인턴십 과정을 시작하게 된다. 해외 대학교 재학생(3, 4학년)을 대상으로 한 글로벌 인턴십 모집도 동일하게 2월 24일부터 시작한다. 서류 심사 및 비대면 면접을 통해 글로벌 인턴십에 선발된 인원은 6월부터 약 10주간 서울 파수 본사에서 개발 및 마케팅 등 프로젝트 실무 경험을 쌓을 수 있다. 조규곤 파수 대표는 “올해로 창사 25주년을 맞는 파수는 올해를 포함해 수차례 청년친화기업으로 인정받으며, 다양한 분야의 뛰어난 청년 인재들과 함께 성장해왔다”며, “특히 올 한 해는 파수가 글로벌 AIž보안 기업으로 나아가기 위한 중대한 전환점이 될 것인 만큼, 역량있는 인재들의 많은 관심 바란다”고 말했다. 한편 2000년 설립된 파수는 세계 최초로 DRM(Digital Rights Management) 기술을 상용화해 글로벌 데이터 보안 시장을 선도하는 등, 혁신 솔루션과 서비스를 제공해 온 소프트웨어 기업이다. 최근에는 글로벌 AIž보안 기업을 비전으로 삼고 지난해 엔터프라이즈 LLM(sLLM)을 출시하는 등, 기업 고객의 생성형 AI 활용을 돕는 AI 기업으로 거듭나고 있다.
작성일 : 2025-02-09
시메릭스MP의 해석 과정 소개
초보자에서 전문가까지 만족시키는 유동 해석 프로그램 시메릭스MP   시메릭스MP(SimericsMP)는 FVM 기반의 유동 해석 프로그램으로 cartesian 격자를 이용하여 정확하고 빠른 격자 생성 시간, MGI(mismatched grid interface)를 이용한 인터페이스 면 처리, 그리드 디포메이션(grid deformation)을 통한 고체의 움직임 모사 등의 특징을 가지고 있다. 그리고 널리 사용되는 CAD 프로그램에 애드인(add-in)되어 있어, CFD를 많이 접하지 않은 초보자부터 유동 해석을 전문으로 하는 엔지니어까지 넓은 범위를 만족시킬 수 있는 유동 해석 프로그램이다.    ■ 자료 제공 : 케이더블유티솔루션, www.kwtsolution.com   프로그램 구성 시메릭스MP 유동 해석 프로그램은 기능에 따라 다양하게 구성되어 있어 사용자가 사용 범위에 따라 다양하게 선택할 수 있다. 시메릭스MP : 기본 유동 해석 프로그램 시메릭스MP+ : 용적식 펌프를 전문으로 해석하는 유동 해석 프로그램 CAD 애드인 : 다양한 CAD 프로그램 내에서 직접 시메릭스MP 구동 시메릭스MP는 다양한 유동 해석에 적합하다. 기본적인 유동, 열전달, 캐비테이션 등을 쉽게 해석할 수 있으며 복잡한 형상의 유동 해석에 적합하다. 시메릭스MP+는 시메릭스MP에 다양한 템플릿(template)을 적용하여 용적식 펌프 해석, Marine을 통한 선박 해석 등 특수한 목적의 유동 해석에 적합하다. 예를 들면 <그림 1>과 같이 체적을 변형시켜 유동을 발생시키는 다양한 용적식 펌프의 경우, 격자의 생성과 체적의 변형 그리고 움직임에 대한 경계 조건 생성 등이 매우 복잡하고 어려운 것이 현실이다. 하지만 시메릭스MP+의 템플릿은 정지한 부분과 움직이는 부분의 경계 조건과 펌프 내부의 격자를 자동으로 생성해 주어 빠른 세팅을 가능하게 해 준다.     그림 1. 용적식 펌프 해석 예제   마지막으로 시메릭스MP는 다양한 CAD 프로그램에 포함되어 있다. NX, 크레오(Creo), 그리고 라이노(Rhinoceros) 등에 포함되어 있다. CAD 프로그램에 포함되어 있기 때문에 익숙한 GUI(그래픽 사용자 인터페이스) 화면에서 해석이 가능하며, 해석에 익숙하지 않은 설계 엔지니어가 CFD를 시작할 때 유용하다.   프로그램 특징 시메릭스MP 프로그램의 특징은 다음과 같이 정리할 수 있다.  빠른 격자 생성 MGI 정확한 Cavitation 모듈 시스템 전체 해석   빠른 격자 생성 <그림 2>는 자동차 전체와 엔진 내부의 격자 형태를 보여주고 있다. 자동차 전체 내부 격자를 생성하는 시간은 일반 PC에서 1시간 30분 정도로 짧은 시간에 가능하다. 이렇게 짧은 시간에 격자 생성이 가능한 이유는 격자의 밀집을 위한 조건 설정이 간단하고 바이너리 트리(binary tree) 형식을 이용하여 직교형 격자를 빠르게 생성하기 때문이다. 그리고 격자를 만든 후 벽면 부분을 잘라내기 때문에, 아무리 좁은 격자의 틈이라도 격자 생성이 어려운 복잡한 고체의 형상에도 격자를 빠르게 만들 수 있다.    그림 2. 시메릭스MP를 이용한 자동차 내부 격자 생성   MGI(mismatched grid interface) 다른 유동 해석 프로그램은 두 개의 다른 볼륨(volume)이 연결되어 격자를 이동시키며 해석하거나 다른 이종 격자를 통해 접합되어 있는 경우, 일반적으로 두 볼륨이 접합한 경계 면에서 양해적 방법(explicit method)으로 속도, 밀도 등의 물리량을 구하기 때문에 질량과 운동량이 보존되지 않아 수렴성이 나빠지고 결과의 정확도가 낮아지게 된다. 하지만 시메릭스MP는 두 볼륨의 접합면에서 매 반복(iteration)마다 접합면의 단면적을 계산하고 질량과 운동량 flux를 음해적 방법(implicit method)를 통해 정확히 계산하기 때문에, 수렴성과 정확도가 향상된다. 특히 유량의 변화를 정확히 해석해야 하는 경우 경계면에서의 양해적 방법(explicit method)으로 인한 에러를 최소화할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-01-06
[무료다운로드] 해석 사례로 살펴보는 플루언트의 iFSI 기능
앤시스 워크벤치를 활용한 해석 성공 사례   앤시스 플루언트(Ansys Fluent)의 iFSI 기능은 구조 연성 해석에서 매우 유용한 기능이다. 이번 호에서는 Thermo-elasticity Model을 적용한 바이메탈 열변형 해석 사례를 통해, 플루언트 iFSI 기능의 장단점을 살펴보고자 한다.    ■ 정세훈 태성에스엔이 FBU-F5팀의 수석 매니저로 유동 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   앤시스에서 제공하는 FSI(Fluid-Structure Interaction : 유동-구조 연성 해석) 해석 방법은 크게 ‘extrinsic FSI’와 ‘intrinsic FSI’로 나뉜다. Extrinsic FSI는 CFD 및 메커니컬 솔버의 결과(유체-구조 상호작용 경계면에서의 압력, 열 및 변위)를 시스템 커플링 또는 External Data와 같은 별도의 프로그램을 통해 특정 반복(iteration)/시간(time)마다 주고받는 연성 해석 방법이다. 반면, ‘intrinsic FSI(iFSI)’는 별도의 커플링 프로그램 및 FEA 솔버 없이 앤시스 플루언트 솔버 단독으로 FSI 해석을 수행하는 방법으로, 앤시스 2019R1 버전에서 베타 기능으로 처음 소개되었으며 2020R1 버전에서 정식 기능으로 추가되었다. 2024R2 버전 기준으로, iFSI 해석 시에는 다음과 같은 제한 및 주의 사항이 있다. 다면체(polyhedral) 셀을 지원하지 않음 FSI 솔루션이 초기화 또는 시작된 경우 격자를 교체할 수 없음 유체와 고체 영역은 반드시 양면 벽(즉, wall/wall-shadow)에 의해 분리되어야 함 구조 모델을 활성화하려면 도메인에 적어도 하나의 고체 영역이 있어야 함 다음 동적 메시 옵션은 지원되지 않음 : in-cylinder, six DOF, 접촉 감지(contact detection)  Dynamic Mesh Zones 대화 상자에서 양면 벽(즉, 벽 또는 벽 그림자) 바로 옆의 유체 셀 영역(벽 대화 상자의 Adjacent Cell Zone 필드에 의해 표시됨)에 대해서만 선택 가능 DEFINE_PROFILE과 같은 다른 경계 조건 프로파일 또는 UDF는 사용할 수 없음 shell conduction, mesh adaption, mesh morpher, optimizer, adaptive time stepping 기능은 사용할 수 없음 구조 모델은 앤시스 워크벤치에서 앤시스 플루언트를 실행할 때 사용할 수 없음 선형 탄성(linear elasticity) 구조 모델은 고체 재료의 항복 강도를 초과하지 않는 응력 하중에 적합함   Thermal-elasticity Model thermal-elasticity model은 앤시스 플루언트 솔버에 탑재된 다음과 같은 구성 방정식을 통해 열하중에 의한 구조물의 변형을 예측하는 기능이다.   εt = total strain vector ∆T= T – Tref , Tref = Starting(reference) temperature  {α} = vector of coefficients of thermal expansion  {β} = vector of thermos elastic coefficients = [D]{α}  [D]  = elastic stiffness matrix <그림 1>에서 Energy Equation을 선택하고, <그림 2>와 같이 Structural Model에서 Thermal Effect 항목을 설정하면 해당 기능을 사용할 수 있다.   그림 1. Energy Equation 선택   그림 2. Structural Model 설정   바이메탈 열변형 해석 사례 <그림 3>은 유동장 내부의 바이메탈 변형량을 예측하기 위한 iFSI 해석 사례의 개략도이다.   그림 3. 바이메탈 연성 해석 개략도   이 사례에서 바이메탈 하부 재료(steel1)는 상부 재료(steel2)에 비해 더 높은 열팽창 계수를 가지고 있으며, 각 재료의 물성은 <표 1>과 같다. 유체는 이상기체로 가정했다. 바이메탈이 뜨거운 유체에 의해 가열되어 발생하는 열팽창과 굽힘 차이를 예측하기 위해 Thermal-elasticity Model을 적용한 iFSI 기법으로 해석을 진행했다.   표 1. 바이메탈 물성값     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-01-06
CAD 프로그램 내부에서 유동 해석 직접 진행하기
SimericsMP for NX CAD의 해석 과정 소개   시메릭스MP(SimericsMP)는 FVM 기반의 유동 해석 프로그램이다. 직교형(cartesian) 격자를 이용하여 정확하고 빠른 격자 생성 시간, MGI(mismatched grid interface)를 이용한 인터페이스 면 처리, 그리드 디포메이션(grid deformation)을 통한 형상 변화 등의 특징을 가지고 있다. 그리고 널리 사용되는 CAD 프로그램에 애드인(add in)되어 있어, CFD를 많이 접하지 않은 초보자부터 유동 해석을 전문으로 하는 엔지니어까지 넓은 범위를 만족시킬 수 있는 유동 해석 프로그램이다.    ■ 자료 제공 : 케이더블유티솔루션, www.kwtsolution.com   시메릭스MP의 특징은 빠른 격자 생성과 손쉬운 경계 조건 대입으로 정리할 수 있다.   빠른 격자 생성 <그림 1>은 자동차 전체와 엔진 내부의 격자 형태를 보여주고 있다. 자동차 전체 내부 격자를 생성하는 시간은 일반 PC에서 1시간 30분 정도로 짧은 시간에 가능하다. 이렇게 짧은 시간에 격자 생성이 가능한 이유는, 격자의 밀집을 위한 조건 설정이 간단하고 바이너리 트리(binary tree) 형식의 격자이기 때문에 직교형 격자를 빠르게 만든다. 그리고 격자를 만든 후 벽면 부분을 잘라내기 때문에 격자의 틈, 고체의 형상에 상관 없이 격자를 빠르게 만들 수 있다.    그림 1. 시메릭스MP를 이용한 자동차 내부 격자 생성   쉬운 NX 애드인 세팅 과정  Simerics MP 애드인을 설치하면 NX 메뉴에 SimericsMP가 나타나게 된다. 이 메뉴를 사용하여 유동 해석이 가능하다. 해석 과정은 다음과 같다.    CAD 불러오기    그림 2    <그림 2>에서 보면, CAD를 불러온 후 메뉴의 ‘SimericsMP’를 선택하면 왼쪽에 SimericsMP 메뉴가 나타나게 된다. 이 메뉴를 통해 물리 모델, 경계 조건 등 해석 조건을 세팅할 수 있다.   시뮬레이션 도메인 선정    그림 3   <그림 3>처럼 ‘Select SIM Domains’를 선택하면 CAD 면이 나타나고 볼륨 메시(Volume mesh)에 필요한 면을 선택해 준다.   유동 영역 및 격자 설정   그림 4    <그림 4>의 메뉴에서 유동 공간을 선정하면 선정된 공간에 대해서 유동 해석을 위한 격자를 생성해야 한다. 유동 공간이 만들어지면 왼쪽 창에 고체와 유체 공간이 분리되어 표시된다. ‘Generate Mesh’를 선택하면 격자를 생성할 수 있는 창(Mesh Generation)이 나타난다. 격자 생성 모드는 노멀 모드(normal mode)와 어드밴스드 모드(advanced mode)로 나누어진다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-12-05
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅱ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (16)   터보 기계는 흐르는 유체와 회전하는 요소 사이에서 에너지 전달이 일어나는 기계에 초점을 맞춘 기계공학의 한 분야이다. 이러한 장치는 많은 산업 분야에서 중추적인 역할을 한다.이번 호에서는 지오메트리 준비를 위한 팁과 메시의 생성/변형/세분화에 대한 내용을 소개한다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   효과적인 지오메트리 준비를 위한 팁 지오메트리 생성 후에는 안정적인 터보 기계 시뮬레이션을 달성하기 위해 효과적인 모델 준비가 필수이다. 이 프로세스를 관리하는 데 도움이 되는 팁을 다음과 같이 소개한다.  지오메트리 정리 및 수리 : CAD 모델에서 틈새, 겹침 또는 중복된 가장자리를 복구한다. 양질의 메시를 생성하려면 깨끗하고 빈틈없는 지오메트리가 필요하다.  메시 최적화 : 날카로운 모서리나 모서리에 필렛을 추가하고 지오메트리를 분할하여 로컬 메시를 세분화할 수 있도록 한다.  가능한 경우 단순화 : 연구 중인 유동 물리학에 필수적이지 않은 작은 피처와 디테일을 제거한다.  매개변수화 : 설계 연구를 위해 치수를 쉽게 변경할 수 있도록 지오메트리를 매개변수화한다. 이러한 팁을 따르면 엔지니어는 터보 기계 형상이 최고 수준의 표준에 맞게 준비되었다고 확신할 수 있다.   메시 생성 지오메트리 생성 및 준비 외에도 전처리에는 복잡한 형상을 위한 메시 생성이 포함되며, 이는 종종 터보 기계 CFD 워크플로의 병목 현상이 된다. 터보 기계 구성 요소의 복잡성과 작동의 동적 특성으로 인해, 정확한 시뮬레이션 결과를 얻기 위해서는 정밀하고 잘 구성된 메시가 필요하다. 자동화 및 템플릿 기반 접근 방식을 활용하면 이 단계의 효율성을 높이고 전반적인 생산성을 높일 수 있다.   메시 생성의 기본 사항 메시 생성은 계산 영역을 셀 또는 요소라고 하는 작은 영역으로 세분화하여 그 위에 지배 방정식을 푸는 프로세스이다. 잘 구성된 그리드는 필수적인 흐름 특징과 물리적 현상을 포착하는 정확하고 효율적인 터보 기계 시뮬레이션을 보장한다. [참고] 피델리티 오토메시를 통한 향상된 터보 기계 메싱 피델리티 오토메시(Fidelity Automesh) 소프트웨어 패키지는 회전 기계 메싱을 위한 툴로, 피델리티 오토그리드를 통한 자동화된 멀티블록 구조형 메싱과 피델리티 헥스프레스를 통한 비정형 메싱 기능을 제공한다. 모든 유형의 터보 기계 애플리케이션을 위한 템플릿을 갖춘 이 설루션은 메시 프로세스를 간소화하여 복잡한 지오메트리를 손쉽게 처리하고 고품질 메시를 빠른 시간 내에 제공한다. 피델리티 오토메시로 시뮬레이션 워크플로를 가속화하여 설계 혁신과 최적화에 집중할 수 있다.   그림 1. (a) 풍력 터빈의 구조화된 메시, (b) 로터 블레이드 팁의 하이브리드 메시   메시 유형 터보 기계 시뮬레이션에 사용되는 주요 메시 유형과 기법은 다음과 같다.  Structured : 일정한 간격의 그리드 포인트로 구성된 구조화된 메시(그림 1-a)는 일관된 패턴을 사용하며, 종종 격자형 구조와 유사하다. 예측 가능한 흐름 패턴이 있는 영역에서는 고품질 해상도를 제공하지만, 복잡한 지오메트리에서는 구현하기가 어려울 수 있다.  멀티블록 : 계산 도메인은 구조화된 격자로 개별적으로 메시 처리된 여러 개의 간단한 블록으로 나뉜다. 이 방법을 사용하면 복잡한 도형에 대해 국소적인 세분화가 용이하고 그리드를 쉽게 생성할 수 있다.  Unstructured : 이러한 메시는 불규칙한 패턴으로 구성되며 2D에서는 삼각형, 3D에서는 사면체로 구성되는 경우가 많다. 복잡한 형상에 적합한 비정형 메시는 복잡한 모델에 쉽게 적용할 수 있지만, 중요한 흐름 영역에서 해상도가 저하되는 경우가 있다.  Hybrid : 구조화된 메시와 구조화되지 않은 메시의 장점을 결합한 하이브리드 메시(그림 1-b)는 경계 레이어와 같이 더 높은 해상도가 필요한 영역에는 구조화된 그리드를 사용하고, 복잡한 기하학적 영역에는 구조화되지 않은 그리드를 사용한다.  Conformal : 이 기술은 지오메트리의 여러 부분에 걸쳐 메시가 연속되도록 하여 인접한 메시 블록 사이의 간격과 중첩을 제거한다. 컴프레서나 터빈의 블레이드와 같이 간격이 좁은 구성 요소 사이의 흐름을 정확하게 캡처하는 데에 필수이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-12-05
[포커스] CAE 컨퍼런스 2024 발표 내용 정리
‘AI와 CAE 융합을 통한 차세대 제조 혁신 전략’을 주제로 한 ‘CAE 컨퍼런스 2024’가 지난 11월 8일 수원컨벤션센터에서 진행됐다. 스마트공장구축 및 생산자동화전(SMATEC 2024) 전시회와 함께 치러진 이번 행사에서는 제품 개발 과정에서 필수로 여겨지는 CAE 기술의 발전과 함께, 제조산업에서 AI(인공지능)의 방향성을 짚는 기회가 마련됐다. ■ 정수진 편집장      ■ 같이 보기 : [포커스] CAE 컨퍼런스 2024, 제조 혁신을 위한 CAE와 AI의 융합 전략 소개   이번 ‘CAE 컨퍼런스 2024’에서는 최신 CAE 기술 및 인공지능 기술의 흐름, 산업에서의 적용 사례 등이 소개됐다. 나니아랩스의 강남우 대표는 ‘로코드 AI 플랫폼을 이용한 설계 생성/예측/최적화 방법 및 사례’ 발표를 통해, 제조 도메인 전문가가 설계안을 효과적으로 생성하고 예측하며 최적화하는 데에 도움을 줄 수 있는 로코드(low-code) AI 플랫폼인 AslanX에 대해 설명했다. AslanX는 사용자 친화적인 인터페이스를 제공하여 비전문가도 쉽게 활용할 수 있다는 점을 특징으로 내세운다. 실제 사례를 통해 AslanX의 유용성을 소개한 강남우 대표는 “로코드 AI 플랫폼은 복잡한 설계 과정을 간소화하여 제조업체가 빠르게 효율적인 설계안을 생산할 수 있도록 지원하고, 데이터 기반 예측 기능을 통해 기업이 설계 효율을 높이면서 잠재적인 위험 요소를 미리 발견해 더 나은 의사결정을 내릴 수 있도록 돕는다”고 전했다.   ▲ 나니아랩스 강남우 대표   HP의 김태화 P3D 매니저는 ‘HP 3D 프린팅 자동화 설루션이 주도하는 산업의 디지털 트랜스포메이션’이라는 주제 발표를 통해 “과거 3D 프린팅 기술은 주로 시제품 제작에 쓰였지만, 지금은 최종 부품 생산에도 점점 더 많이 활용되고 있으며 앞으로 그 비중이 더욱 커질 것”이라고 전망했다. 김태화 매니저는 이러한 변화에 대응하기 위해 HP의 젯 퓨전 5600(Jet Fusion 5600) 3D 프린터와 자동화 시스템을 소개했다. 젯 퓨전 5600은 생산 속도와 품질을 동시에 향상시키고, 고객 맞춤형 파라미터 조정 기능을 통해 다양한 요구를 충족시킬 수 있도록 설계되었다. 김태화 매니저는 “젯 퓨전 3D 프린터를 중심으로 한 자동화 시스템은 비용 절감과 생산성 향상을 지원하며, 고객 요구에 맞는 맞춤형 제조 환경을 제공한다”고 전했다.   ▲ HP 김태화 P3D 매니저   피도텍의 최병열 연구위원은 ‘최적설계 대중화를 위한 AADO 기술’을 소개했다. 최적설계의 개념을 ‘최소한의 자원으로 최대의 결과를 도출하는 과정’으로 설명한 최병열 연구위원은 최적 설계 기술의 필요성이 늘면서 많은 기업이 최적화 도구에 대한 필요성을 느끼고 있지만, 접근성을 높이는 것이 해결 과제라고 짚었다. 최병열 연구위원은 “기존 최적설계 기술의 복잡한 접근 방식을 간소화해 모든 엔지니어가 접근할 수 있도록 할 방법을 고민했다”면서, “그 결과 탄생한 AADO(AI Aided Design Optimization)는 AI와 데이터 분석, 비주얼라이제이션 기술을 결합해 최적 설계 도구의 혁신 방안을 제시하고, 이를 통해 엔지니어가 더 효율적으로 설계 문제를 해결할 수 있도록 돕는다”고 전했다.   ▲ 피도텍 최병열 연구위원   케이더블유티솔루션의 변성준 이사는 ‘CAD와 CFD 융합을 통한 제품 설계 혁신’ 발표에서 “CFD(전산 유체 역학)가 제품 설계 과정에서 필수 요소로 자리잡고 있으며, CAD와 CFD의 통합은 설계 시간 절약과 데이터 분석의 정확성을 높여 기업 경쟁력에 기여한다”고 설명했다. 변성준 이사가 소개한 SimericsMP for NX는 NX CAD에 통합된 유한 체적법(FVM) 기반의 CFD 소프트웨어로, CAD 환경에서 직접 CFD 해석을 빠르고 효율적으로 수행할 수 있도록 돕는다. 변성준 이사는 “SimericsMP for NX는 격자 생성 시간을 줄이고 정확도를 높이면서, 복잡한 형상에서 해석의 일관성을 유지하는 것이 특징”이라고 소개했다.   ▲ 케이더블유티솔루션 변성준 이사   LG전자의 박우철 책임연구원은 ‘가전 개발에서 CAE와 AI 활용’에 대해 발표를 진행했다. LG전자는 제품 개발 프로세스에서 동역학 해석과 진동 해석을 통해 제품의 품질을 확보하고, 극한 시나리오에 품질을 검증하는 등에 CAE를 활용하고 있다. “머신러닝은 이점과 함께 실행 과정의 복잡성도 갖고 있다”고 짚은 박우철 책임연구원은 “AI의 적용 가능성을 높이기 위해 설계와 생산 과정에서 신뢰성 있는 데이터를 확보하고, 해석 결과의 일관성을 확보할 방법을 고민해야 한다”고 전했다. 또한 AI를 도입하는 과정에서 초기 투자 비용, 데이터 확장성, 전문 인력의 확보 등을 고려할 필요가 있다고 덧붙였다.   ▲ LG전자 박우철 책임연구원   지멘스 디지털 인더스트리 소프트웨어의 이종학 프로는 ‘제품 개발과 검증의 가속화를 위한 심센터 AI 설루션’에 대해 발표했다. 이종학 프로는 “AI 기술을 활용한 자동화 설루션은 제품 설계와 실험 과정에서 시간을 단축하고 효율성을 높일 수 있다”고 전했다. 지멘스의 시뮬레이션 포트폴리오인 심센터(Simcenter) 내에 탑재된 AI 기능을 소개한 이종학 프로는 “반복적인 작업의 자동화를 구현하기 위해서는 제품 개발 프로세스의 단계에서 사용할 데이터의 수집 및 흐름을 체계적으로 구성해야 한다. 또한 AI 모델을 활용해 최적의 디자인을 찾는 과정에서 최적화 알고리즘을 적용해 반복 작업을 효율적으로 관리하고, 그 결과에서 유의미한 인사이트를 도출하는 과정이 중요하다”고 전했다.   ▲ 지멘스 디지털 인더스트리 소프트웨어 이종학 프로   현대자동차의 김용대 글로벌R&D마스터는 ‘모빌리티 아키텍처 단계 타이어 시스템의 버추얼 개발 프레임워크’에 대해 소개했다. 전기차 타이어의 경우, 배터리와 차량의 무게가 늘어남에 따라 스트레스 및 성능에 있어 새로운 요구사항이 발생한다. 이에 대응해 타이어의 재설계가 필요한데, 김용대 마스터는 “초기 개발 단계에서 가상 모델을 기반으로 하는 새로운 방식이 필요하며, 이를 통해 실물 타이어에 의존하는 전통적인 접근에서 벗어나는 것도 고민해야 한다”고 말했다. 김용대 마스터는 “다양한 미래 모빌리티 환경에 적응하기 위해 시스템 엔지니어링 관점을 통합할 필요성이 있다”면서, “데이터 기반 의사결정을 통해 협력사와의 관계를 더욱 견고히 하고, 통합된 시스템으로 전환해 타이어 및 완성차 개발의 완성도를 높여야 할 것”이라고 덧붙였다.   ▲ 현대자동차 김용대 글로벌R&D마스터   현대모비스의 정원태 책임연구원은 ‘NVH 해석 분야에서의 고전적 방법론과 디지털 기술 융합 사례’ 발표를 통해 “기술의 발전이 CAE의 변화와 새로운 접근 방식을 요구하고 있다”면서, 데이터 중심의 AI 및 머신러닝의 활용 가능성과 함께 도전 과제를 극복하기 위한 방법론을 소개했다. 전기차의 복합 시스템 모델링 방법과 자유도 문제 해결, 모달 모델을 통한 복잡한 시스템의 간소화, 머신러닝 기법을 활용한 모터의 품질 예측 등 사례를 소개한 정원태 책임연구원은 “고전적 방법론과 AI, 머신러닝 기술의 결합은 더 빠르고 정확한 모델링을 가능케 하며, 디지털 트윈 기술은 복잡한 엔지니어링 문제를 해결하는 데에 도움을 준다”면서, 모델링과 데이터에 대한 깊은 이해를 바탕으로 효과적인 문제 해결을 위해 꾸준히 고민할 것을 당부했다.   ▲ 현대모비스 정원태 책임연구원
작성일 : 2024-12-04
[무료다운로드] 설계자를 위한 해석 프로그램, 앤시스 디스커버리
디스커버리 익스플로어 스테이지의 유동해석 주요 업데이트 및 활용법   앤시스 디스커버리(Ansys Discovery)는 설계부터 해석까지 하나의 환경 안에서 진행할 수 있는 앤시스의 시뮬레이션 프로그램이다. 해석 과정 중 하나인 익스플로어 모드(Explore mode)에서는 격자를 생성하지 않고 다른 해석 전문 프로그램에 비해 경계 조건 설정 및 사용법이 간단하여 유동, 구조 해석에 익숙하지 않은 설계 엔지니어들이 많이 사용하고 있다. 이번 호에서는 디스커버리를 이용하여 유동해석을 진행하려 할 때, 설계자 관점에서 디스커버리가 활용할 수 있는 방법과 디스커버리의 주요 신규 기능에 대하여 소개하겠다.   ■ 김현재 태성에스엔이 FBU-F4팀에서 근무하고 있으며, 유동해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   설계자를 위한 해석 프로그램 디스커버리는 하나의 프로그램으로 설계부터 해석까지 모든 과정을 진행할 수 있는 프로그램이다. Model(3D 모델링), Explore(해석), Refine(해석) 등 총 세 가지의 스테이지(작업 환경)를 지원하며, 사용자는 그 목적에 따라 스테이지를 선택하며 작업을 수행할 수 있다. 익스플로어(Explore) 스테이지에서는 별도의 격자 생성 없이 경계조건과 물성치 입력만으로도 해석을 진행할 수 있다. 리파인(Refine) 스테이지에서는 Pro 레벨(Mechanical, CFD, Electromagnetics)의 라이선스가 추가로 필요하며, 정확한 결과를 얻기 위하여 격자를 생성하여 해석을 진행하게 된다.  이때, 유동해석에 익숙하지 않은 사용자(설계 엔지니어)라면 익스플로어 스테이지, 리파인 스테이지 관계 없이 내/외부 유동장 추출을 진행하기 위해 3D 모델링을 클린업(clean up)하는 단계부터 어려움을 겪게 된다. 디스커버리는 설계자를 위한 프로그램답게 이러한 어려움을 인지하고 있으며, 통합 프로그램 출시 이후 지속적인 기능 업데이트를 통하여 사용자의 편의성을 개선하고 있다.  디스커버리는 앞서 소개한 것과 같이 설계자도 쉽게 사용할 수 있도록 새로운 버전에서 업그레이드도 지속적으로 이루어지고 있다. 설계 엔지니어가 디스커버리를 이용할 시 설계자 관점에서 디스커버리를 활용할 수 있는 방법과 디스커버리를 이용하여 유동해석 시 사용할 수 있는 주요 신규 기능에 대해 소개하겠다. 설계 엔지니어가 디스커버리를 활용할 수 있는 방법은 <그림 1>에서 확인할 수 있으며, 다음과 같다.   그림 1. 설계 엔지니어 디스커버리 활용 방법   그림 2. Discovery Engineering notebook   Ribbon → Detail 탭에 위치한 엔지니어링 노트북(Engineering notebook)을 이용하여 작업한 모델을 도면화할 수 있다. 생산자에게 단순한 설계 도면, 물성치와 최대 하중량과 같은 단편적인 정보를 전달하는 것이 아니라, 익스플로어 모드의 해석 결과를 바탕으로 컨투어(contour)를 생성한 뒤 신(scene)으로 저장하여 도면 내(Engineering notebook) 디스커버리 해석의 결과값을 포함할 수 있다.   그림 3. 리파인 모드 및 Transfer to Fluent 기능   설계 엔지니어가 디스커버리를 이용하여 익스플로어 스테이지에서 해석을 진행하였다면, 이후 해석 엔지니어는 제공받은 디스커버리 파일을 토대로 리파인 모드(Refine mode)에서 해석을 하거나 Transfer to Fluent 기능을 이용하여 해석한 경계조건 및 물성치를 플루언트(Fluent)로 트랜스퍼(transfer)할 수 있다. 플루언트로 트랜스퍼할 때 리전(region)이 2개 이상인 경우에는 메시 인터페이스(mesh interface) 처리가 되어 해석이 진행되기 때문에, 플루언트로 정보를 이관받은 뒤에는 반드시 검토가 필요하다.   그림 4. Ansys Cloud with Discovery   앤시스 클라우드(Ansys Cloud)를 이용하며 디스커버리를 사용하고 있는 사용자라면 <그림 4>와 같이 마이크로소프트 365와 연동하여 특정 장소(Sharepoint, 로컬 저장소, Teams)에 설계 파일을 저장할 수 있다. 또한, 저장 시 파일의 버전이 기록되며 이전 버전도 확인 가능하다. 따라서, 최종 설계 전후로 생산이 어렵거나 불가피할 때, 디스커버리 플랫폼 내에서 메모 기능을 이용하여 설계자, 생산자, 해석자 모두의 의견을 취합하고 문제점을 논의할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-10-07