• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "강태욱"에 대한 통합 검색 내용이 379개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
딥러닝 모델 개발 프로세스 기록/분석/가시화 및 모델 튜닝하기
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 AI 업계에서 표준적으로 사용되고 있는 도구를 개발하는 W&B(Weights & Biases)를 소개하고, 이를 사용하는 방법을 소개한다. 그리고 건설, 제조와 같은 전통 엔지니어링 산업에서 생존을 위해 생각할 부분을 정리해 보고자 한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 |  http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 |  www.facebook.com/groups/digestpodcast 모든 산업 분야에서 딥러닝으로 시작된 인공지능(AI) 기술 트랜드가 거세게 몰아치고 있다. 특히, 올해는 생성형 AI가 업무에 실질적으로 사용되기 시작했다. 생성형 AI는 다양한 업무 분야를 자동화하고 있어, ‘Job Killer’라 불릴 만큼 오피스에 많은 영향을 주고 있다. 이와 같이 기술이 전통적인 시장과 일자리를 축소하기도 하지만, 이번 호에서 소개할 W&B는 골드러시에서 역마차를 만들어 운영했던 웰스파고의 전략을 잘 실행한 스타트업이다.     W&B 기술 소개 딥러닝 모델을 개발하다 보면 수많은 종류의 데이터셋, 하이퍼모델 파라미터 튜닝 등으로 인해 관리해야 할 자료가 매우 복잡해진다는 것을 알게 된다. W&B는 이름 그대로 완벽한 모델 학습을 위해 필요한 딥러닝 모델의 가중치(weights)와 편향(biases)을 모니터링 및 관리할 수 있는 로그 도구이다. 즉, 딥러닝 모델 개발자를 위한 프로세스 로그 및 가시화 플랫폼을 제공한다.    그림 1. W&B(AI Summer)   매우 직관적인 이름을 가진 이 스타트업은 텐서보드(Tensorboard)와 비슷하지만, 적은 코드로 모델 개발에 많은 통찰력을 준다. W&B의 WandB 라이브러리를 사용하면 딥러닝 모델 학습 시 지저분하게 붙어 나가는 로그 처리를 간단한 함수 몇 개로 처리할 수 있고, 통합된 대시보드 형태로 다양한 모델 학습 품질 지표를 확인 및 비교할 수 있다. 이외에도 학습 모델 하이퍼 파라미터 관리와 튜닝 및 비교 보고서 생성 기능을 제공한다. 로그는 숫자, 텍스트, 이미지 등 다양한 포맷을 지원한다.    그림 2. W&B 딥러닝 모델 개발 프로세스 가시화 대시보드   이번 호에서는 딥러닝 모델 학습 로그 및 가시화 영역에 집중해 살펴본다. 글의 마무리에서는 W&B의 개발 배경도 간단히 알아본다.     사용법 다음 링크에 방문해 회원 가입한다.  wandb.ai website : https://wandb.ai 회원 가입한 후 <그림 3~4>와 같이 홈 메뉴에서 키 토큰 값을 얻어 복사한다. 이 키는 wandb API를 사용할 때 필요하다.   그림 3    그림 4   명령행 터미널에서 다음 명령을 실행해 wandb 파이썬 라이브러리를 설치한다.  pip install wandb     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-12-05
[온에어] 마커리스 증강 및 자동 라우팅 기술을 통한 미래 BIM 전략
캐드앤그래픽스 CNG TV 지식방송 지상 중계   지난 11월 21일, CNG TV는 ‘마커리스 증강 및 자동 라우팅 기술을 통한 미래 BIM 전략’을 주제로 웨비나를 진행했다. 이번 웨비나에서는 최신 AR(증강현실) 기기의 등장과 함께 가상현실 기술의 변화에 대해 다루었으며, 마커가 없이 AR을 구현할 수 있는 마커리스 증강 기술과 이를 바탕으로 한 차세대 BIM 데이터 운용 전략 등에 대해 설명했다. ■ 박경수 기자    ▲ 왼쪽부터 한국건설기술연구원 강태욱 연구위원, 에스엘즈 정재헌 대표   이날 웨비나는 한국건설기술연구원 강태욱 연구위원이 사회를 맡고 에스엘즈 정재헌 대표가 발표자료 참여했다. 건설 산업에서 4차 산업혁명의 핵심 기술인 BIM(건설 정보 모델링)이 새로운 국면을 맞이하고 있다. 이에 맞춰 에스엘즈는 VR(가상현실)과 AR(증강현실)을 결합한 BIM 기술을 통해 건설 현장의 효율을 극대화하고 있다. 정 대표는 “미래 건설의 핵심은 계획에서 시공까지의 과정을 정확하고 효율적으로 연결하는 것”이라며, 기술 도약의 필요성을 강조했다.  AR 기술은 이제 마커리스(markerless) 방식으로 진화하고 있다. 에스엘즈가 개발한 기술은 기존 QR 코드나 마커 없이도 AR 콘텐츠를 증강할 수 있는 시스템으로, BIM 데이터를 기반으로 현장의 좌표를 직접 활용한다는 점이 특징이다. 이는 마커 설치 시간과 비용을 줄이고 현장에서 더욱 실시간으로 작업할 수 있는 환경을 제공한다. 특히, GNSS(GPS 기술)와 결합한 야외 증강 기술은 건설 현장의 정확한 시공을 지원하며, AR 기술의 활용 범위를 넓히고 있다. 에스엘즈가 선보인 자동 라우팅 기술은 BIM 데이터를 활용해 설비를 최적 경로로 자동 연결하는 기능을 제공한다. 설비 구조물간 충돌을 회피하며, 파이프 배치 및 엘보(곡관) 설계 과정에서 효율성을 극대화했다. 이 기술은 현장에서 AR 기기를 통해 실시간으로 수정 및 검증할 수 있어 설계와 시공의 간극을 줄이는 데 기여한다.   ▲ 에스엘즈 정재헌 대표   한편 에스엘즈는 엔비디아 인셉션 프로그램에 선정되며 글로벌 스타트업으로 주목받고 있다. 엔비디아의 지원 아래 AI와 BIM의 융합 기술을 개발하며 건설 AI 시장에서 입지를 강화하고 있다. 정 대표는 “글로벌 네트워킹과 협업을 통해 한국 기술의 가능성을 널리 알리고 있다”며, 국내외 시장에서의 성과를 기대하고 있다. 정 대표는 AR, AI, 그리고 BIM의 통합이 건설 기술의 미래를 이끌 것이라 전망했다. AI를 활용해 설계 단계에서 로직 중심의 자동화를 구현하고, AR 기술로 현장에서의 정확한 시공을 지원하며, 위험한 작업은 로봇과 결합된 기술로 대체하는 시대가 머지않아 도래할 것으로 기대된다. 마커리스 증강과 자동 라우팅 기술은 건설 산업의 판도를 바꿀 혁신 기술로 자리 잡고 있다. 정 대표는 “건설은 아이디어를 현실로 정확히 구현하는 과정”이라며, “기술이 인간의 상상력을 뛰어넘는 시공과 설계를 실현할 것”이라는 비전을 제시했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-12-04
CAD&Graphics 2024년 12월호 목차
  18 THEME. 제조·건축 디자인의 미래를 그리는 인공지능과 디지털 트윈 AI 주도의 디자인을 바라보는 관점 : 프로세스와 사례 중심으로 / 고성찬 생성형 AI와 제조 디자인의 현재 그리고 미래 / 유훈식 이미지 생성을 넘어 : 모빌리티 디자인에서 생성형 AI의 동향과 숙제 / 박현준 제조 및 건설 산업의 패러다임을 바꾸는 디지털 트윈의 혁신 / 이문규 디지털 혁신의 시대, 건축가와 엔지니어를 위한 협업 도구 / 이경선 제조 산업의 디지털 트윈을 위한 리얼타임 렌더링 / 진득호   INFOWORLD   Editorial 17 2024년을 되돌아보며 : AI, 산업을 재정의하다   People&Company 45 시각화 콘텐츠 제작을 위한 토털 설루션 제공하는 맥슨 지브러시, 시네마4D, 레드 자이언트로 만나는 새로운 크리에이티브 경험   Case Study 68 항공기 부품 제조 혁신에 기여하는 적층제조 3D 프린팅으로 만들어진 GE의 LEAP 연료 노즐 70 산업 분야에서 효과적인 협업을 돕는 몰입형 3D 기술 몰입형 3D 협업 앱으로 워크플로 및 생산성 개선   Column 86 현장에서 얻은 것 No.19 / 류용효 익숙함을 넘어 편리함으로 90 디지털 지식전문가 조형식의 지식마당 /조형식 스마트에서 혁신으로   Focus 48 CAE 컨퍼런스 2024, 제조 혁신을 위한 CAE와 AI의 융합 전략 소개 53 빌드스마트 콘퍼런스 2024, AI/로봇공학/디지털 도구를 통한 건설의 미래 탐색 56 다쏘시스템, “버추얼 트윈으로 지속 가능한 디지털 전환 이끈다” 58 앤시스, “시뮬레이션과 AI의 결합 및 접근장벽 낮추는 기술 개발 강화할 것” 73 AWS, 인더스트리 위크 통해 산업의 디지털 전환과 클라우드 혁신 전략 제시 76 인텔, AI PC 위한 프로세서와 생태계로 혁신의 문을 열다 78 연세대와 IBM의 양자 혁명 : 한국 첫 양자컴퓨터 설치의 의미와 미래 80 콘진원, ‘AI로 만나는 새로운 콘텐츠 세상’... AI 콘텐츠 페스티벌 2024 개최   New Products 60 제조 및 기계 설계를 위해 최적화된 CAD 설루션 ZWCAD LM 2025 / ZWCAD MFG 2025 64 온프레미스 기반의 AI 알고리즘 솔루션 Stochos 66 통합 디지털 콘텐츠 마켓플레이스 팹   On Air 82 캐드앤그래픽스 CNG TV 지식방송 지상중계 자동차 산업에서의 다중소재 접합 및 조립 해석 기술 동향 83 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조산업의 디지털 혁신을 위한 헥사곤 설루션 활용 전략 84 캐드앤그래픽스 CNG TV 지식방송 지상중계 클라우드 기반 데이터 리비전과 GIS 통합 설루션 85 캐드앤그래픽스 CNG TV 지식방송 지상중계 마커리스 증강 및 자동 라우팅 기술을 통한 미래 BIM 전략   Directory 139 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 93 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 딥러닝 모델 개발 프로세스 기록/분석/가시화 및 모델 튜닝하기 98 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (8) / 천벼리 BIM 도면의 상세 보기 132 디지털 데이터의 정리에 관하여 / 양승규 효율과 생산성을 높이기 위한 파일 관리 팁 136 새로워진 캐디안 2025 살펴보기 (1) / 최영석 최신 버전의 주요 기능 소개   Reverse Engineering 101 문화유산 분야의 이미지 데이터베이스와 활용 사례 (12) / 유우식 안료 데이터베이스   Mechanical 110 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (7) / 김성철 메커니즘 디자인 소개   Analysis 115 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (16) / 나인플러스IT 터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅱ 118 금속 적층제조의 최적화를 위한 앤시스 애디티브 / 박준혁 적층 공정의 파라미터 최적화를 위한 애디티브 사이언스 기능 124 SimericsMP for NX CAD의 해석 과정 소개 / 케이더블유티솔루션 CAD 프로그램 내부에서 유동 해석 직접 진행하기 128 산업 디지털 전환을 위한 버추얼 트윈 (7) / 임상혁 개념 설계부터 최종 제품까지 다물체 동역학 해석을 위한 심팩       캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2024-11-26
대규모 언어 모델의 핵심 개념인 토큰, 임베딩과 모델 파인튜닝에 대해
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 LLM(대규모 언어 모델)의 자연어 처리에서 핵심 기술인 토큰, 임베딩 및 모델 파인튜닝의 이해를 위한 개념과 임베딩 모델의 동작 메커니즘을 살펴본다. 여기서 토큰은 문장을 구성하는 단어로 가정하면 이해하기 쉽다. 토큰과 임베딩은 입력 시퀀스에 대한 출력을 학습, 예측할 때 훈련의 전제가 되는 LLM의 기본조건이다. 이에 대해 좀 더 깊게 이해해 보자.    ■ 강태욱  건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다.  페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com  홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast    최근 대규모 언어 모델(LLM : Large Language Model)과 검색 증강 생성(RAG : Retrieval-Augmented Generation) 기술을 이용해 다양한 전문가 서비스 에이전트를 개발하는 사례가 많아지고 있다. 특히, 전문가처럼 행동하며 문제를 해결하거나 의사결정을 지원하는 멀티 에이전트 기술은 이미 선진국을 중심으로 금융, 제조, 건설 등 엔지니링 분야에 개발되고 있다.    도메인 의존 정보와 토큰  의학과 같은 특별한 분야에서는 환각 현상 등으로 인해 챗GPT(ChatGPT)와 같은 범용 LLM이 제대로 정보를 생성하지 못하는 경우가 많다. 이런 문제를 해결하기 위해 전문 분야의 지식을 기존 LLM 모델을 이용해 재학습하는 방법이 생겨났는데, 파인튜닝은 그 중 한 가지 방법이다.  파인튜닝은 빅테크 업체가 공개한 LLM 모델을 특정 도메인 지식을 잘 표현할 수 있도록 재학습하는 방법 중 하나이다. LLM의 신경망 전체를 재학습하기 위해서는 매우 비싼 GPU 사용 비용이 필요하다. 이는 일반적인 기업에서 수행할 수 없는 수준이다. 이런 이유로, 파인튜닝은 메타에서 공개한 라마(LLaMA)와 같은 파운데이션 LLM 모델의 신경망에 별도의 작은 신경망을 추가해, 이를 별도로 준비된 데이터로 학습하는 방식을 사용한다.  LLM을 파인튜닝하기 전에 어떤 토큰이 사용되었는지, 임베딩 모델이 무엇인지 확인해야 한다. 파인튜닝 시 용어가 LLM에 사전 학습되어 있지 않다면, 용어 간 관계를 통계적으로 추론하는 학습 절차가 매우 비효율적으로 계산된다. 일반적으로 모델을 파인 튜닝하려면 LLM 토큰 확인 및 개발, 임베딩 모델의 적절한 사용이 필요하다.  <그림 1>은 토큰이 수치화된 결과를 보여준다. 참고로, 토큰이 숫자로 표현되지 못하는 문제를 OOV(Out-Of-Vocabulary)라 한다.    그림 1. 숫자 토큰화 결과   임베딩은 학습 모델이 입력되는 문장의 토큰 패턴을 통계적으로 계산하기 전, 토큰을 수치화시키는 함수이다. 이 함수를 임베딩 모델이라 한다. 임베딩 모델은 토큰을 수치화하여 모델 학습에 사용하는데 필요한 입력값을 출력한다. 이런 이유로, 토큰 사전과 임베딩 모델이 다르면 제대로 된 모델 학습, 예측, 패턴 계산 결과를 얻기 어렵다. 임베딩 모델도 별도의 신경망 모델이며 다양한 방식으로 학습될 수 있다. 이번 호에서는 구글에서 공개한 BERT(Bidirectional Encoder Representations from Transformers) 임베딩 모델을 사용한다.  이와 관련된 실험을 하기 위해, 개발 환경을 설치하고 파이썬 코드를 준비해 본다.    개발 환경 준비 미리 컴퓨터에 파이썬, 아나콘다 등 필수적인 라이브러리가 설치되어 있다는 조건에서, 실습을 위해 명령창에서 다음을 실행해 설치한다. pip install transformers torch   참고로, 다음은 파인튜닝에 사용하는 오픈소스 라이브러리를 보여준다. Torch : 텐서 계산 및 딥 러닝을 위한 핵심 라이브러리이다. PEFT : 낮은 순위의 적응 기술을 사용하여 대규모 언어 모델을 효율적으로 미세 조정할 수 있다. 특히 리소스가 제한된 장치에서 학습 가능한 매개 변수의 수를 줄여 모델을 압축하고 더 빠르게 미세 조정할 수 있다. bitsandbytes : 신경망에 대한 양자화 및 이진화 기술을 제공하여 모델 압축을 지원한다. 모델 압축에 도움이 되므로 메모리와 계산 능력이 제한된 에지 장치에 모델을 보다 실현 가능하게 만들 수 있다. Transformers : 대규모 언어 모델 작업을 간소화하여 사전 학습된 모델 및 학습 파이프라인을 제공한다. trl : 대규모 언어 모델의 경우 효율적인 모델 학습 및 최적화에 중점을 둔다. accelerate : 다양한 하드웨어 플랫폼에서 학습 및 추론을 가속화한다. dataset : 기계 학습 작업을 위한 데이터 세트 로드 및 준비를 간소화한다. pipeline : 사용자 지정 학습 없이 일반적인 NLP 작업에 대해 사전 학습된 모델의 사용을 간소화한다. PyArrow : 효율적인 데이터 로드 및 처리를 위해 사용될 수 있다. LoraConfig : LoRA 기반 미세 조정을 위한 구성 매개변수를 보유한다. SFTTrainer : 모델 학습, 최적화 및 평가를 처리한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-11-04
CAD&Graphics 2024년 11월호 목차
  INFOWORLD   Editorial 17 가을이다, 책과 함께 떠나보자   Case Study 18  자전거 개발의 혁신을 추구하는 피나렐로 금속 3D 프린팅으로 부품 경량화와 고난도 설계 달성 20 부동산 시장에 변화를 일으키고 있는 베로 디지털 트윈으로 부동산 개발부터 관리까지 시각화   Focus 23 코리아 그래픽스 2024, 생성형 AI와 3D 기술이 이끄는 디자인 혁신 비전 소개 28 헥사곤 ALI, “디지털 혁신의 핵심은 데이터의 가치 확장” 30 SAP, “비즈니스 혁신 위한 AI의 가능성 더욱 넓힌다” 32 시놀로지, 기업 시장 겨냥한 스토리지 및 백업 설루션으로 국내 시장 성장세 강화 34 유니티, “산업 분야의 실시간 3D 및 디지털 트윈 구축과 활용 지원 확대”   New Products 37 동역학 솔버 기능 강화 및 툴킷 개선 리커다인 2025 40 제품 개발 가속화하는 3D 설계/엔지니어링 애플리케이션 솔리드웍스 2025 42 AI 적용한 전기 CAD 솔루션 일렉트릭스 AI 44 초고속∙대형 포맷의 SLA 3D 프린터 폼 4L 46 차세대 기업용 PC를 위한 AI 프로세서 라이젠 AI 프로 300 시리즈 58 이달의 신제품   On Air 48 캐드앤그래픽스 CNG TV 지식방송 지상중계 새로운 트렌드, 산업 데이터 스페이스와 제조업의 변화 49 캐드앤그래픽스 CNG TV 지식방송 지상중계 전기/전장 부문 DX의 장애 요소와 해결 방안 제시 50 캐드앤그래픽스 CNG TV 지식방송 지상중계 AI와 CAE 융합을 통한 차세대 제조 혁신 전략   Column 51 책에서 얻은 것 No.23 / 류용효 AI 트렌드 2025 : 세 권의 책을 통해 본 미래 전망 54 디지털 지식전문가 조형식의 지식마당 / 조형식 스마트 혁신 엔지니어링   60 New Books 62 News   Directory 131 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 69 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 대규모 언어 모델의 핵심 개념인 토큰, 임베딩과 모델 파인튜닝에 대해 74 새로워진 캐디안 2024 살펴보기 (11) / 최영석 캐디안 2024 SE 자료실의 리스프 소개 118 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (7) / 천벼리 아레스 캐드 2025의 실시간 협업   Visualization 78 기업용 AR 및 VR의 놀라운 효과 / 유니티 코리아 산업 분야에서 혼합현실을 통해 측정 가능한 결과를 도출하는 방법   Reverse Engineering 84 문화유산 분야의 이미지 데이터베이스와 활용 사례 (11) / 유우식 도자기 데이터베이스   Analysis 95 앤시스 워크벤치를 활용한 해석 성공 사례 / 정준영 ASME BPVC, Section-VIII, Division-2, 5.4 항에 근거한 좌굴 해석 108 산업 디지털 전환을 위한 버추얼 트윈 (6) / 이아라 모드심을 통한 자동차 B-필러 개념 설계 적용방안 검토 114 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (15) / 나인플러스IT 터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅰ 121 화제가 되고 있는 모델 기반 개발을 함께 배우기 / 오재응 모델 기반 개발의 이점과 진행 과정에서의 해결 과제   Mechanical 102 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (6) / 박수민 크레오 파라메트릭 11의 인터페이스 개선사항   PLM 127 영업 성공 리더십 – 솔루션/가치 영업 활동 프로세스 (2) / 홍승철 솔루션을 ‘소울루션’으로 : B2B 솔루션/가치 영업 활동 프로세스       캐드앤그래픽스 2024년 11월호 목차 - 생성형 AI와 3D 기술이 이끄는 디자인 혁신 비전 from 캐드앤그래픽스     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2024-10-28
LLM RAG의 핵심 기술, 벡터 데이터베이스 크로마 분석
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 대규모 언어 모델(LLM : Large Language Model)의 검색증강생성(RAG : Retrieval-Augmented Generation) 구현 시 핵심 기술인 임베딩 벡터 데이터베이스로 유명한 크로마(Chroma)의 핵심 구조를 간략히 분석한다. RAG는 생성형 AI의 환각현상을 줄여 전문가적인 정보를 생성하는 데에 도움을 준다.  크로마의 동작 방식을 이해하면 LLM 기술 개발 시 이해도와 응용력을 높일 수 있다. 참고로, 벡터 베이터베이스는 다양하게 있으나 크로마는 사용하기 쉽고 오픈되어 있어 현재 많이 활용되고 있다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1. 벡터 데이터베이스의 종류   크로마는 AI 지원 오픈소스 벡터 베이터베이스로, RAG를 처리할 때 필수로 사용되는 데이터베이스 중 하나이다. 크로마를 이용해 LLM 기반의 다양한 앱(지식 서비스 등)을 개발할 수 있다. 예를 들어, 각종 건설 규정, BIM 관련 지침 등을 요약하고 설명해주는 전문가 시스템을 개발할 때 사용할 수 있다.   그림 2   크로마는 임베딩 벡터를 메타데이터와 함께 저장하고, 질의를 통해 해당 임베딩 도큐먼트를 검색할 수 있다. 크로마는 독립적인 서버로서 동작할 수 있다.   설치 및 사용 윈도우 명령창이나 터미널을 실행한다. 크로마 설치를 위해 다음과 같이 터미널에 명령을 입력한다.    pip install chromadb   벡터 데이터베이스에 저장되는 단위는 다음과 같다.    collection = client.create_collectoin(name='test', embedding_function=emb_fn) collection.add(    embeddings=[       [1.1, 2.3, 3.2],       [4.5, 6.9, 4.4],       [1.1, 2.3, 3.2]    ],    metadatas=[       {"uri": "img1.png", "style": "style1"},       {"uri": "img2.png", "style": "style2"},       {"uri": "img3.png", "style": "style1"}    ],    documents=["doc1", "doc2", "doc3"],    ids=["id1", "id2", "id3"], )   여기에서 보는 것과 같이, 벡터 좌표계에 위치할 임베딩 벡터, 벡터에 매달아 놓을 메타데이터와 도큐먼트, ID를 하나의 컬랙션 단위로 저장한다. 이를 통해 벡터 간 유사도, 거리 등을 계산해 원하는 도큐먼트, 메타데이터 등을 얻을 수 있다. 이 때 임베딩 벡터는 미리 학습된 임베딩 모델을 사용할 수 있다.  질의해서 원하는 벡터를 얻으려면 벡터 공간에서 거리 계산이 필수적이다. 이 때 사용하는 함수는 <그림 3>과 같다.    그림 3   컬렉션에 벡터 추가와 질의는 다음과 같다.    collection.add(    documents=["doc1", "doc2", "doc3", ...],    embeddings=[[1.1, 2.3, 3.2], [4.5, 6.9, 4.4], [1.1, 2.3, 3.2], ...],    metadatas=[{"chapter": "3", "verse": "16"}, {"chapter": "3", "verse": "5"}, {"chapter": "29", "verse": "11"}, ...],    ids=["id1", "id2", "id3", ...] ) collection.query(    query_texts=["doc10", "thus spake zarathustra", ...],    n_results=10,    where={"metadata_field": "is_equal_to_this"},    where_document={"$contains":"search_string"} )   여기서, where의 metadata_field를 이용해 다음과 같은 조건 비교 연산이 가능하다.   $eq, $ne, $gt, $gte, $lt, $lte   그리고, 논리 연산자인 $and, $or를 지원한다. 크로마는 향후 워크플로, 가시화, 질의 계획, 분석 기능을 준비하고 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-10-07
[온에어] 옴니버스를 통한 MEP 자동설계 AI 운용사례
캐드앤그래픽스 CNG TV 지식방송 지상 중계   지난 8월 29일 CNG TV는 'Omniverse를 통한 MEP 자동설계 AI 운용사례'를 주제로 방송을 진행했다. 이번 방송에서는 MEP 자동설계 소프트웨어인 스마트 라우팅 AI(Smart Routing AI)와 레빗(Revit)의 BIM(건설 정보 모델링) 정보교환 체계에 대해 소개하고, 엔비디아의 옴니버스(Omniverse)를 통한 BIM의 확장성 확보와 건설제조 분야의 디지털 트윈 운용 가능성에 대해 살펴보는 시간이 마련됐다. ■ 박경수 기자   ▲ 왼쪽부터 한국건설기술연구원 강태욱 연구위원, 에스엘즈 정재헌 대표   이번 CNG TV에서는 한국건설기술연구원 강태욱 연구위원이 사회를 맡고, 에스엘즈 정재헌 대표가 발표자로 참여해 엔비디아 옴니버스를 이용한 MEP(기계, 전기, 배관) 자동설계 AI의 운영 사례에 대해 소개하는 한편, 이 기술이 건설 현장에서 어떻게 적용되는지에 대해 설명했다. 에스엘즈 정재현 대표는 “엔비디아 옴니버스는 디지털 트윈 콘셉트를 기반으로 산업 확장을 목표로 하는 플랫폼으로, 에스엘즈에서 개발한 MEP 자동 설계 AI 제품인 스마트 라우팅 AI라는 라우팅 기술을 활용하여 설계 과정을 간소화할 수 있다”고 말했다. 또한 “실시간 편집 기능을 통해 라우팅 결과를 수정하고 적용할 수 있다”고 이야기했다. 엔비디아 옴니버스는 BIM의 확장성을 향상시키고, 디지털 트윈을 통해 건설 및 제조 분야에서 실시간 데이터 기반의 효율적이고 정확한 의사 결정을 지원하는 도구로 활용되고 있다. 3D 설계 및 시뮬레이션을 위한 도구를 통합하고 상호 운용성을 제공하는 환경을 제공한다는 점이 특징이다. 이 플랫폼은 다양한 산업에서 실시간 협업을 가능하게 하는데, 특히 BIM과 디지털 트윈을 활용한 설계 및 시뮬레이션에 강점을 가지고 있다는 것이 정재헌 대표의 설명이다. 정재헌 대표는 MEP 시스템의 자동 설계에 대해서도 설명했다. 그는 “MEP는 건설 산업에서 필수인 혁신 도구로 자리잡고 있으며, 프로젝트의 효율성을 높이고 오류를 줄이고 비용 절감을 가능하게 하는 핵심 요소로 작용하고 있다”면서, “IT 기술과의 결합을 통해 더 나은 설계 품질과 결과를 제공하는데 중요한 역할을 하고 있다”고 말했다. 정재헌 대표는 건설/제조 분야의 디지털 트윈 운용 가능성에 대해서도 소개하면서, “AI와 디지털 트윈의 결합으로 실시간 데이터 분석 및 시뮬레이션이 가능해지면서, 건설 현장의 의사결정은 보다 데이터 중심적이고 예측 가능한 방식으로 이루어지고 있다”고 말했다. 디지털 트윈은 프로젝트의 효율성과 안정성을 높이며, 전반적인 프로젝트 관리에 기여하는 핵심 기술로 자리잡고 있다. 또한 비용 절감, 일정 준수, 품질 향상 등 다양한 면에서 긍정적인 영향을 미치고 있다.   ▲ 에스엘즈 정재헌 대표      ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-10-04
CAD&Graphics 2024년 10월호 목차
  INFOWORLD   Editorial 17 AI 시대, 한국 제조 산업의 과제는?   Case Study 18 3D 프린팅으로 휴머노이드를 제작한 글룩 로봇 산업의 새로운 가능성을 제시하는 적층제조 20 영화감독이 채택한 언리얼 엔진 버추얼 프로덕션 포토리얼리즘의 장벽 낮추고 영화 제작의 비용 효율 향상   People&Company 23 한국IBM 이은주 사장 AI와 하이브리드 클라우드로 디지털 혁신 지원 26 아비바코리아 김상건 대표 산업 디지털 전환 위한 포괄적 소프트웨어 기술 제공 28 AI & 자율제조 전문기업 인터엑스 제조 데이터 스페이스 플랫폼을 통한 AI 자율제조 생태계 조성   Focus 30 알테어, ‘ATC 2024’에서 최신 AI/시뮬레이션/HPC 기술 공유 32 태성에스엔이, “CAE와 AI의 융합으로 제품 개발 혁신” 35 3D시스템즈, 제조산업을 위한 3D 프린팅 비전과 기술 소개 38 언리얼 페스트 2024, 콘텐츠 융합 시대를 위한 시각화 기술의 생태계 비전 선보여 51 IBM, 산업 혁신을 돕는 AI와 하이브리드 클라우드 기술 소개   Column 54 디지털 지식전문가 조형식의 지식마당 / 조형식 디지털 디톡스에서 디지털 안식년까지, 인간의 조건 56 현장에서 얻은 것 No.18 / 류용효 PLM에 AI를 품다   New Products 40 효율 높이고 다운타임 줄인 CNC 시뮬레이션 소프트웨어 베리컷 9.5 43 무선 통신 및 신호 처리 앱의 개발 간소화 지원 매트랩 2024b / 시뮬링크 2024b 44 멀티 머티리얼 산업용 3D 프린터 FX10 46 클라우드에서 회로도 자동 생성 이빌드 2025 48 AI PC 시대를 위한 성능 및 효율 제공 인텔 코어 울트라 200V 시리즈 프로세서 50 고정밀 3D 프린터와 후가공 시스템의 결합 오리진 2 / 오리진 큐어 65 이달의 신제품   On Air 68 캐드앤그래픽스 CNG TV 지식방송 지상중계 옴니버스를 통한 MEP 자동설계 AI 운용사례 69 캐드앤그래픽스 CNG TV 지식방송 지상중계 생성형 AI와 크리에이티브 콘텐츠의 융합   60 New Books 62 News   Directory 123 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 70 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 LLM RAG의 핵심 기술, 벡터 데이터베이스 크로마 분석 74 새로워진 캐디안 2024 살펴보기 (10) / 최영석  가져오기 기능 소개 Ⅱ 78 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (6) / 천벼리 더 나은 도면 작업을 위한 CAD 협업 기능   Visualization 83 AI로 실시간 3D 경험 만드는 유니티 뮤즈 / 유니티 코리아 LLM 통합으로 뮤즈 챗의 정확성과 신뢰성을 높이는 방법   Reverse Engineering 86 문화유산 분야의 이미지 데이터베이스와 활용 사례 (10) / 유우식 근대 서지 데이터베이스   Analysis 97 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (14) / 나인플러스IT 항공 음향 시뮬레이션을 위한 엔지니어 가이드 Ⅲ 102 설계자를 위한 해석 프로그램, 앤시스 디스커버리 / 김현재 디스커버리 익스플로어 스테이지의 유동해석 주요 업데이트 및 활용법   Mechanical 108 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (5) / 김주현 EZ 톨러런스 어낼리시스 알아보기   Manufacturing 115 산업 디지털 전환을 위한 버추얼 트윈 (5) / 박태준 혁신을 위한 MOM 솔루션의 필요성   PLM 120 영업 성공 리더십 - 솔루션/가치 영업 활동 프로세스 (1) / 홍승철 성과 중심의 가치 솔루션 영업 프로세스         캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기  
작성일 : 2024-09-30
공간정보 GIS 기반 IoT 데이터 분석 스타일 대시보드 만들고 서비스해보기
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 공간정보 기반 서비스 웹 애플리케이션을 개발하기 위해 장고(Django)와 부트스트랩(Bootstrap)을 사용해 GIS 기반 IoT 데이터 분석 스타일의 대시보드 개발 방법을 간략히 정리하고, 개발 후 서비스하는 방법을 살펴본다.  이를 통해 공간정보 기반 IoT 장비를 하나의 대시보드로 관리하고 분석하는 것이 가능하다. 여기서 공간정보는 GIS, BIM, 3D 점군(point cloud) 데이터와 같이 공간상 좌표로 표현되는 모든 정보를 말한다.    ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1. IoT 대시보드 웹 앱   이 글은 개발자가 애용하고 있는 파이썬(Python) 기반의 장고 플랫폼을 사용한다. 부트스트랩은 반응형 웹 사이트를 개발하기 위한 가장 인기 있는 HTML, CSS 및 자바스크립트(JavaScript) 프레임워크이다. 이번 호에서는 다음의 내용을 이해할 수 있다.  부트스트랩 대시보드 UI 라이브러리 사용법 장고 프레임워크의 데이터 모델과 웹 UI 간의 연계 방법 GIS 맵 가시화 및 이벤트 처리 실시간 IoT 데이터에 대한 동적 UI 처리 방법   요구사항 디자인 다음과 같은 목적의 웹 앱 서비스를 가정한다.  GIS 기반 센서 위치 관리 IoT 데이터셋 표현 IoT 장치 관리 IoT 장치 활성화 관리 KPI 표현 계정 관리 기타 메뉴    개발 환경 준비 개발 도구 개발에 필요한 도구는 다음을 사용한다. UI : bootstrap 웹 앱 프레임워크 : DJango GIS : leaflet, Cesium 데이터 소스 : sqlite, spreadsheet, mongodb 구현된 상세 소스코드는 다음을 참고한다. https://github.com/mac999/IoT_simple_dashboard/tree/main   장고 기반 웹 앱 프로젝트 생성 장고는 파이썬으로 작성된 고수준의 웹 프레임워크로, 웹 애플리케이션 개발을 빠르고 쉽게 할 수 있도록 도와준다. 장고는 ‘The web framework for perfectionists with deadlines’라는 슬로건을 가지고 있으며, 많은 기능을 내장하고 있어 개발자가 반복적인 작업을 줄이고 핵심 기능에 집중할 수 있도록 한다. 다음과 같이 명령창을 실행하고, 장고 웹 앱 프로젝트를 생성한다.    python -m venv myenv source myenv/bin/activate  pip install django pandas django-admin startproject iot_dashboard cd iot_dashboard python manage.py startapp dashboard   생성된 프로젝트 폴더 구조는 <그림 2>와 같다.   그림 2   디자인 스타일 고려사항 부트스트랩 레이아웃 표현 부트스트랩은 웹 개발에서 널리 사용되는 프론트엔드 프레임워크로 주로 HTML, CSS, 자바스크립트로 작성되어 있다. 트위터의 개발자에 의해 처음 만들어졌으며, 웹 애플리케이션의 개발 속도를 높이고 반응형 디자인을 쉽게 구현할 수 있도록 도와준다.  부트스랩의 그리드 시스템은 12개 열로 디자인된다. 이는 유연성과 사용 편의성을 제공하기 위한 디자인 결정이다. 반응형 웹사이트를 구축하는 데에 많이 사용된다.  참고로, 12라는 숫자는 많은 약수(1, 2, 3, 4, 6, 12)를 갖고 있어 다양한 열의 조합으로 균등하게 나눌 수 있다. 이를 통해 분수나 번거로운 나머지 없이 다양한 레이아웃을 만들 수 있다. 유연성 : 12개의 열을 사용하면 다양한 화면 크기와 디바이스에 적합한 레이아웃을 쉽게 만들 수 있다. 각 요소가 차지하는 열의 수를 조정하여 대형 데스크톱 화면, 태블릿 및 스마트폰에서 잘 보이는 반응형 디자인을 만들 수 있다. 이해하기 쉬움 : 12개의 열을 기반으로 한 그리드 시스템은 디자이너와 개발자에게 직관적이다. 그리드 내에서 요소가 어떻게 동작할지 시각화하고 계산하기 쉽기 때문에, 일관된 레이아웃을 생성하고 유지하기가 간단하다. 디자인 관행 : 12개의 열을 사용하는 그리드 시스템은 부트스트랩 이전부터 다양한 그래픽 디자인 및 레이아웃 소프트웨어에서 사용되어 왔다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-09-03