• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "프로토타입"에 대한 통합 검색 내용이 341개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
폼랩, 빠르고 가장 경제적인 3D 프린터 폼 4/폼 4B 출시
폼랩이 자사의 4세대 데스크톱 레진 3D 프린터인 폼 4(Form 4)와 폼 4B(Form 4B)를 출시했다. 폼 4와 폼 4B는 기존 폼 3보다 최대 5배 빠른 속도로 평균 부품 제작을 2시간 내외로 줄여 제품 디자이너 및 엔지니어, 제조업체, 헬스케어 분야의 생산성 향상과 시장 출시 기간 단축을 지원한다. 폼 4와 폼 4B는 폼랩의 새로운 저강도 디스플레이(Low Force Display : LFD) 프린터 엔진과 향상된 재료 라이브러리, 새로운 자동 후처리 시스템 및 직관적인 사용자 경험 등이 특징이다. 소재에 따라 폼 3+보다 최소 2배에서 최대 5배 빠른 속도로 제품을 인쇄해 시제품 반복 제작 또는 mSLA(광조형) 기술을 사용한 일괄 생산이 가능하다. 시간당 수직 프린트 속도는 최대 100mm로 대부분의 제품은 2시간 이내, 소형 부품은 몇 분 이내에 제작할 수 있다. 또한 레이저 및 검류계 기술에서 출발해 초고출력 백라이트(16 mw/㎠), 독자적인 이형 텍스처, LPU 4(Light Processing Unit 4), 이중 레이어의 유연한 필름 레진 탱크를 탑재했다.     신뢰성과 경제성도 갖추었다. 오래 지속되는 재료 탱크(7만 5000 레이어 이상)와 광 처리 장치(100만 레이어 이상), 40% 낮은 레진 가격, 30% 더 큰 프린트 볼륨, 3.5배 더 높은 처리량으로 부품당 비용을 최대 40% 절약할 수 있으며, 정밀 가열, 힘 감지 및 이물질 감지 기능이 있어 높은 수준의 프린트 성공률을 제공한다는 것이 폼랩의 설명이다. 50미크론 픽셀, 높은 기준 조명, 고급 픽셀 스무딩, 가벼운 터치 지원이 가능해 다양한 상황에서 정확하게 맞는 부품 생산이 가능하며, 자동 레진 처리, 즉각적인 재료 변경, 자동 후처리 및 퀵 릴리스(신속 분리) 기술이 탑재된 빌드 플랫폼을 통해 누구나 15분이면 3D 프린트 방법을 손쉽게 습득할 수 있다. 이에 더해 폼랩은 재료 라이브러리에 폼 4 에코시스템을 활용해 폼 3보다 2~5배 더 빠르게 프린트할 수 있는 새롭게 재구성된 4가지 범용 레진, 고속 프로토타입 및 교정용 모델 제작을 위한 고속 모델 레진, 정확한 치과용 모델이 제작 가능한 정밀 모델 등 6가지 새로운 레진을 추가했다. 폼 4는 폼랩의 재료 라이브러리에서 17개 이상의 다른 성능 재료를 사용할 수 있도록 검증이 완료되었으며, 새로운 재료가 정기적으로 추가될 예정이다. 폼 4B는 15개의 추가 생체 적합성 재료와 호환되어 치과 및 의료 산업의 혁신을 지원한다. 마이크로소프트의 마크 혼슈케(Mark Honschke) 적층 가공 프로토타이핑 책임자는 “마이크로소프트의 모든 하드웨어 카테고리를 지원하는 폼랩이 출시한 폼 4는 엔지니어링 등급의 재료가 필요한 프로젝트에 있어서 빠른 프린트 시간으로 고성능 부품을 제작하는 것은 물론, 24시간 내 여러 번의 반복 제작이 가능해졌다”고 말했다. 포드 자동차의 브루노 알베스(Bruno Alves) AM/IM 개발 엔지니어는 “폼 4의 속도와 다양한 소재 덕분에 매일 여러 개의 프로토타입과 제조 보조 부품을 제작할 수 있게 됐다”면서, “폼 4는 부품 설계 및 생산 방식을 바꾸어 제품 개발의 효율성을 높이는 데 도움을 주고 있다”고 말했다. 폼랩의 맥스 로보브스키(Max Lobovsky) CEO는 “13만 대 이상의 프린터와 3억 개 이상의 부품을 제작하며 얻은 강점과 통찰력을 바탕으로 출시한 SLA 프린터 폼 4는 폼랩과 고객뿐 아니라 3D 프린팅 업계 전체에 큰 도약이 될 것”이라면서, “폼 4의 안정성과 새로운 차원의 속도는 모든 산업에서 우리의 고객이 신제품을 제작하고 개발하는 방식을 변화시킬 것”이라고 전했다.
작성일 : 2024-04-18
다쏘시스템, 아레나의 빠르고 지속가능한 가상 프로토타입 제작 지원
다쏘시스템은 글로벌 스포츠 라이프스타일 & 스윔웨어 브랜드인 아레나가 고성능 제품의 신속하고 지속가능한 제공을 위해 자사의 3D익스피리언스 웍스(3DEXPERIENCE Works)를 활용한다고 밝혔다. 2019년에 출시된 3D익스피리언스 웍스는 솔리드웍스 고객과 중소기업을 위한 다쏘시스템의 3D익스피리언스 플랫폼(3DEPXPERIENCE Platform) 애플리케이션 포트폴리오다. 다쏘시스템은 솔리드웍스의 사용 편의성을 확장한 3D 익스피리언스 웍스를 통해 아레나의 비즈니스 요구사항에 맞는 클라우드 기반의 설계, 시뮬레이션 및 협업 애플리케이션 포트폴리오를 제공할 예정이다. 아레나 팀과 파트너는 버추얼 트윈상에서 실시간 정보와 피드백을 바탕으로 협업하여 제작, 테스트 및 최적화하는 동시에 물리적 프로토타입을 위한 시간과 리소스를 줄일 수 있다. 실제로 아레나는 다쏘시스템 솔루션을 통해 수경 프로토타입 제작 주기를 70% 단축하고, 출시 기간을 앞당겼다.     아레나의 로리스 발레시(Loris Vallesi) IT 및 비즈니스 솔루션 책임자는 “아레나는 다쏘시스템 3D익스피리언스 플랫폼과 3D익스피리언스 웍스를 통해 생태계를 구축하고 있으며, 이는 설계자들이 단일 환경에서 함께 작업하고 신속하게 정보를 교환할 수 있도록 도와 파트너와의 협업에 큰 도움이 된다”라며, “버추얼 트윈을 사용하면 여러 제품의 샘플을 만들거나 타사 제품 샘플을 활용할 필요 없이 설계 환경의 모든 것을 시뮬레이션할 수 있어 탄소 배출량을 줄이는 것은 물론, 개선된 워크플로를 통해 전사의 프로세스를 지속가능하고 고객에게 성능, 스타일, 편안함, 착용감을 제공할 수 있다”라고 말했다. 다쏘시스템의 지앙 파올로 바씨(Gian Paolo Bassi) 3D익스피리언스 웍스 수석 부사장은 “다쏘시스템의 클라우드 기반의 솔루션은 제품 속성과 성능을 효율적으로 모델링 및 시각화하여 예측하고 보다 지속가능한 방식으로 혁신에 기여하는 데 필요한 기능을 제공하며, 우리는 앞으로도 계속해서 사용자에게 더 많은 혜택을 제공하기 위해 제품을 개선할 것”이라고 전했다.
작성일 : 2024-03-26
엔비디아, “3D 콘텐츠도 생성형 AI로 만든다”
엔비디아가 비주얼 콘텐츠 제공업체를 위해 새로운 이미지 제어 기능인 3D 생성형 AI를 출시한다고 발표했다. 이는 비주얼 생성형 AI를 위한 멀티모달 아키텍처인 엔비디아 에디파이(NVIDIA Edify)에 기반하고 있다. 3D 애셋 생성은 에디파이가 개발자와 비주얼 콘텐츠 제공업체에 제공하는 최신 기능 중 하나로, 개발자가 AI 이미지 생성을 더욱 창의적으로 제어할 수 있도록 돕는다. 멀티미디어 콘텐츠 및 데이터 제공업체인 셔터스톡(Shutterstock)은 에디파이 아키텍처 기반으로 만들어진 API(애플리케이션 프로그래밍 인터페이스)에 대한 얼리 액세스를 제공한다. 에디파이 아키텍처는 크리에이터가 텍스트 프롬프트나 이미지를 사용해 가상 장면의 3D 오브젝트를 빠르게 생성할 수 있도록 한다. 비주얼 콘텐츠 크리에이터이자 마켓플레이스인 게티이미지(Getty Images)는 상업적으로 안전한 생성형 AI 서비스에 맞춤형 미세 조정 기능을 추가해 기업 고객이 각자의 브랜드 가이드라인과 스타일에 맞는 비주얼을 생성할 수 있도록 지원할 예정이다. 또한 이 서비스에는 고객이 생성된 이미지를 더욱 세밀하게 제어할 수 있는 새로운 기능이 추가된다. 엔비디아 GTC에서 발표된 추론용 마이크로서비스 모음인 엔비디아 NIM을 통해 개발자는 게티이미지와 셔터스톡에서 사전 훈련된 에디파이 모델을 API로 테스트해 볼 수 있다. 또한 엔비디아 DGX 클라우드에 구축된 AI 파운드리인 엔비디아 피카소(Picasso)를 통해 에디파이 아키텍처를 사용해 자체 생성형 AI 모델을 훈련하고 배포할 수 있다.     셔터스톡의 3D AI 서비스는 얼리 액세스로 제공된다. 이 서비스를 통해 크리에이터는 세트 드레싱(set dressing)과 아이디어 구상을 위해 가상 오브젝트를 생성할 수 있다. 이 기능을 사용하면 장면 프로토타입 제작에 필요한 시간을 줄일 수 있어, 아티스트는 캐릭터와 오브젝트 제작에 더 많은 시간을 할애할 수 있다. 크리에이티브 전문가는 이 도구를 사용해 텍스트 프롬프트나 참조 이미지에서 애셋을 빠르게 생성하고 인기 있는 3D 포맷 중에서 선택해 파일을 내보낼 수 있다. 에디파이 3D 기반 서비스에는 생성된 콘텐츠를 필터링하는 안전 장치도 내장되어 있다. 한편, 엔비디아는 에디파이의 확신을 위해 다양한 협력을 진행할 예정이라고 소개했다. 일례로, 엔비디아와 어도비(Adobe)는 에디파이를 기반으로 한 새로운 3D 생성 AI 기술을 수백만 명의 파이어플라이(Firefly)와 크리에이티브 클라우드(Creative Cloud) 크리에이터에게 제공하기 위해 협력하고 있다. HP와 셔터스톡은 디자이너에게 다양한 프로토타입 옵션을 제공하는 에디파이 3D를 사용해 사용자 맞춤형 3D 프린팅을 개선하기 위한 협업을 GTC에서 선보였다. 셔터스톡의 3D AI 생성기를 사용하면 콘셉트를 빠르게 반복해 디지털 애셋을 만들 수 있다. HP는 자동화된 워크플로를 통해 디지털 애셋을 3D 프린팅 가능한 모델로 변환할 수 있으며, HP 3D 프린터는 이러한 모델을 실제 프로토타입으로 변환시켜 제품 디자인에 영감을 불어넣는다. 또한 셔터스톡은 텍스트나 이미지 프롬프트에서 생성된 360 HDRi 환경을 사용해 경량의 3D 장면을 조명하는 에디파이 기반 도구를 구축하고 있다. 다쏘시스템은 3D 콘텐츠 제작을 위한 애플리케이션인 3D익사이트(3DEXCITE)를 통해 CGI 스튜디오 카타나(CGI studio Katana)와 함께 엔비디아 옴니버스(Omniverse)를 기반으로 한 워크플로에 셔터스톡의 생성 360 HDRi API를 통합하고 있다.
작성일 : 2024-03-20
전자기 해석 소프트웨어, Altair Flux
전자기 해석 소프트웨어, Altair Flux     주요 CAE 소프트웨어 소개   ■ 개발 및 자료 제공 : 알테어, 070-4050-9200, www.altair.co.kr Flux(플럭스)는 전자기와 열의 특성, 정상 상태 및 과도 상태를 시뮬레이션하는 소프트웨어이다. Flux는 설계자로 하여금 프로토타입 제작 횟수를 줄이면서 더 짧은 시간에 최적화된 고성능 제품을 생성할 수 있도록 지원한다. Flux는 알테어의 멀티피직스 최적화 플랫폼과의 강력한 커플링을 통해 하위 시스템의 즉각적인 상호작용을 해하고 전체 설계 프로세스를 간소화한다. 1. 주요 특징 ■ 광범위한 사용 분야 : 자기, 전기, 열 커플링 해석, 역학 커플링, 고조파 및 과도 현상 해석 등 다양한 분야에서 사용하고 있다. ■ 유연성 : Flux의 개방된 환경에서 스크립팅 도구와 매크로 작성 기능, 멀티파라메트릭 해석 등 다양한 옵션과 도구를 제공한다. 모델과 솔버를 세밀하게 조정하고 시뮬레이션 프로세스를 효율적으로 캡처 및 자동화한다.   2. 주요 기능 ■ 쉽고 유연한 메시 생성 : Flux는 2D 및 3D 상황에서 혼합하여 사용할 수 있는 여러 메시 기술을 제공하여 사용자가 정확한 메시를 신속하게 얻을 수 있도록 한다. 알테어의 HyperWorks나 SimLab에서 구성한 복잡한 형상의 메시를 가지고 올 수 있고, 복잡한 3D CAD 입력 파일을 효율적으로 처리할 수 있다. ■ 고성능 계산을 위한 고급 물리적 특성 : 전자기 장치의 저주파 동작을 시뮬레이션하기 위한 폭 넓은 물리적 모델을 제공한다. 전자계 해석, 열 해석, 열 커플링(전자계-열, 자기-열), 내장형 전기 회로 및 강체 운동 기능 등을 포함한다. ■ 멀티피직스 : Flux는 복잡한 3D 모델을 효율적으로 처리하고 솔빙하며, SimLab의 멀티피직스 환경에서 전자기-진동 연계 해석을 위한 작업과정을 쉽게 자동화할 수 있다.      좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-02-12
시트 해석 소프트웨어, Virtual Seat Solution
시트 해석 소프트웨어, Virtual Seat Solution   주요 CAE 소프트웨어 소개   ■ 개발 : ESI, www.esi-group.com ■ 자료 제공 : 한국이에스아이, 02-3660-4500, www.esi-group.com ESI의 VSS(Virtual Seat Solution)는 시트의 가상 프로토타이핑에 특화된 시트 전용 해석 솔루션이다.  시트 제조업체와 공급업체들은 VSS로 비용이 많이 드는 물리적 프로토타입 없이도, 가상으로 설계, 제조, 시험, 사전 검증을 포함하여 전반적인 문제점을 개선할 수 있다. 또한, VSS는 시트 제조 과정을 고려하기 때문에, 시트 성능을 보다 정밀하게 예측할 수 있다.  전용 더미와 인체 모델을 이용해서, 사용자는 정밀하고 정확하게 시트와 승객 사이의 상호작용을 반영하여 시트 성능을 평가할 수 있다. 1. 제품의 주요 기능 및 특징 (1) Single Core Model 단일 모델(Single core model)을 기반으로 물리적 프로토 타입의 수를 줄여 시간과 비용을 절약할 수 있다. (2) Digital Mockup 사전 인증에 이르기까지의 모든 설계, 제조 및 시험을 가상 시트 프로토 타입으로 수행할 수 있다. (3) Whiplash 충돌 안전 설계 요구 사항을 초기에 관리함으로써 팀 내에서 시너지 효과를 향상시킬 수 있다. 2. 주요 적용 분야 (1) 디지털 목업 제작 ■ 시트 제조 과정 검증 ■ 시트 커버 조립 해석 및 검증 ■ 완성 시트 검증(H-point, 정하중/점하중, 요추 돌출량)   (2) 시트 안락감 평가 ■ 체압 평가 ■ 냉/난방 성능 평가 ■ 인간 공학적 인체 포지션 평가   (3) 시트 안전성 평가 ■ 시트 구조 강성 평가 ■ 목 상해 평가     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-02-12
Visual Crash Studio : 충돌 구조물의 설계 해석 및 최적화 프로그램
개발 : Impact Design Europe 주요 특징 : 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화 지원, SFE 및 SBE 기반으로 충돌하중을 받는 박판구조물의 설계/해석/최적화, 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과 도출, 사용자 친화적인 통합 작업 환경 등 사용 환경 : 윈도우 PC/랩톱 자료 제공 : 브이에스텍   그림 1. 유한요소 모델   그림 2. VCS 모델   차량 충돌 안전 법규 및 상품성 평가는 실제 충돌 상황을 최대한 반영하고 승객의 사망 및 심각한 상해를 줄이기 위하여 지속적으로 강화되고 있고, 자동차 제조업체는 이러한 평가 프로토콜에 따라 차량의 안전 등급을 높이기 위해 노력하고 있다. 다양한 충돌 테스트는 제품 설계 및 개발 프로세스를 가속화하기 위해 가상 엔지니어링 모델링 및 시뮬레이션 기술에 크게 의존하는 차량 제조업체에 상당한 부담을 주고 있다. 일반적으로 각 설계 단계에서 CAD 모델 준비, 각 하중 케이스/물리적 테스트에 대한 유한요소(FE) 모델 생성, 평가 및 개선 작업이 필요하므로 복잡하고 많은 시간이 소비되어, 간편하고 빠르게 차량의 충돌 성능을 평가하고 개선하는 것이 큰 관심사이다. 특히, 프로토타입 제작 및 개발 프로세스 후반의 설계 변경으로 인한 시간과 비용을 줄이기 위해서는 초기 콘셉트 단계에서부터 다양한 설계에 대한 충돌 성능의 평가 및 개선을 통한 충돌 성능의 최적화가 필요하다. 매크로요소법(Macro Element Method)을 사용하는 Visual Crash Studio(VCS)는 비전형적 모델링 및 시뮬레이션 접근 방식으로 단순한 설계 환경에서 빠르고 신뢰할 수 있는 결과를 제공하며, 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화가 가능한 CAE 소프트웨어이다.   그림 3   VCS의 주요 특징 매크로요소법, 수퍼폴딩요소(SFE : Super-folding Element) 및 수퍼빔요소(SBE : Super-beam Element) 개념을 기반으로 객체지향유한요소(OOEF : Object Oriented Finite Element) 정식화와 결합된 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화가 가능 다양한 재료의 박판구조물의 대변형 붕괴 거동의 예측에 성공적으로 적용이 가능하며, 유한요소 솔버와 경쟁이 아닌 보완 관계 매크로요소법에 기반한 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과의 도출을 통해 설계 초기 단계에서부터 충돌 부재의 충돌 성능 분석 및 최적화 가능 사용자 친화적인 통합(all-in-one) 작업 환경 주요 기능 : Material Editor, Cross Section Editor, 3D environment, Cross Section Optimizer, Chart Wizard 단면 수준에서 부재의 충돌 특성 파악 및 설계를 위한 2D 환경 제공 부재, 어셈블리 및 전체 구조물 등의 복잡한 충돌 해석 및 설계를 위한 3D 환경 제공 2D 및 3D 환경에서 독립적으로 설계 수정 및 계산이 가능하며, 각 환경에서의 수정 및 계산 결과는 자동으로 전 모델에 반영 통합 전/후처리 도구 : 솔버와 통합된 전/후처리 프로세스로 모델링 및 설계 변경이 간단하여 다양한 설계안의 충돌 성능 평가가 빠른 시간에 가능하고 챗 위저드(Chart Wizard) 등으로 다양한 결과의 비교 분석이 용이   그림 4. VCS의 일반적 설계 및 계산 프로세스   VCS의 작업 프로세스 박판 충돌구조물의 설계, 해석 및 최적화는 통합 환경에서 수행되며, 일반적인 작업 프로세스는 <그림 4>와 같다. <그림 5>는 VCS의 메인 뷰(Main View) 화면이며, 메인 툴바(Main Toolbar)는 작업 프로세스에 따른 툴 그룹(File, Model, Calculate and Results, Analysis, View 및 Help Tool)으로 구성된다. ‘Model Tool’은 모델 생성 프로세스에 필요한 모든 도구(Select, Nodes, Beams, Spine-line, Rigid, Contact, Group, Special, Measure 등)를 제공하며, ‘Calculate and Results Tool’은 계산 및 결과 비교에 유용한 처리 장치(Processing Unit), Chart Wizard, 애니메이션 도구 모음 등의 기능이 있다. ‘Analysis Tool’은 단면자동분석(Cross Section Analyzer) 기능 전용이며 ‘View Tool’은 추가 3D 보기 도구를 제공한다. ‘Help Tool’에서는 VCS 소프트웨어의 모든 기능에 대한 최신 설명서와 도움말 정보를 찾을 수 있다. 또한 개발사 홈페이지에서도 모든 사용 매뉴얼과 따라하기 매뉴얼을 다운로드할 수 있다.   그림 5. VCS의 메인 뷰 화면   VCS의 작업 프로세스의 순서에 따른 주요 기능은 다음과 같다.   FE Mesh/Initial geometry import 다양한 FE 데이터 및 CAD 지오메트리(geometry) 불러오기 기능을 제공한다.   재료 정의(Material Editor) 재료상수(Material Constraint) : Hardening Factor, Mass Density, Poisson Ratio, Proof Strain, Proof Stress, Young Modulus 응력-변형률(Stress-Strain) 특성 : Array, Power Law, Polynomial, User Function-2D, Array 3D 변형률속도(strain rate) 특성 : Cowper Symonds, Modified Cowper Symonds, User defined function-3D, Johnson Cook   Fracture Indicator : Surface strains, Cockcroft-Latham/Norris LS-DYNA MAT24(MAT_PIECEWISE_LINEAR_PLASTICITY) 호환 Material & Characteristic Repository 기능   2D Structure(Cross Section Editor) : Cross Sections & Cross Section analysis Cross Section Editor는 단면의 충돌 성능 최대화를 위한 설계, 계산 및 최적화를 위한 편집기이다. 여기서 처리된 단면은 3D 수퍼빔요소(SBE)에 사용되며, Cross Section Editor의 이론적 배경의 핵심은 수퍼폴딩요소(SFE)이다. Point, plate, segment, SFE 및 connection으로 모든 단면을 생성할 수 있으며, 쉽고 편리한 단면 형상 및 재료 특성의 변경으로 다양한 디자인의 빠른 변경이 가능하다. Cross Section 계산 결과 단면 상태에서는 7가지의 충돌 거동(Axial Response, Design Recommendations, Bending Response, Lateral Response, Denting Response, Torsion Response, Elastic Properties-축/굽힘/전단 강성 등)을 결과로 표시 각 결과는 주어진 붕괴 응답 모드에 대한 특성 파라미터((최대 하중 및 모멘트, 에너지 흡수 능력, 굽힘힌지의 총 회전 등과 같은 변형제한 값)의 정보 표시 Design Recommendations   효과적인 축방향 붕괴를 위한 단면 최적화 프로세스 : 결함이 있는 단면은 점진적 붕괴가 발생하지 않고 불규칙한 접힘으로 인해 많은 에너지 흡수가 적음 상세 단면 형상 근사화를 위한 단순화 모델링 과정을 통한 결함 제거 : 단면 수준에서 허용 가능한 접힘 모드를 선택하면 다음단계로 단면에 대한 각 SFE에 대해 결함 제거 과정을 수동으로 진행 단면 계산 결과 비교 툴 제공 및 결과 report 생성   3D Structure : Super Beams 3D 가상 설계 공간은 SBE를 기반으로 한 부재 및 박판구조물의 모델링과 계산에 사용 유한요소 모델로부터 SFE를 바로 생성할 수 있는 도구 제공 VCS 3D 모델을 구성하는 모든 객체는 빔(beam)과 강체(rigid body)를 정의할 수 있는 노드(node)로 구성되며, 노드는 VCS 객체에 대한 공간 참조 point로 사용 노드 속성 : 형상(CoG, Origine), 질량(mass, Concentrated Mass) 및 관성(Concentrated Inertia, Principal Moments, Transformed Moments) SBE는 두개의 노드로 구성되고 2D 계산에서 사용된 단면 형상이 적용되며, 하나의 노드에 다수의 SBE가 연결될 수 있다. 또한 동적 해석(초기/구속 조건 등)을 위해 필요한 많은 데이터를 포함한다. 3차원 공간에서 구조물(부재, 어셈블리, 전체 차량)의 생성을 위해서는 Node, Beam, Rigid body 등이 사용되며, 매크로요소법에 기반한 SFE가 포함된 SBE의 생성으로 시작 다양한 충돌 하중조건에 대한 풀 카(full car)의 해석을 위해 VCS 전용 배리어가 제공 차량 충돌 설계를 위해 매크로요소법을 사용하는 데 있어 유한요소법 대비 주요 장벽은 구조물 조인트의 강성을 정확하게 모델링하는 것이다. VCS는 구조적 조인트에 대해 교차하는 하중 전달 빔의 기하학적 중심에서 연결되며, X, Y 및 Z 오프셋은 위치와 길이를 수정하기 위해 교차하는 빔의 시작과 끝에 적용할 수 있어 구조물의 실제 형상과 조인트의 강체 코어를 보다 사실적으로 근사화할 수 있다.   3D : Additional elements & Mass distribution 엔진 및 기어박스와 같이 충격 하중 동안 거의 변형되지 않는 부품은 강체로 모델링 강체를 생성하기 위해 부품의 무게 중심에 있는 노드가 정의되고 이 노드에 총 질량 및 관성 행렬(inertia matrix)이 할당 노드는 나머지 구조물에 직접 연결되는 반면, 여러 장착 위치의 경우 간단한 원형 단면을 갖는 SBE를 사용할 수 있음 3D 환경에서 생성된 각 객체의 질량 정보는 해당 요소가 정의된 노드에 위치하며, 추가 질량은 노드에 집중질량으로 정의하거나 정의된 질량/또는 밀도로 새로운 강체를 생성하여 추가   Initial & Boundary conditions 및 Contact settings 초기 및 경계조건(Kinematic Constraints-Angular Velocities & Linear Velocities, Concentrated Loadings- Forces & Moments)은 모두 노드에 정의 전체 모델이 구축되면 접촉을 정의하며, 접촉 정의에 필요한 부품의 부피를 나타내기 위해 질량이 없는 강체(sphere, cone, cylinder and box 형상)가 이 절점에서 생성되고, 모델의 형상에 따라 배치한 후 접촉 정의 - 전용 접촉 감지 루틴으로 물리적 접촉 메커니즘을 구현 변형체의 접촉 정의를 위해 변형가능 배리어(Deformable barrier) 툴 제공   Solution Settings Solution Explorer tree에서 자세한 솔루션 파라미터를 정의 : Attributes, Animation Progress, Time Stepping Routine, Fields and global parameters, Settings 및 Statistics section 특히, Statistics section은 모델 확인의 마지막 단계에서 유용하며, 모델의 요소 수, 질량 및 무게중심에 대한 정보 제공   Calculations & Animation 계산 프로세스는 Process Unit에서 한번의 클릭으로 진행되며, Process Unit 창에서 시각적으로 진행 상황을 모니터링 전체 차량 충돌 해석은 일반 데스크탑 PC/노트북에서 1분 내외로 계산이 완료되며, 다중 계산이 가능하여 계산시간 추가 단축 가능 계산 프로세스가 완료된 후 하중 조건에 따른 해석 결과를 애니메이션으로 확인할 수 있으며, SBE를 색깔 별로 간단히 구분하여 SBE의 순간 변형 상태를 쉽게 분석   Results : Chart Wizard 애니메이션과 함께 다양한 결과를 그래프로 생성하며, 사용자는 VCS 결과 파일 내에서 어느 객체든 선택 후 결과를 볼 수 있음 3D view에서 선택한 VCS 모델의 각 객체는 Selection Window에 자동으로 추가   VCS의 도입 효과 설계 초기 콘셉트 안으로 충돌 부재 단면 최적화가 가능하여 제품 개발 프로세스 촉진 장비 도입/운영 비용 절감 : 매크로 요소법에 기반한 빠른 계산으로 랩톱에서도 수초 또는 수분내에 계산이 가능 단순한 작업 환경에서 간편한 설계 변경이 가능하여, 해석 엔지니어가 아닌 설계 엔지니어도 쉽게 활용 가능   VCS의 주요 적용 분야 자동차 산업 및 조선산업 등에서 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화 충돌/충격 부재의 단면 충돌 특성 평가/개선 및 최적화 컴포넌트(에너지 흡수 구조 부품, bumper back beam, FR Side 멤버, Fillar component 등)의 충돌 특성 평가 및 개선 부분 충돌 모델 및 풀 카 충돌 모델의 충돌 성능 평가 및 개선   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-02-01
헥사곤, “국내 방위 및 항공 분야 기술 지원 확대한다”
헥사곤 매뉴팩처링 인텔리전스(헥사곤MI)는 최근 관심이 높아진 국내 우주항공 및 방위 산업의 설계, 엔지니어링과 제품 생산 후 품질검사 및 MRO(Maintenance, Repair and Operation)에 이르기까지 엔드투엔드 솔루션 도입을 위한 맞춤형 솔루션 제공과 전문 인력을 배치해 지원을 강화할 것이라고 밝혔다. 2023년 발표된 스톡홀름국제평화연구소(SIPRI) 통계에 따르면, 한국은 2013~2017년 대비 2018~2022년 방산 수출 규모가 75% 이상 급성장하면서 세계 1위를 기록했다. 글로벌 정세 변화로 지난해 세계 군비 지출이 사상 최대인 2조 2400억 달러로 급증한 데에 이어, 2024년에도 군비 지속 증가가 예상돼 국내 방산 기업의 수주가 늘어날 것으로 전망된다. 빠른 수요 변화와 각 국가별 까다로운 요구조건을 충족하려면, 국내 제조사들의 민첩한 제품 설계, 개발, 시운전, 양산 및 품질 관리까지 다양한 환경조건을 고려한 기존 제품 응용, 신제품 구조해석 등을 통해 효율적인 비용과 시간 운용이 필수이다. 미국항공우주국(NASA)의 구조 안정성 시뮬레이션 프로젝트에서 개발된 헥사곤의 유한요소해석 솔버 ‘MSC 나스트란(MSC Nastran)’은 우주선과 항공기, 자동차 등의 개발에 사용되고 있다. 또한 주요 글로벌 항공기 제조사에서 이미 널리 활용하며 검증된 모델링 및 구조해석 솔루션 ‘MSC 에이펙스(MSC Apex)’가 지원하는 API 자동화 기술은 작업 소요 시간을 단축시키고, 기존 디자인 응용 및 신규 설계에 필요한 인적자원 및 인적 오류를 감소시킬 수 있다.   ▲ 사브의 스켈다 V200 무인항공기. 개발 과정에 헥사곤의 아담스를 활용했다.   헥사곤의 다물체 동역학 시뮬레이션 솔루션 ‘아담스(Adams)’는 현실감 높은 시뮬레이션을 통해 기능 검증을 위한 가상 시제품 제작과 테스트를 지원한다. 한 사례로, 에어버스는 유럽 항공 안전 기관(EASA)의 요구 사항을 충족시키기 위한 테스트를 아담스 시뮬레이션으로 대체해 A350 항공기 인증 과정에서 약 300만 유로의 비용과 4개월의 시장 출시 기간을 단축시킬 수 있었다. 또한 스웨덴 방위산업체 사브(Saab)는 스켈다 V200(Skeldar V200) 무인항공기 개발에서 아담스를 통해 프로토타입 수정과 테스트를 거쳐 회전익 안정성 문제를 해결해 약 6개월의 시간을 절약했다.  한편, MRO 산업은 통상 납품의 1.5~2배 규모 시장으로 평가된 고부가 가치 사업으로, 자동화와 무인화를 견인할 로봇·디지털 설비 도입으로 주목받고 있다. 헥사곤의 CAE 소프트웨어 ‘시뮤팩트 애디티브(Simufact Additive)’는 노후 항공기 수리를 위한 적층 제조에 활용되어 항공기 부품 수리에 드는 시간과 비용을 단축시켰다. 또한 이에 앞서 초대형 측정물의 고정밀 고속 측정에 필요한 3차원 측정기 및 레이저 스캐너와 트래커 등의 이동식 측정 장비를 통해 생산된 항공 부품 제품의 제작 정밀도와 품질을 검사할 수 있다. 헥사곤은 올해 국내 주요 국방 및 항공 제조업체와의 기술 세미나를 비롯해 항공 분야 케이스 스터디, 국방 항공 분야 웨비나를 개최해 항공우주 제조 분야의 디지털 솔루션 도입을 지원할 예정이다. 또한 지난 10년간 항공우주학회의 특별회원사로서 자사의 소프트웨어를 학생들에게 무상으로 지원하고, 학술대회 참가를 통해 기술 연구 교류를 지속해 관련 학계와의 협력과 소통을 이어나가고 있다. 한국 헥사곤 매뉴팩처링 인텔리전스의 성 브라이언 사장은 “전 세계적인 방산업계의 수요 증가에 국내 방산업체들이 헥사곤의 다양한 솔루션을 활용할 경우, 기존 제품을 강화하고 신제품을 빠르게 개발해 출시하여 보다 신속히 대응할 수 있을 것으로 생각한다”면서, “국내 기술력이 글로벌 시장에서 경쟁력을 갖고, MRO 분야와 같은 유망 업계에서 입지를 강화할 수 있도록 기술과 전문 인력 배치를 통해 맞춤형 지원을 해나가겠다”고 전했다.
작성일 : 2024-01-23
동역학 해석 소프트웨어, T-FLEX Dynamics
동역학 해석 소프트웨어, T-FLEX Dynamics   주요 CAE 소프트웨어 소개   ■ 개발 : Top Systems ■ 자료 제공 : 설아테크, 02-1661-3215, www.t-flex.co.kr T-FLEX Dynamics는 T-FLEX CAD 환경을 벗어나지 않고 CAD 설계의 물리 기반 모션 동작을 연구하기 위한 범용 모션 시뮬레이션 애드온 애플리케이션이다. T-FLEX Dynamics는 어셈블리의 성능을 이해하는데 관심이 있는 엔지니어와 설계자를 위한 가상 프로토타이핑 소프트웨어이다. 설계를 구축하기 전에 설계가 제대로 작동하는지 확인할 수 있다. 1. 기계 어셈블리의 동작 자동차 서스펜션 또는 항공기 랜딩 기어와 같은 기계 시스템을 설계할 때 다양한 구성 요소를 이해해야 한다.(공압, 유압, 전자 등) 작동 중에 이러한 구성 요소가 생성하는 힘과 상호 작용한다. T-FLEX Dynamics는 기계 어셈블리의 복잡한 동작을 해석하기 위한 모션 시뮬레이션 솔루션이다. T-FLEX Dynamics를 사용하면 움직이는 어셈블리를 설계 및 시뮬레이션하여 수많은 물리적 프로토타입을 제작 및 테스트할 필요없이 설계 실수를 찾아 수정하고, 가상 프로토타입을 테스트하고, 성능, 안전 및 편의를 위해 설계를 최적화할 수 있다. 물리적 프로토타입이 적어지면 비용이 절감될 뿐만 아니라 출시 시간이 단축되어 처음에 올바르게 제작된 더 나은 품질의 제품을 얻을 수 있다. 2. 공학 조건과 관련된 물리학 기반 모델 T-FLEX Dynamics는 실제 작동 조건을 나타내는 여러 유형의 관절 및 힘 옵션을 제공한다. T-FLEX CAD 어셈블리 모델을 구축할 때 T-FLEX Dynamics는 어셈블리 구속 조건과 모델 지오메트리에서 생성하는 메커니즘의 부품, 조인트 및 접점을 자동으로 생성할 수 있다. 프로그램이 Parasolid 지오메트리를 기반으로 접촉 몸체의 정확한 해석을 제공하므로 접촉 유형에 제한이 없으므로 수동 접촉 구속을 정의할 필요가 없다. 각 접점 쌍은 특정 충격 및 마찰 파라메터로 설명할 수 있다. T-FLEX Dynamics를 사용하면 설계가 중력 및 마찰과 같은 동적 힘에 어떻게 반응할지 결정할 수 있다. 마찰, 힘을 사용하여 스프링 및 댐핑 엘레먼트, 작동 및 제어 힘, 기타 여러 부품 상호 작용을 모델링할 수 있다. 계산 중에 부품을 드래그하여 대화식으로도 힘을 적용할 수 있다. 3. 산업 응용 물리 기반 모션을 T-FLEX CAD의 어셈블리 정보와 결합함으로써 T-FLEX Dynamics는 다음과 같은 광범위한 산업 응용 분야에서 사용할 수 있다. 유압, 전자, 공압과 같은 제어 시스템 해석, 작동 중 로봇 성능 이해, 회전 시스템에서 힘 불균형을 최적화하거나 최소화한다. 기어 드라이브 이해, 현실적인 모션과 서스펜션 시스템의 부하를 시뮬레이션 한다. 발사대 및 위성과 같은 우주 어셈블리의 동적 거동 평가 소비자 및 비즈니스 전자 제품 최적화; 피로, 소음 또는 진동에 대한 구성 요소 및 시스템 부하를 예측한다. 4. 결과 검토 어셈블리를 시뮬레이션 한 후 XY 그래프 또는 변위, 속도, 가속도, 관절 위치의 힘 벡터, 트레이스 표시의 수치 데이터 형태의 다양한 결과 시각화 도구를 사용할 수 있다. 전체 시뮬레이션 중 신체의 어느 지점에서든. 특수한 몸체 쌍 센서는 접촉 지점에서 반력과 마찰을 측정한다. 시뮬레이션 도중 또는 시뮬레이션 직후에 메커니즘을 애니메이션할 수 있다. T-FLEX 소프트웨어 내의 애니메이션 및 XY 그래프를 사용하여 모터/액추에이터의 크기를 결정하고, 전력 소비량, 연결 레이아웃을 결정하고, 캠을 개발하고, 스프링/댐퍼의 크기를 결정하고, 접촉 부품의 작동 방식을 결정할 수 있다. 동기화된 그래프 및 애니메이션은 힘 및 가속도 값을 메커니즘 위치와 직접 연관시킨다. T-FLEX Dynamics는 또한 구조 해석을 위한 하중 케이스를 정의하는 데 사용할 수 있는 하중을 계산한다. 5. 사용자 인터페이스 T-FLEX Dynamics의 사용자 인터페이스는 T–FLEX CAD의 원활한 확장이다. T–FLEX CAD 소프트웨어 및 교육에 대한 귀하의 투자는 보존되고 강화되며 제품 설계의 형태와 적합성 및 기능을 평가할 수 있는 강력한 새로운 도구를 갖게 된다. CAD와 기하학적 데이터를 교환하는 별도의 응용 프로그램인 다른 제품과 달리 T–FLEX Dynamics는 설계를 설명하는 동일한 지오메트리에서 직접 작동한다. 6. 대형 모델의 빠르고 정확한 처리 오늘날 산업 개발 프로세스에서 대형 프로토 타입 모델의 사용은 이러한 대형 모델을 처리하는 방식의 효율성과 속도에 따라 달라진다. 효과적인 해결 기술과 고급 데이터 조작을 통해 T-FLEX Dynamics는 대형 모델 가공에 활용된다. 솔버에 구현된 알고리즘은 올바른 정확도를 제공하고 결과를 빠르게 제공하도록 최적화되어 있다. 7. –FLEX CAD의 익스프레스 다이나믹 T–FLEX Dynamics의 제한된 버전인 익스프레스 Dynamics를 사용하면 링크, 모터, 액추에이터, 캠, 기어, 스프링 등과 같은 구성 요소를 포함하는 설계의 기능적 성능을 작동하는 동안 설계 애니메이션을 만들고 확인하여 평가할 수 있다. 작동할 때 설계의 모든 구성 요소 사이의 간섭을 방지한다. 무엇보다도 이미 가지고 있다. 익스프레스 Dynamics는 모든 T–FLEX CAD 사본과 함께 제공된다. 8. T–FLEX Dynamics 이점 가상 테스트에서 얻은 시간 절약을 사용하여 더 많은 디자인 아이디어를 평가함으로써 보다 혁신적인 제품을 만든다. 설계의 실제 성능에 가장 큰 영향을 미치는 파라메터를 식별하고 최적화한다. 원하는 메커니즘 동작을 생성하는데 필요한 힘과 토크를 계산하여 모터 및 액추에이터의 치수를 지정한다. 기기 고장으로 인해 중요한 데이터가 손실되거나 악천후, 실제 테스트에 수반되는 공통 요소로 인해 일정이 뒤처지는 것에 대한 두려움 없이 안전한 가상 환경에서 작업할 수 있다. 개발 프로세스의 모든 단계에서 더 나은 설계 정보를 확보하여 위험을 줄인다. 물리적 프로토타입 테스트에 필요한 것보다 훨씬 빠르고 저렴한 비용으로 설계 변경 사항을 분석한다. 전체 시스템 성능을 최적화하기 위해 다양한 설계 변형을 탐색하여 제품 품질을 개선한다 물리적 계측, 테스트 픽스처 및 테스트 절차를 수정하지 않고도 수행되는 해석의 종류를 다양화할 수 있다.  
작성일 : 2024-01-21
[무료다운로드] MBD의 발전 배경과 정의
MBD의 이해와 기업 가치 향상을 위한 전략 (1)   자동차, 항공, 가전 등 산업에서 기업들이 진행해 온 모델 기반 개발(Model Based Development : MBD)이 최근 주목받고 있다. 이번 호부터 2회에 걸쳐 R&D 영역에 있어서 향후 피할 수 없는 디지털 전환(DX)의 하나인 MBD에 대한 이해를 정리하고, 기업 조직이 어떻게 임해야 할 것인지에 대해 짚어보고자 한다.   ■ 오재응 한양대학교 명예교수, LG전자 기술고문 이메일 | ilove.ohkr@gmail.com   MBD 발전의 배경 모델 기반 개발(MBD)이 주목받는 배경에는 자동차 시장의 요구가 CASE(Connected, Automated/Autonomous, Shared & Service, Electric)나 MaaS(Mobility-as-a-Service), 환경 대응으로 전환하고 한 기업이 단독으로 커버할 수 없는 보다 복잡하고 고기능이면서 고품질의 성능이 요구되는 시대에 들어간 것으로, MBD에 대해 새로운 요구가 더해진 것을 들 수 있다. 설계 개발 프로세스 측면에서는 시스템 컴포넌트의 최적화라고 하는 모델 기반 개발을 통해 디지털 기술을 적극적으로 사용하는 것에 의해 우선은 기능적 효율성을 실행하고, 이 과정에서 얻은 지식을 축적하고 업무 효율의 개선에 의해 획득한 자원을 활용함으로써 향후 설계 변경에 유연하고 신속하게 대응할 수 있도록 데이터를 활용한다. 고객 요구와의 일치를 연마하는 것이 모델 기반 개발에 요구되는 모습이라고 생각한다.   그림 1. MBD의 발전사   MBD를 살펴보기 전에 MBD 발전의 역사를 살펴보고자 한다.(그림 1) 1990년대를 전후해 CAD/CAM을 중심으로 한 형상의 디지털화가 추진되었다. 1990년대에는 CAD/CAM/CAE를 기반으로 시뮬레이션의 중요성을 인지하기 시작하였다. 특히 엔진 및 차체 골격 분야의 부분적 모델링에 집중되었다. 한편, 2000년대에 비로소 CAE/MBD 시뮬레이션을 고도화하고 프로토타입 없이 제품을 개발하려는 시도와 더불어 조립이 가속화되었으며, 전체 실차의 모델링과 CAE가 활발하게 추진되었다. 2010년대에 들어서는 MBD와 MBSE(Model Based Systems Engineering : 모델 기반 시스템 엔지니어링)에 대한 가상 엔지니어링과 시뮬레이션이 복합되어 생산 설비의 DX화 및 동시공학 개발이 도입되기 시작했다. 특히 2010년 이후의 MBD 적용은 C 코드를 사용해 제어 개발을 실시하고 있었지만, 디버그에 많은 공수를 필요로 하고 또한 하드웨어측(플랜트)의 반응은 직접 하드웨어를 연결할 때까지 파악할 수 없었다. 이후에 MBD의 첫 번째 개념이 등장한다. C코드 대신 매트랩(MATLAB)/시뮬링크(Simulink)의 ‘모델’을 사용하고 제어 로직은 C 소스가 아닌 매트랩/시뮬링크로 표현함으로써, 하드웨어 측은 시뮬링크에서 작성된 미분 방정식을 기반으로 한 ‘모델’로 과도 상태 등을 간단하게 표현한다. 이를 통해 실제 기기의 테스트 횟수를 줄여 제어 로직을 개발할 수 있어, 개발의 효율화와 함께 조기에 문제를 발견하고 그에 대한 대책이 해결되었다. 2020년대 현재는 MBD 및 MBSE가 기법 개발과 인지 확대를 통해 활발하게 추진되고 있으며, 향후 2030년대에는 MBD/MBSE의 엔지니어링 체인 전체로 고효율의 개발이 추진될 것으로 기대한다. 최근 빠르게 발전하는 전기자동차의 CAE에 의한 성능 예측이 용이해져 디지털 개발이 가속화될 것으로 기대한다. 특히 기업 간의 시뮬레이션 모델을 활용할 수 있는 환경이 조성되어 활발한 개발 경쟁이 가속화되고, 설계기간 단축 및 비용의 절감에서 획기적인 전환이 이뤄질 것으로 확신한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-01-04
멀티피직스 해석, 시스템 시뮬레이션, Simcenter Amesim 
멀티피직스 해석, 시스템 시뮬레이션, Simcenter Amesim  주요 CAE 소프트웨어 소개    ■ 개발 : 지멘스 디지털 인더스트리 소프트웨어, www.plm.automation.siemens.com/global/ko ■ 자료 제공 : 지멘스 디지털 인더스트리 소프트웨어, 02-3016-2000, www.plm.automation.siemens.com/global/ko / 델타이에스, 070-8255-6001, www.deltaes.co.kr / 플로우마스터코리아, 02-2093-2689, www.flowsystem.co.kr Simcenter Amesim은 시스템 시뮬레이션 엔지니어가 시스템의 성능을 가상으로 평가하고 최적화할 수 있도록 지원하는 통합 메카트로닉스 시스템 시뮬레이션 플랫폼이다. Simcenter Amesim을 통해 초기 개발 단계에서 최종 성능 검증 및 제어 Calibration 단계에 이르기까지, 전체 시스템 엔지니어링의 생산성을 크게 향상시킬 수 있다. 또한 확장 가능한 통합 시스템 시뮬레이션 플랫폼을 사용하여, 시장 출시 지연 및 품질 저하 없이 제품의 혁신을 창출할 수 있다.  Simcenter Amesim은 강력한 플랫폼 기능으로 지원되는 애플리케이션 및 산업별 특화 솔루션과 결합된 즉시 사용 가능한 다중 물리 라이브러리를 포함하며, 이를 통해 모델을 신속하게 만들고 해석을 정확하게 수행할 수 있도록 한다. 또한 엔터프라이즈 프로세스에 통합할 수 있는 개방형 환경을 제공하며, 소프트웨어를 CAE(Computer-Aided Engineering), CAD(Computer-Aided Design), 제어 소프트웨어 패키지와 손쉽게 통합하고, FMI(Functional Mock-up Interface), Modelica와 상호 호환되고, 이를 다른 Simcenter 솔루션, Teamcenter, Excel 등과 연결할 수 있다. 1. 주요 기능 (1) 시스템 시뮬레이션 플랫폼 개방적이며 강력한, 사용자 친화적인 다중 물리 시스템 시뮬레이션 플랫폼의 이점을 활용해 복잡한 시스템과 구성 요소를 모델링, 실행 및 해석할 수 있다. 1D 다중 물리학 시스템 시뮬레이션과 강력한 설계를 구현하는 데 쉽게 사용할 수 있는 고급 환경을 제공해, 다양한 스크립팅 및 커스터마이제이션을 가능하게 하여, 기존 설계 프로세스 내에서 Simcenter를 매끄럽게 통합할 수 있도록 한다.  1D 및 3D CAE 소프트웨어 솔루션과 효율적으로 상호작용하며, 지속적이며 일관된 MiL(model-in-the-loop), SiL(software-in-the-loop), HiL(hardware-in-the-loop) 가능 프레임워크를 제공해 표준 실시간 대상에 대한 모델을 신속하게 도출하여 사용할 수 있다.   (2) 시스템 통합 개발 장벽을 없애고 증가하는 시스템 복잡성을 효과적으로 처리한다. 모델 기반 설계(MBD)를 성공적으로 도입하려면 초기 아키텍처 설계에서 Calibration 단계에 이르기까지 일관성 있는 모델링 방식을 적용해야 하는데, 이러한 엔지니어링 혁신을 지원하기 위해 사용자 경험을 간소화해 효율성을 높인다. 또한 물리적 모델링과 관련된 유용한 기능과 다분야의 고유 기능이 통합돼 자동차, 비행기, 굴착기, 선박 및 그 외 산업 응용 분야에 가장 효과적인 엔지니어링 설계 프로세스를 설정할 수 있다.  (3) 메카니컬 시스템 시뮬레이션 증가하는 기계 시스템 엔지니어링 복잡성에 대응하여, 다차원(1D, 2D 및 3D) 동적 시뮬레이션을 지원하는 최첨단 모델링 기술로 저주파/고주파 현상을 해석해 강체 또는 유연체, 복잡한 비선형 마찰에 대해 알아볼 수 있다. 복잡한 지오메트리 간 접촉을 고려해 메카니즘의 신뢰성과 견고성을 향상시킨다. 또한 아키텍처 및 설계 결정을 프론트로딩할 수 있다. 플랜트 모델과 제어 모델, 코드를 연결해 강력한 메카트로닉 시스템 개발을 지원한다. (4) 열 관리 시스템 시뮬레이션 열 통합 문제를 해결할 수 있도록 사전 설계 단계에서 최종 검증에 이른 전체 설계 사이클을 망라하는 포괄적 솔루션 세트를 제공해, 열 관리를 최적화하고 효율적이며 안정적인 시스템을 설계한다. 이러한 기능을 통해 자동차, 비행기 또는 실내 쾌적성과 같은 열 성능을 극대화하는 동시에 에너지 효율성을 최적화할 수 있으며, 주변 환경과의 상호 작용을 비롯한 시스템의 실제 운영 환경을 나타낼 수 있다. 또한 에너지 회수 시스템 통합과 이것이 성능과 에너지 소비에 미치는 영향을 연구할 수 있으며, 고급의 포스트 프로세싱 기능을 활용해 시스템의 에너지 흐름을 그래픽으로 시각화할 수 있다. (5) 유체 시스템 시뮬레이션 기능 모델에서 상세 모델에 이르는 유체 시스템을 모델링할 때 전문/비전문 사용자 모두를 지원하는 포괄적인 구성요소 라이브러리를 제공해, 물리적 프로토타입 사용을 엄격히 제한하면서 유압 및 공압 구성요소의 동적 거동을 최적화한다. 다양한 구성요소, 기능 및 애플리케이션 중심 툴을 갖춘 Simcenter를 사용하면 모바일 유압 작동 시스템, 파워트레인 시스템, 항공기 연료 및 환경 제어 시스템과 같은 다양한 애플리케이션을 위한 유체 시스템을 모델링할 수 있다. (6) 전기 시스템 시뮬레이션 전장화의 핵심 시스템인 연료전지, 배터리, 모터, 인버터, 제어기 등의 시스템에 대한 기본 모델부터 상세 모델들을 제공한다. 콘셉트 설계부터 제어 검증까지 전기 및 전자 기계 시스템을 시뮬레이션할 수 있다. 메카트로닉스 시스템의 동적 성능을 최적화하고 전력 소비를 분석하며, 자동차, 항공 우주, 산업 기계 및 중장비 산업을 위해 전기 장치 제어 법칙을 설계하고 검증할 수 있는 기능을 제공한다. (8) 연료전지 시스템 시뮬레이션 연료전지 스택(PEMFC)의 맵 기반 모델, 시험 데이터 기반의 모델부터 전기화학적 모델 라이브러리 및 데모를 지원한다. 다양한 운전환경(온도, 습도, 압력 등)에 따른 스택의 전압을 예측할 수 있으며 고압탱크, 수소공급계통, 공기공급계통의 요소의 모델링을 통해 전체 연료전지 시스템의 성능과 효율을 검증할 수 있다. 나아가 연료전지 자동차의 통합 시스템 모델을 구축함으로써 콘셉트 검증 및 연비 예측, 스택의 출력 및 효율 예측, 열관리 성능을 평가할 수 있으며 제어 전략을 수립할 수 있다. (7) 추진 시스템 시뮬레이션 차세대 추진 시스템을 개발할 수 있다. 다중 물리 시스템 시뮬레이션 방식을 사용하면 다양한 아키텍처와 기술을 처리할 수 있다. 예시로는 자동차 파워트레인 전기화, UAM을 위한 전기/하이브리드 파워트레인, 우주 산업을 위한 재사용 가능한 발사 시스템, 선박을 위한 대체 연료(LNG) 사용 등을 들 수 있다. 단일 플랫폼에서 교차 시스템 영향에 대한 완전한 해석을 수행해 온보드 발전 또는 차량 오염 물질 배출과 같은 다양한 메트릭에 대한 추진 시스템의 영향을 설계하고 평가할 수 있다.     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-01-01