• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "열해석"에 대한 통합 검색 내용이 101개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
용접 해석 소프트웨어, SYSWELD
용접 해석 소프트웨어, SYSWELD   주요 CAE 소프트웨어 소개   ■ 개발 : ESI, www.esi-group.com ■ 자료 제공 : 한국이에스아이, 02-3660-4500, www.esi-group.com ESI의 용접 시뮬레이션 제품인 SYSWELD(시스웰드)는 항공, 우주, 자동차, 선박, 전자 등 다양한 분야의 기업 및 연구소와 25년 이상의 협력을 통해 검증되었으며, 다양한 Heat Source 데이터베이스와 User Function을 이용한 Heat Source 제작 기능을 통해 용접 산업의 다양하고 까다로운 작업을 표현하기 용이하다.  ESI의 용접 해석 솔루션은 Shrinkage Method를 활용하여 용접 공정에 따라 변형 및 응력 분포를 해석하여 초기 용접 공정 설계에 빠르게 대응할 수 있는 Visual Assembly와 SYSWELD Solver를 활용하여, 상변태를 고려한 열해석과 기계적 해석을 Full coupling으로 해석한다.  그리고 변형과 응력 뿐만 아니라 온도 분포, 상분포, 경도 및 강도와 같은 기계적 물성, 수소확산, 침탄 효과, 가공 경화 등 다양한 인자를 보다 정밀하게 해석할 수 있는 Visual WELD가 있어 사용자가 업무 요구 사항에 맞게 선택하여 사용할 수 있다.  또한, 용접 해석이 아닌 열처리나 외력에 의한 변형, 유도 전류, Pre-Positioning, 조립 공정 등 다양한 분야의 적용이 가능하기 때문에 범용적으로 이용이 가능하다. 1. 제품의 주요 기능 및 특징 (1) 상용 CAD 프로그램과의 우수한 호환성 CATIA, UG, CREO(구 PRO-E) 등의 CAD 프로그램의 파일 확장형식을 지원하여 호환성이 우수하다. (2) 다양한 DB 및 유저가 원하는 DB 제작 모재, 용가재로 주로 쓰이는 다양한 물성들을 보유하고 있으며, Tool box를 통해 유저가 사용하는 합금의 데이터베이스 제작이 가능하다. (3) 다양한 Heat source function과 Heat source fitting 기능 제공 아크, 레이저, 하이브리드, 플라즈마 등 다양한 Heat source DB를 보유하고 있으며, User Defined 기능을 이용하여 원하는 Heat source 제작이 가능하다. (4) Welding Wizard를 이용한 직관적인 용접 조건 입력 Welding Wizard를 이용하여 시뮬레이션 조건을 순차적으로 입력하면 해석이 진행될 수 있도록 인터페이스가 갖춰져 있으며, 색 표시를 통해 잘못 입력된 조건을 직관적으로 나타내어 준다. (5) Distortion Engineering을 이용한 빠른 용접 해석 정밀한 해석뿐만 아니라 온도 편차를 이용한 Distortion Engineering을 통해 용접 설계의 초기 대응을 위한 변형 및 응력 분포 해석 결과를 빠르게 얻을 수 있다. (6) 성형, 충돌, 내구평가와의 연계 해석 용접 해석 결과를 성형, 충돌, 내구 평가 등의 해석 프로그램에 Mapping하여 연계 해석이 가능하기 때문에 복합적인 공정 고려가 가능하다. (7) 아크 용접 및 레이저 용접 Double ellipsoidal 형태와 Conical 형태의 Heat source를 통해 아크와 레이저 용접을 표현할 수 있다. (8) 점 용접 Sequence에 따른 용접해석이 뿐만 아니라, 전극과 Sheet를 표현하여 통전효과 및 자기장을 고려한 용접해석도 가능하다. (9) 마찰 교반 용접 팁의 모양이나 회전속도 등을 고려한 정확한 열 분포 및 응력해석이 가능하다. (10) 다층 용접 해석 일반 열해석을 통한 순차적인 Pass 형성 뿐만 아니라, Thermal Cycling을 이용한 다층 해석으로 보다 빠른 해석이 가능하다. (11) Steady state 해석 Moving Reference Frame 기능을 통해 Transient 해석 구간을 최소화하여 용접 해석시간을 절감할 수 있다. (12) 구조 해석 및 열응력 해석 SYSWELD는 용접 해석 뿐만 아니라 힘이 가해지는 구조 해석이나 열응력 해석이 가능하기 때문에 범용적으로 사용이 가능하다. (13) 열처리 해석(침탄/유도가열) Electro Magnetic을 고려한 Induction Heating을 구현할 수 있으며, 침탄에 의한 효과를 해석할 수 있는 모듈을 갖추고 있다.     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-01-08
멀티피직스 해석, 안전 시뮬레이션, Simcenter 3D
멀티피직스 해석, 안전 시뮬레이션, Simcenter 3D   주요 CAE 소프트웨어 소개    ■ 개발 : 지멘스 디지털 인더스트리 소프트웨어, www.plm.automation.siemens.com/global/ko ■ 자료 제공 : 지멘스 디지털 인더스트리 소프트웨어, 02-3016-2000, www.plm.automation.siemens.com/global/ko / 델타이에스, 070-8255-6001, www.deltaes.co.kr / 스페이스솔루션, 02-2027-5930, www.spacesolution.kr   Simcenter 3D는 구조, 음향, 유동, 열, 모션, 전자기장, 재료 및 복합소재 해석을 지원하고, 최적화 및 다중 물리 시뮬레이션을 포함하는 시뮬레이션 솔루션이다.  솔버 및 전/후처리 기능은 시뮬레이션 기반의 통찰력을 시간 내에 얻기 위해 필요한 모든 도구를 제공한다. 또한, 1D/3D를 연동한 시뮬레이션 및 시험/시뮬레이션을 연계한 Hybrid 모델링 기능 덕분에 Simcenter 3D는 이전보다 현실적인 시뮬레이션 성능을 제공할 뿐만 아니라, 데이터 관리 기능을 갖춘 확장 가능한 개방형 CAE 통합 환경이다.  Simcenter 3D는 고성능의 지오메트리 편집, 연상 시뮬레이션 모델링 및 다분야 솔루션을 업계 전문 기술과 통합하여 시뮬레이션 프로세스 속도를 단축한다. Simcenter 3D는 모든 CAD 데이터와 함께 사용할 수 있는 독립형 시뮬레이션 환경을 제공하며, NX와 통합되어 원활한 CAD/CAE 경험을 제공한다. 1. 주요 기능 (1) CAE 전처리(Pre-Processing) 기능 CAD/CAE 단일 사용자 환경에서 설계자부터 전문 해석자까지 사용 가능한 CAE 전/후처리 도구를 제공하고, 높은 수준의 CAD 수정/편집 기능을 이용하여 더욱 효율적이고 빠르게 3D 시뮬레이션 모델을 생성할 수 있다. ■ 설계 검증을 위한 CAE/CAE 통합 사용자 환경지원 ■ 다분야, 다물리 해석을 위한 플랫폼 제공 ■ 동기화 기술로 직관적이고 빠른 CAD 수정 ■ CAD 형상 연계 유한요소 생성 ■ 복잡한 모델을 위한 유한요소 Assembly 구조 지원 ■ Simcenter Nastran 외 3rd Party Solver 지원 ■ 설계 검증 프로세스 구축 및 자동화 가능 (2) 구조 해석 Nastran Solver를 이용하여 정적, 모드, 좌굴 해석 등의 선형 구조 해석을 지원하고, 미소변형 및 거동하는 대형 제품의 구조 해석을 빠르게 수행하는 SMP, DMP 방식의 병렬계산을 지원한다. 기하 비선형, 접촉, 소성, 크립, 초탄성 거동 등 모든 비선형 모델을 지원할 뿐만 아니라, 대부분의 선형 비선형 문제를 순차적으로 수행할 수 있는 Multistep 솔루션을 제공한다.  특히 가스터빈, 펌프 등의 회전 시스템이 작동할 때 회전 RPM/Unbalance/Gyroscope 효과에 의해 공진주파수가 변화하여 진동을 유발하는 형상에 대해 예측하고 개선하는 Rotor Dynamics 솔루션과 3D Printing 형상의 제작 과정에서 열변형 등의 문제를 사전에 예측하여 변형된 보상 형상을 CAM에 내보냄으로써 실제로 출력하고자 하는 형상을 trial-and-error를 최소화하는 Additive Manufacturing 솔루션을 제공한다. (3) 음향 분석 음향 해석은 보다 조용한 제품, 소음 규제 준수, 음장 예측 작업 등 당면 과제를 해결하는 데에 도움이 될 수 있다. Simcenter 3D는 통합 솔루션 내에서 내부 및 외부 음향 해석을 제공하여 초기 설계 단계에서 정보에 기반한 의사 결정을 지원하여, 제품의 음향 성능을 최적화하도록 한다. 확장 가능한 통합 모델링 환경에는 효율적인 솔버와 해석이 용이한 시각화 기능이 통합되어 있어서 제품의 음향 성능을 신속하게 파악할 수 있다. ■ 경계요소법(BEM), 유한요소법(FEM), 기하 음향학(RAY) 기반의 음향해석 지원 ■ AML(Automatically Matched Layer)을 이용한 무한 방사조건 지원 ■ FEM AO(Adaptive Order)를 이용한 계산속도 향상 ■ 다양한 시뮬레이션을 이용한 소음해석 프로세스 → MBD/EM/CFD to NVH (4) NVH & FE-TEST Correlation 시스템 수준의 FE 및 테스트 결합 Hybrid 모델을 만들고 실질적 하중 조건 규명(TPA)과 소음 및 진동 반응을 시뮬레이션 하는데 필요한 도구가 결합되어 있다. 소음 및 진동 성능을 탐색하고 가장 중요한 원인을 정확히 파악하기 위한 여러 가지 시각화 및 해석 도구가 여기에 포함된다. 사용자에게 익숙한 도구를 통해 엔지니어는 설계를 신속하게 수정하고 소음 및 진동 성능의 영향을 몇 분 안에 평가할 수 있다.  Simcenter 3D는 시뮬레이션 모델의 신뢰성을 향상시킬 목적으로 측정된 동특성과 예측 모델 사이의 상관관계를 규명하고, Nastran SOL200 기반의 민감도 해석을 통해 시뮬레이션 모델의 신뢰성 향상 및 모델링 표준화를 지원하는 FE-TEST Correlation을 지원한다. (5) 모션 해석 복사기, 슬라이딩 선루프 또는 윙플랩 같은 복잡한 기계 시스템의 작동 환경을 이해하는 것은 어려울 수 있다. 모션 시뮬레이션은 기계 시스템의 반력, 토크, 속도, 가속도 등을 계산한다. CAD 형상 및 어셈블리 구속조건을 정확한 모션 모델로 즉시 변환하거나 처음부터 직접 모션 모델을 만들 수 있으며, 내장된 모션 솔버와 후처리 기능을 통해 제품의 다양한 거동을 연구할 수 있다. (6) 내구 해석 내구성 엔지니어에게 가장 어려운 작업은 가장 효율적인 방식으로 오류 방지 구성요소와 시스템을 설계하는 작업이라는 데에는 이견이 없다. 피로 강도가 충분하지 않은 시스템 부품은 영구적인 구조적 손상과 생명에 위협이 될 수 있는 상황을 초래할 수 있다. 실수는 제품 리콜을 초래해 제품뿐만 아니라 전체 브랜드 이미지에 부정적인 영향을 미칠 수 있다.  개발 사이클이 짧아지고 품질 요구사항이 계속 증가하면서 테스트 기반 내구성 방식은 그 한계를 드러내고 있다. 시뮬레이션 방법으로 내구성 성능을 평가하고 향상시키는 것이 유일하게 유효한 대안이다. Simcenter는 실제 하중 조건을 빠르고 정확하게 고려해 피로 수명 예측 해석을 수행할 수 있는 최첨단 해석 방법에 대한 액세스를 제공한다. (7) 열해석 Simcenter 3D Thermal은 열 전달 솔루션을 제공하고 복잡한 제품 및 대형 어셈블리에 대한 전도, 대류 및 복사 현상을 시뮬레이션할 수 있는 기본 기능 뿐만 아니라 정교한 복사 분석, 고급 광학 특성, 복사 및 전기가열 모델, 1차원 유압 네트워크 모델링 및 위상 변화, 탄화(Charring) 및 삭마(Ablation)와 같은 고급 재료모델을 위한 광범위한 방법을 제공한다. 사용자는 Simcenter 3D 통합 환경을 활용하여 신속한 설계변경 및 열 성능에 대한 신속한 피드백을 얻을 수 있고, 설계 및 엔지니어링 프로세스와 쉽게 통합되는 Simcenter 3D 열 해석 솔루션은 설계자와 해석자의 공동작업을 용이하게 하여 제품 개발의 생산성 향상을 지원한다. ■ 분리, 불일치 요소면, 형상의 자동 연결 ■ 모델링 자동화를 위한 유저 서브루틴, 유저 플러그인, 수식 및 API를 지원 ■ 통합된 환경에서 복합 열전달, 열-유동, 열-구조 등 연성해석 수행 가능 ■ ECAD와 연계로 반복작업과 모델링 에러 개선 (8) 유동해석 Simcenter 3D Flow는 복잡한 부품 및 어셈블리의 유체 유동을 모델링하고 시뮬레이션하기 위한 정교한 도구를 제공하는 CFD 솔루션이다. 잘 확립된 Control-Volume 공식의 성능과 정확성을 Cell-Vertex 공식과 결합하여 Navier-Stokes 방정식으로 설명된 유체 운동을 이산화하고 효율적으로 해결한다. 압축성(Compressible) 유체 및 고속(High Speed) 유동, non-Newtonian 유체, 무거운 입자추적(tracking of heavy Particles) 및 다중회전 기준 프레임(multiple rotating frames of reference)을 포함하는 내부 또는 외부 유체의 유동 시뮬레이션을 지원한다. ■ 단일 환경에서 Multi-Physics 시뮬레이션 기능 지원, 열-구조-유동 연성해석 ■ ECAD와 연동하여 전자장치의 냉각을 위한 최적화된 열-유동 해석 도구를 제공 (9) Material Engineering 오늘날 다양한 분야에서 첨단 소재를 사용함으로써 제품을 혁신하고 있으며, 이러한 이유로 새로운 소재들이 시장에 빠른 속도로 도입되고 있다. 첨단 소재를 제품에 적용할 때 균열은 매우 중요한 고려 사항이지만, 첨단 소재의 마이크로(micro) 및 메조(meso) 균열은 기존의 유한 요소법으로 모델링 및 해석하기가 어렵다.  하지만 Simcenter 3D는 완전한 대표 체적요소(RVE : Representative Volume Element) 분리, 소재 내부의 균열 또는 응집 영역(cohesive zones) 등 마이크로 레벨의 재료 특성을 고려할 수 있으며, 이를 통해 매크로(macro) 구조 모델과 마이크로 구조 모델이 전체 격자가 분리된 상태에서 균열이 소재를 통해 전파되는 현상을 해석할 수 있다.  (10) 저주파 전자기장 해석 Simcenter 3D LFEM은 모터, 변압기, 스피커 등의 전기기기에 대한 성능, 열에 의한 에너지 손실과 같은 전자기적 특성을 예측하는 솔루션을 제공한다. 3D CAD 모델로부터 전자기장 해석 모델을 구축하여 정교한 자성 재료 정의하고 속성, 경계 조건 및 통합 1D 회로 모델링 도구를 사용하는 부하를 정의할 수 있으며, 결과의 정교한 후처리를 수행하는 전자기장 해석 전과정을 지원한다. ■ 전자기장 해석에 필요한 고급 재료물성 지원 ■ 6자유도 운동을 고려한 전자기장 해석 ■ 해석 시간을 절감하는 고급 격자생성 기능 및 경계조건 지원(Smart Meshing & BC) ■ 전자기-열 연성해석 ■ 전자기장 해석결과로부터 열/유동/소음진동 해석을 진행하는 프로세스 제공 (11) 고주파 전자기장 해석 Simcenter 3D HFEM은 항공우주 산업의 전자기 호환성(EMC) 관련 인증의 핵심 주제인 번개(IEL) 및 고강도 복사장(HIRF)의 간접 효과를 검증하는 시뮬레이션을 지원한다. 또한 자동차 산업에서 ADAS(Advanced Driver Assistance System) 및 센서뿐만 아니라 EV 파워 트레인의 EMC 및 전자기 간섭(EMI) 성능을 검증하고 개선하는 고주파 시뮬레이션을 지원한다. Simcenter 3D에 탑재된 Simcenter 고주파수 EM 솔버는 Maxwell의 전자기 방정식을 풀기 위한 적분방(MoM 및 MLFMA)을 기반으로 하는 전파 솔버를 지원한다. 또한 UTD 및 IPO를 기반으로 점근법(asymptotic methods)을 사용할 수 있고, 2.5D 및 전체 3D 필드 문제를 효율적으로 해결하기 위해 다양한 솔버가 통합되었다. 솔버 가속 옵션(MLFMA, DDM, 다중 경계 조건 MoM기반 알고리즘)이 내장되어 대규모 시스템의 계산 시간을 단축한다. (12) 안전 시뮬레이션  Simcenter 3D Safety(Madymo)는 자동차 안전 시뮬레이션에 광범위하게 사용되고 있으며, 엔지니어가 고급 통합 안전 시스템을 생성하는 데에 필요한 기능을 제공한다. Simcenter 3D Safety는 탑승자 및 보행자 안전 개발을 위한 전용 사용자 환경을 제공하며, 빠르고 정확한 솔버는 광범위한 DOE 및 최적화 연구를 가능하게 한다.  Simcenter 3D Safety는 다물체 동역학(MBD), 유한요소(FE) 및 전산유체역학(CFD) 기술을 단일 솔버에 통합하여, 엔지니어에게 정확성과 속도 간의 적절한 균형을 유지하면서 안전 시스템을 모델링할 수 있는 유연성을 제공한다. 또한 활성 인체 모델은 모든 뼈, 근육 및 연부조직 재료로 인체를 모델링할 수 있어, 충돌 안전 시뮬레이션 시 차량 탑승자 및 보행자의 골격, 근육, 관절 등의 상세 상해정도 분석 및 평가를 지원한다. (13) 타이어 시뮬레이션 Simcenter 3D Tire는 차량의 동적 시뮬레이션을 위해 타이어의 거동을 모델링하는 플랫폼과 서비스를 제공한다. Simcenter 3D Tire를 통해 차량 제조 업체와 공급 업체는 실질적인 타이어 특성을 고려할 수 있고, 모든 동역학 시뮬레이션 툴 및 연산 시스템과 연동될 수 있는 타이어 모델을 변수화 및 표준화하기 위해 필요한 타이어 테스트를 최소화할 수 있다.  MF-Tyre는 모든 주요 차량 동적 시뮬레이션 툴에서 사용할 수 있는 Pacejka Magic Formula 기반 타이어 모델이다. MF-Swift는 승차감, 도로 하중 및 진동 분석을 위한 MF-Tyre의 확장 모듈이다. MF-Swift는 MF-Tyre 기능에 일반적인 3D 장애물 포위(obstacle enveloping) 및 타이어 벨트 동역학을 추가 지원한다. 이러한 접근 방식을 통해 모든 관련 차량 동적 시뮬레이션을 수행할 수 있는 올인원(all-in-one) 타이어 모델의 생성을 지원한다.      좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-31
주조 해석 소프트웨어, ProCAST
주조 해석 소프트웨어, ProCAST   주요 CAE 소프트웨어 소개   ■ 개발 : ESI, www.esi-group.com ■ 자료 제공 : 한국이에스아이, 02-3660-4500, www.esi-group.com ESI의 주조 시뮬레이션 제품인 ProCAST는 주조 산업을 위한 솔루션을 제공한다. 전 세계의 주요 산업 파트너 및 학술 기관과 25년 이상의 협력을 통해 개발된 ProCAST는 까다로운 산업 요구 사항을 충족할 수 있는 광범위한 모듈 및 다양한 주조 기능을 제공한다.  형상을 가장 잘 구현할 수 있는 유한 요소 기법을 기반으로 하여 모든 주조 공정에 대하여 모델링뿐만 아니라 충진, 응고, 결함, 기계적 특성 및 복잡한 부품 변형을 포함하여 전체 주조 공정에 대한 예측 평가가 가능하다. 이를 통해 제품 공정 초기단계부터 올바른 의사 결정을 할 수 있는 기반을 제공한다.  뿐만 아니라 충진, 응고, 수축공 결함과 같은 기본적인 사항들에 대하여 빠른 해석 결과를 얻을 수 있도록 초점이 맞춰진 ESI의 QuikCAST 또한 ProCAST 환경에서 사용이 가능하다. 1. 제품의 주요 기능 및 특징 (1) 다양한 DB 보유 및 조성을 통한 DB 계산이 가능한 모듈인 Computherm 탑재 금속 물성 및 주로 쓰이는 금형이나 코어와 같은 데이터베이스를 150가지 이상 보유하고 있으며, Computherm이라는 보조 모듈을 이용하여 조성만으로도 열적, 기계적, 야금학적 인자들을 계산하여 해석에 활용이 가능하다. (2) 주조 조건 최적화 기능 탑재 Optimization 기능을 활용하여 해석에 사용된 조건들을 다른 변수로 입력하였을 때의 결과와 비교하여 가장 최적의 조건을 유출할 수 있다. (3) 미세조직 해석 초기 발생하는 핵의 성장 여부와 더불어 Grain의 형태와 성장 방향 등을 해석할 수 있는 CAFE(Cellular Automata Finite Element) 모듈을 탑재하고 있다. (4) Advanced 복사열 해석을 통한 정확한 정밀주조 해석 Enclosure를 통하여 Viewfactor를 고려한 복사열전달 현상을 표현할 수 있어, 정밀주조 공정에서 보다 정확한 열해석이 가능하다. 2. 주요 적용 분야 (1) 정밀주조 ProCAST는 타 프로그램과 달리 Viewfactor를 고려한 복사열 해석이 가능하여 EQX/DS/SX 공정을 지원하며, FEM 기반의 정확한 형상 표현이 가능하기 때문에 고온에서 복잡한 형상으로 이루어지는 정밀주조 해석이 가능하다. (2) 사형주조 상용 샌드, 발열슬리브에 대한 데이터베이스를 제공하며, Microstructure 모듈과의 연계 해석을 통해 주철에서의 접종 효과 및 합금 조성에 따른 상의 분포 및 기계적인 성질 예측이 가능하다. (3) 저압/고압 다이캐스팅 Moving Mesh의 Penetration기법을 활용하여 고압주조 공정에서 움직이는 피스톤에 의한 주입 조건 표현이 용이하며, Cycling 해석을 통하여 반복작업을 하였을 때의 금형의 온도 분포 등을 해석할 수 있다. (4) 경동주조 실제 Ladle이나 Basin에서 용탕이 Tilting 되는 것을 구현하여 단순 Inlet으로 입력하는 결과보다 더 정확한 해석이 가능하다. (5) 원심주조 수평축 및 수직축을 이용한 다양한 형태의 원심주조가 가능하며, 일반 대기와 진공 환경 등의 다양한 주조 환경을 고려한 해석이 가능하다. (6) 열처리 및 일반 유체해석 ProCAST는 주조해석 뿐만 아니라 열처리 해석이나 물과 같은 일반적인 유체 해석이 가능하여 범용적으로 사용이 가능하다.     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-31
펑션베이, 유저 콘퍼런스에서 리커다인과 파티클웍스의 신기능 및 활용 사례 소개
펑션베이는 지난 10월 19일 그래비티 서울 판교 호텔에서 ‘2023 리커다인 유저 콘퍼런스’를 개최했다. 이 행사에서 펑션베이는 유저 편의성 및 솔버 성능이 향상된 동역학 해석 소프트웨어 리커다인(RecurDyn)의 최신 버전과 활용사례, 입자법 CFD 소프트웨어인 파티클웍스(Particleworks)를 활용한 열해석 사례 등을 소개했다. 또한 유연 다물체 동역학 기술을 기반으로 한 새로운 정적 해석 솔버를 통해 제조 분야의 생산성과 가치를 높여 나갈 것이라고 밝혔다. 리커다인 2024에서는 솔버의 성능 강화를 포함하여, 다양한 사용자 편의 기능, MFBD(Multi Flexible Body Dynamics) 관련 기능 등에서 많은 개선이 이루어졌으며, 트랙이나 벨트, 체인 등을 모델링하고 시뮬레이션하는데 유용한 새로운 툴킷인 링크드 어셈블리(Linked Assembly)도 함께 출시되었다. 또한 RecurDyn 2024에서는 솔버의 접촉 해석 기능이 강화되어, 구체나 실린더 형상의 접촉 계산 속도가 빨라졌다. 그리고 3차원 접촉이 가능한 커브의 접촉 모델이 개발되어, 케이블이나 베어링과 같은 모델에서 유용하게 활용될 수 있게 되었다. 이번에 출시된 파티클웍스(Particleworks) 8.0에서는 서로 다른 크기의 입자를 동시에 해석함으로써, 보다 효율적인 해석이 가능하게 되었다. 그리고 MPFI(Moving Particle Fully Implicit)라는 새로운 기법을 도입하여 낮은 레이놀즈수, 높은 압력 조건에서 상대적으로 큰 time step을 이용할 수 있게 되었다. 이 외에도 표면 장력을 보다 정확하게 계산하기 위한 성능 개선, 눈이나 흙의 해석을 위한 빙햄 모델 지원, 공력 해석 기능의 추가 등 다양한 신기능과 개선 사항이 포함되었다.     펑션베이의 윤준식 박사는 이번 콘퍼런스에서 그동안 꾸준히 발전해 온 리커다인 솔버의 역사와 향후 연구 과제에 대해서 소개했다. 그리고 "지난 20여 년간 고객과의 소통과 피드백이 솔버의 개발과 유지 보수에 많은 밑바탕이 되어왔으며, 앞으로도 고객이 만족할 수 있는 성능의 솔버를 제공하는 것을 최우선시하겠다"고 밝혔다. 이어서 펑션베이 기술사업팀의 이정한 박사는 동역학 해석의 영역을 넘어 유연 다물체 동역학(MFBD)의 정적 해석을 지원할 수 있는 리커다인의 정적 해석 솔버, ‘FFlex Static’를 소개하고, 이를 통해 얻을 수 있는 장점과 다양한 활용 방안에 대해 소개했다. 이정한 박사는 “동역학 솔버도 물론 중요하지만, MFBD 시스템의 정적 해석을 계산할 수 있는 FFlex Static을 통해 업무의 효율성을 크게 증대시킬 수 있다”고 소개했다. 이외 함께, 이번 콘퍼런스에서는 다양한 고객 활용 사례도 소개됐다. 전북대학교의 임재혁 교수는 ‘Real-time & Physics-informed Multi-Body Dynamics Simulation and Animation’이라는 주제로 기조 발표를 진행했다. 이 발표에서는 게임, 영화 등에서 활용되는 CAE 기술 및 제조업에서 활용하는 CAE 와의 차이점에 대해서 이야기했다. 또한 Real-time data-driven FMBD simulation과 Physics-informed AI 기술 등 최신 CAE 동향에 대해서도 소개했다. 그리고 HL 만도, 충남대학교, 현대모비스, 세종중앙연구소, HD한국조선해양, LG전자, 현대자동차, 세일공업, POSCO 등 다양한 분야의 고객사가 리커다인을 활용한 사례를 소개했다. 펑션베이 영업팀의 신동협 팀장은 “펑션베이는 세계에서 유일하게 다물체 동역학 해석에 전념하는 CAE 기업으로서 보다 많은 책임감을 느끼고 있다. 국산 소프트웨어로서 CAE 기반 기술의 자주성을 지키면서도 고객들에게 보다 나은 솔루션과 서비스를 제공할 수 있도록 최선을 다하겠다”고 전했다.
작성일 : 2023-10-26
Ansys Electromagnetics 제품군
주요 CAE 소프트웨어 소개   전기전자 해석, Ansys Electromagnetics 제품군   ■ 개발 : Ansys, www.ansys.com ■ 자료 제공 : 앤시스코리아, www.ansys.com/ko-kr 앤시스 일렉트로마그네틱스(Ansys Electromagnetics)  솔루션 제품군을 활용함으로써 테스트 비용을 최소화하고, 규정 준수를 보장하며, 신뢰성을 개선하고, 제품 개발 시간을 대폭 단축할 수 있다.   Ansys 시뮬레이션 솔루션을 통해 제품 설계의 가장 중요한 측면을 해결할 수 있다. 안테나, RF, 마이크로파, PCB, 패키지, IC 설계 또는 전자 기계에 대한 업계 최고의 시뮬레이터를 제공한다. 제품의 설계 시 전자기, 온도, SI, PI, 기생, 케이블 및 진동 문제 해결에 도움을 준다.   1. 전자기장 해석 솔루션 제품 (1) 주력 제품 ■ Ansys Electronics : 전자기, 회로 및 시스템 시뮬레이션 통합 플랫폼 ■ Ansys HFSS : RF 및 무선 설계를 위한 3D 전자기장 해석 툴 ■ Ansys Maxwell : 전동기, 액츄에이터, 센서, 변압기 등 전자기 장치 해석 툴 ■ Ansys SIwave : 전력·신호 무결성, EMI 해석 설계 플랫폼 ■ Ansys Icepak : 전자장비 냉각 해석 툴   (2) 주요 제품 ■ Ansys Motor-CAD : 전동기 설계 해석 툴 ■ Ansys EMA3D Cable : 케이블 모델링 전용 툴 ■ Ansys Q3D Extractor : 전자 부품용 기생 파라미터 추출 소프트웨어   2. Ansys HFSS Ansys HFSS는 DC 근처에서 테라헤르츠에 이르기까지 모든 주파수에 대응하는 3차원 전자계 시뮬레이터이다. 업계 표준인 유한요소법 솔버를 비롯한 모든 솔버를 구현하여, 여러가지 전자기장 문제를 해결할 수 있다. Ansys HFSS는 GUI, Adaptive Auto Mesh, 대규모 문제에 사용 가능한 솔버로서 고급 해석 환경을 제공한다. (1) 적용 분야 ■ 안테나 해석 ■ RF/마이크로파/밀리미터파 해석 ■ 신호/전원 무결성 해석 ■ EMC/EMI 해석   3. Ansys SIwave Ansys SIwave는 PCB 및 BGA 패키지의 신호 및 전원 무결성, EMI 해석 소프트웨어이다. 전자계 CAD에서 가져온 디자인의 PDN 및 멀티비트 신호 해석을 적층 구조에 특화된 해석 방법으로 단시간 내에 처리할 수 있다. 또, 3D 전자계 해석 소프트웨어에서 사용 가능한 3D 솔리드 모델을 생성하는 기능도 갖추고 있다. (1) 적용 분야 ■ 프린트 배선판 : Rigid, Build up ■ BGA 패키지 : 와이어 본드, Chip, SiP, PoP   4. Ansys Maxwell Ansys Maxwell 2D/Maxwell 3D는 모터 및 액추에이터, 인덕터, 트랜스, 자기 센서를 비롯한 각종 전자 기계 제품 개발을 위한 전자계 해석 툴이다. 해석 대상의 전자기장 움직임을 시각적으로 판단할 수 있고, 발생하는 전자기력, 토크 및 인덕턴스, 커패시턴스와 같은 설계 파라미터의 자동 계산 기능이 있어, 실험 결과의 수치 평가도 손쉽게 조작할 수 있다. Ansys Maxwell에는 세련되고 사용하기 쉬운 GUI를 비롯해 안정된 정밀 해석이 가능한 고성능 Adaptive Auto Mesh와 Solver가 내장되어 있어, 초보자도 유한요소 해석 전문가처럼 간단한 조작만으로 정밀한 해석 결과를 얻을 수 있다. (1) 적용 분야 ■ 전자 기계 : 모터(회전형 모터, 리니어 모터), 발전기, 액추에이터, 릴레이 스위치 등 ■ 코일 : 인덕터, 트랜스, 리액터, 솔레노이드, 유도 가열기, 무선 급전, RFID, 스마트키 엔트리 등 ■ 센서 : 자기 센서, 리졸버, 자기 실드, 자기 헤드, 정전 터치 패널 등 ■ 자석 : 착자, 감자 등 ■ 기타 : 콘덴서, 케이블, 절연애자 등   5. Ansys Simplorer Ansys Simplorer는 대규모 파워 일렉트로닉스 시스템에 특화된 다중 도메인 시스템 시뮬레이터이다. 모터 및 액추에이터의 설계, 드라이버 회로 설계, 아날로그/디지털 제어 설계 등을 통합한 멀티 테크놀로지 솔루션을 제공한다. 6. Ansys Icepak Ansys Icepak은 전자 기기 설계 기술자용 열 유체 해석 기능을 제공한다. 하나의 GUI에서 모델링, 계산, 결과 확인을 모두 할 수 있다. Ansys 유한체적법 기반 유체 해석 엔진인 Ansys Fluent를 유체 해석 솔버로 내장하여 계산 안정성이 높다. (1) 적용 분야 ■ 반도체 패키지, 프린트 기판, 케이스, 파워 일렉트로닉스 기기, 서버실 등 다양한 해석 대상에 대해 전도, 대류, 복사를 포함한 열해석 가능     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-05-14
CAE 표준 용어집 개정판
  최근 CAE 업계의 트렌드를 반영, 업데이트된 용어들이 수록되었습니다. 많은 관심 부탁드립니다.   ■ 한국기계산업진흥회, 마이다스아이티, CAE 용어집 편찬위원회 지음(조진래, 김흥규, 한성렬 외) ■ 정가 20,000원  ■ 총 페이지 : 382쪽(올 컬러) ■ 책 사이즈 : 152*225 ■ 이엔지미디어 펴냄(문의 : 02-333-6900, www.cadgraphics.co.kr ) ■ 출간일 : 2019년 9월 2일 ■ ISBN: 979-11-86450-19-2   컴퓨터 기술의 발달로 이제는 실제 존재하지 않는 제품의 성능이나 효과까지 시뮬레이션을 통해 모의시험 할 수 있는 시대가 열렸다. 이를 가능하게 하는 기술이 CAE(컴퓨터 활용 공학 : Computer Aided Engineering)다. CAE는 CAD로 작성한 모델을 직접 만들기 전에 컴퓨터를 이용해 검토하고 데이터에 반영함으로써 신제품 개발기간의 단축과 원가를 획기적으로 줄일 수 있는 수단으로, 사전검증을 통해 프론트로딩(Front Loading)을 가능하게 한다. 이를 활용하면 시제품이나 완제품 생산의 시간과 비용을 대폭 절약할 수 있어서 경쟁력을 확보할 수 있기 때문에 산업혁신을 불러올 핵심 기술로 꼽히고 있으며, 4차 산업혁명으로 일컫는 제조업 혁신의 뒤에는 VPD(가상 제품 개발), 가상물리시스템(CPS)을 가능하게 하는 CAE가 있다. CAE의 영역은 점점 확대되고 있으며, 가장 많이 사용되는 자동차, 전자, 중공업 등 제조분야 이외에도 건축, 의료, 에너지 등 대부분의 산업분야에서 사용되고 있다. 최근 들어 CAE 소프트웨어의 가격 인하와 기술의 발전, 쉽게 사용할 수 있는 환경, 그리고 이를 활용할 수 있는 인재 양성을 위한 CAE 자격증과 교육기관 확대 등이 이루어지면서 CAE 분야에도 민주화, 대중화의 바람이 불고 있다. 그럼에도 불구하고 CAE 분야에서 사용되는 용어는 외국어를 기반으로, 소수 전문가들만 이해하는 기술 언어로 인식되면서 대중화의 걸림돌이 되어 온 것도 사실이다. 은 CAE 분야에서 사용되는 용어들이 소수 엔지니어들의 전유물이 아니라 관련 분야 종사자들에게 원활한 의사소통과 지식교류를 통해 보다 원활하게 관련 내용을 이해하고 적용할 수 있도록 하기 위해 만들어졌다. 이 책에서는 CAE 분야에 종사하는 설계자 및 해석 엔지니어는 물론 입문자들도 관련 분야의 기술을 이해할 수 있도록 간단한 용어 정의에서 추가적인 해설에 이르기까지 정리하였다. 또한 전문 용어에 대한 이해를 통해 부가적인 공학적인 지식을 습득할 수 있도록 많은 내용을 할애하고 관련 그림도 추가하였다. CAE 용어집은 어느 한 사람이 만든 결과물이 아니라 관련 업계 관계자들이 혼연일체가 되어 공통분모를 추출하고 이를 정리한 작업이라는 점에서 의미가 있다 할 것이다. 이 용어집은 첫 번째 기획인 만큼 CAE 분야의 다양한 영역 중에서 모든 분야를 다루지는 못했고, 범용, 구조, 유동, 소성가공, 사출성형 등 대표적으로 많이 쓰이는 분야를 우선 다루었다. 향후에는 CAE 전 분야에서 지침이 될 수 있는 내용을 담을 수 있도록 분야를 확대해 나갈 계획이다. 이 책은 난이도에 따라 CAE 분야에 입문하는 설계자나 실무초보자를 위한 파트와 해석실무에 익숙하거나 깊이 있는 지식을 원하는 전문가를 위한 파트로 분야별로 구분하여 총 두 개의 파트로 구성되었다. 같은 단어임에도 불구하고 분야에 따라 용어가 다른 의미로 사용되는 경우 일반 용어 코너에 정리하고 분야별로 의미를 적었다. 단어의 검색이 필요할 경우 용어집 뒤에 수록되어 있는 찾아보기를 활용할 수 있다. 새롭게 제작된 개정판에서는 원론적인 CAE와 조금 거리가 있을 수 있으나 CAE 업계에서 많이 사용되는 용어들을 추가하였다. CAE의 영역이 고전적인 영역에서 다른 분야와 융합되고 확장되는 상황을 반영하고자 했다. 1. 이 책의 특징 - CAE 분야에서 자주 사용하는 용어 해설 - 범용, 구조해석, 유동해석, 사출성형, 소성가공, 주조해석 분야의 용어 정리 -. 간단한 용어정의에서부터 해설까지 이해를 돕는 책 - 국내 CAE 분야 대표업체 및 기관들이 힘을 모아 함께 만든 책 - CAE 분야 최신 용어 수록 2. 이 책의 목차 Part 1 CAE 입문자를 위한 용어 해설   일반 용어   Part 2 CAE 분야별 용어 해설   구조해석    유동해석   사출성형   소성가공   주조해석  찾아보기 3. 이 책을 쓴 사람들 ■ 주요 참여 기관 : 한국기계산업진흥회, 마이다스아이티, 캐드앤그래픽스 ■ 편찬위원 : 조진래 홍익대학교 교수, 김흥규 국민대학교 교수, 한성렬 공주대학교 교수 ■ 도움주신 기관 및 업체들(가나다순) 다쏘시스템코리아, 메카솔루션,  앤시스코리아, 엠에프알씨, 오토데스크코리아, 이디앤씨, 지멘스, 태성에스엔이, 펑션베이, 피도텍, 한국생산기술연구원, 한국알테어, 한국엠에스씨소프트웨어, 한국이에스아이(가나다순) 수록 용어 목차 찾아보기 (용어 / 페이지번호) ㄱ 가상 제품 개발 8 가소화 246 가스 벤트 342 가스 빼기 342 가스사출성형해석 247 가이드 318 가진응답 해석 144 간섭하는 메시 요소 246 감쇠계수 145 감쇠비 146 감차적분 9 강결합 연동 기법 216 강성행렬 10 강제 변위 147 강제진동 148 강체 318 강체 요소 149 강체운동 150 개량차분법 342 갭 요소 151 검사 체적 217 검증 12 게이트 11 게이트 고화 248 게이팅 시스템 342 격자 볼츠만법 216 결정 고분자 248 결정화 248 결정화도 249 겹치는 메시 요소 249 경계 비선형 13 경계요소법 14 경계조건 15 경계층  216 경계층 효과 217 경계치 문제 16 경도 318 경화 17 계면열전달 342 고무-패드 성형 318 고분자 250 고성능 컴퓨팅  18 고유진동 152 고유진동수 153 고정 핀 319 공정 변수 250 공정 제어 250 공진 154 공칭응력 155 과다 구속 19 과보압 251 관재 굽힘 319 관재 액압 성형 319 구성 방정식 20 구조 감쇠 156 구조해석 21 굽힘 응력 157 굿맨의 피로 방정식 158 균열모드 159 균열선단 160 균형 유동 251 그래픽 사용자 인터페이스 21 극도 수렴 22 근사해 23 금속 유동선 319 금형 320 금형 보정 320 금형 온도 252 기록 파일 24 기하 비선형 25 기하 치수 및 공차 26 기하학적 경화 161   ㄴ 나비어-스토크스 방정식 217 난류 소산 217 난류 와류 218 난류 운동에너지 218 난류 유동 26 난류 거동 342 내냉금 342 내냉금특성 343 내부유동 219 내연적 알고리즘 320 내연적 증분 26 내절점법 343 냉각 단계 252 냉각 시간 253 냉각 채널 27 냉간 성형 320 냉금 343 냉금크기 343 너브 곡면 28 넌 리턴 밸브 253 네트워크 러너 254 뉴마크 기법 29 뉴턴 유체 220 뉴턴-랩슨 방법 30 니야마 343   ㄷ 다단 공정 320 다목적 최적설계 31 다물체 동역학 162 다상 유동 221 다중 공정 321 다중 물리해석 32 다중 복합재료 321 다중 스케일 해석 33 다중 하중 케이스 34 다층사출성형해석 255 단방향 연성해석 221 단조 해석 321 닫힘  221 담금질 320 대류 열전달 35 대류계수 36 대칭 경계조건 37 대칭 면 321 동시이중사출성형해석 256 동압  222 동적 상사성 223 동점성 224 동해석 163 드래프트  343 드러커-프라하 항복기준 164 드로우비드 321 등가 변형률 38 등가변형률 속도 39 등가응력 39 등고선 선도  224 등방 경화 322 등방 경화법칙 165 등방-이동 경화 322 등온 해석 323 등온도 곡선법 343 등치면 166 디스크 또는 다이어프램 게이트 254 디지털 트윈 40 딥 드로잉 323   ㄹ 라그랑지 승수법 41 라그랑지 접촉 39 란스 224 란초스 알고리즘 42 램 257 러너 344 러너 시스템 257 레이놀즈 수 43, 44 레이놀즈 응력 226 레이스트랙 효과 258 레일리 수 225 롤 성형 324 룽게-쿠타 방법 45 리바 요소 167 리브 258   ㅁ 마모 모델 324 마스터 요소 46 마이너 누적손상 법칙 168 마찰 모델 324 마텐자이트 변태 324 마하수 226 매니폴드 에지 259 맹압탕 344 메시 47 메시 간섭 259 메시 밀도 260 메시 세밀화 48 메시 재구성 49 메시 크기 51 멜드 라인 260 멤브레인 요소 169 명시적 시간적분 50 모깎기 324 모드 형상 173 모드응답해석 170 모드절단 171 모드해석 172 모멘텀 방정식 344 모서리 게이트 261 목적함수 51 몰드설계/주형설계 344 무압탕 344 무요소법 52 무탕도 344 무한요소 46 문니-리브린 모델 174 물성치 데이터 344 미드플레인 메시 262 미성형 262 미세다공 성형해석 263 민감도 해석 175   ㅂ 바우싱거 효과 325 반결정 264 반복 계산 226 반복해석 345 반사 대칭 53 반올림 오차 226 반원형 게이트 264 반원형 러너 264 발산 227 방향 벡터 54 배럴 265 배럴 용량 265 배플 266 배향 267 밸브 게이트 268 버블 269 버블러 269 번 마크 270 벌칙 방법 54 벌칙 접촉 55 범용 유한요소해석 프로그램 56 베르누이 방정식 227 베르누이의 원리/베르누이 정리 345 벡터 출력 57 벽 법칙  227 변태유기소성 325 변형 270 변형률 55 변형률 경화 176 변형률 에너지 177 변형률 텐서 55 병렬연산 58 보 요소 178 보스 271 보압 단계 271 보압 시간 271 보압 절환 272 보의 끝단부 해제 179 보이드 272 복굴절해석 273 부피 성형 325 분말사출성형해석 274 분산분석 59 분할면 275 블랭크 326 블랭크 홀더 326 블랭크 홀딩력 326 비 매니폴드 에지 275 비가압계 345 비결정성 고분자 275 비등온 해석 326 비선형 해석 60 비압입계 345 비압축성 326 비압축성 유동 228 비연관 유동법칙 327 비열 59 비점성 유동 229 비접합 메시 61 비정상 유동 229 빼기구배 62   ㅅ 사다리꼴 러너 276 사면체 요소 63 사용자 좌표계 64 사이클 시간 276 사출 금형 278 사출 속도 276 사출 시간 276 사출 압축 성형 해석 277 사출 주입점 278 사출량 279 사출압 279 상부 압탕 345 상호간섭 접근법 229 색상 범례 65 서크 백 279 선 요소 66 선형해석 67 설계변수 68 설계이력 기반 CAD 시스템 69 섬유 배향 280 성형 조건 281 성형 해석 327 성형한계도 327 성형한계선 327 세장면 70 속도 분포 229 속도 제어 단계 281 속도손실계수 345 손상 328 손상 모델 328 손실계수 346 솔리드요소 328 수 모델 346 수동 메시 71 수렴률 72 수송 방정식 229 수지 이름 281 수지 종류 281 수직 탕구 346 수축 282 수치적분 69 순환대칭 73 쉘 요소 74 스크루 282 스탬핑 328 스톱 핀 282 스트로크 75 스트립캐스팅 346 스프루 283 스프링 328 스프링 요소 180 스프링백 329 스피닝 329 시간 간격 76 시간 증분 75 시간적분 77 시뮬레이션 수명주기 관리 79 시차제 솔버 229 신경회로망 78 실험계획법 78 싱크 마크 283    O 아음속 229  RMS 출력 81 압력 구배 284 압력 제어 단계 284 압력 프로파일 285 압력-체적-온도(pvT) 285 압축성 모델 286 압축성 유동 230 압탕 겸용 347 압탕 계산  347 압탕 계수 347 압탕 모양 347 압탕 설계 347 압탕 수량 347 압탕 슬리브 348 압탕 원리 348 압탕 위치 348 압탕 조건 348 압탕 중량 348 압탕 체적 348 압탕 크기 349 압탕 형상 349 압탕 효과 349 액압 성형 329 약결합 연동방법 230 양방향 연성해석 230 언더컷 287 업데이트된 라그랑지법 82 에너지 방정식  231  SMAC법 349  S-N 선도 181 에어 트랩 288 에이엘이 연계법 83 엠보싱 330 역대칭 모델 84 연계해석 84 연속방정식 349 열 저하 288 열간 성형 330 열전달 349 열해석 182 예측 엔지니어링 분석 79  Ogden 모델 183 오버플로우 349 오일러 기술법 231 오일러 방정식 232 오일러-라그랑지 연계법 233 오차평가 85 온간 성형 330 온도 강하 349 온도 구배 350 온도 구배법 350 온도 손실 350 온도 회복법 350 와도 230 와이어 프레임 86 완화 거리 233 외냉금 350 외냉금 설계 350 외냉금 형태 350 외부 유동 233 요소 75 요소 분할 351 요소 자유도 87 요소 차수 88 요소 크기 89 용융 온도 288 용탕 헤드 351 운동량 방정식 233 원형 러너 289 원형 스프루 289 웰드 라인 289 위상 최적설계 184 위저드 90 유동 박리 234 유동 선 351 유동 정지 온도 290 유동 제어 351 유동 해석 351 유동 현상 351 유동응력 330 유령 입자 234 유로 290 유사 대칭 91 유선 234 유연다물체 동역학 96 유적선 235 유전자 알고리즘 92 유지 단계 290 유체 속도 351 유체-구조 연계해석 185 유체역학 351 유-피 혼합기법 92 유한요소 93 유한요소법 93 유한차분법 94 유한체적법 95 유효 변형률 330 유효 변형률 속도 330 유효 응력 330 응고해석 352 응력   95 응력 완화 331 응력 텐서 95 응력-변형률 선도 186 응력복원 187 응력집중계수 188 응력해석 352  E-N 선도 190 이동 경화 331 이동 경화법칙 189 이방성 331 이종접합 판재 332 인게이트 352 인장 성형 332  1차원 시뮬레이션 96 일체식 접근법 235 임계하중 191 입자 235 입자 완화 유체역학법 235 입자법 97   ㅈ 자동 메시 99 자유도 100 자유표면 235 자중 해석 332 자코비 방법 101 잠열계산 352 잠입 경계법 236 재료 물성치 102 재료 비선형 103 재료 좌표계 104 재시작 기능 105 적응적 유한요소해석 106 적층제조 시뮬레이션 107 전단 291 전단 마찰 332 전단 발열 291 전단 변형 292 전단 응력 292 전단율 293 전산유체역학 236 전압 236 전자기 성형 333 전자기 유체역학 236 전처리기 108 절단 333 절단 금형 333 절단면 선 333 절점 109 절점 자유도 110 절환 293 점도 294 점도 모델 294 점도 지수 294 점성 237 점성 유동 238 점성 저층 239 접선계수 행렬 111 접촉쌍 112 접촉해석 113 정렬 격자 239 정상 유동  239 정수압 239 정체 현상 295 정해석 114 제이-적분법 192 제팅 295 제한된 게이트 296 조회 115 종횡 비 261 좌굴 하중계수 193 좌굴 해석 101 좌굴모드 194 주 변형률 333 주 응력 116 주/부 변형률 334 주/부 응력 334 주름 334 주물/주조 353 주조 352 주조 변형 353 주조공정용 소프트웨어 353 주조해석 353 주파수 응답 해석 195 중립면 오프셋 196 중심 게이트 297 중앙차분법 117  G √R법 353  Z-형탕구 354 지배방정식 118 직교 이방성 197 직사각형 게이트 297 직사각형 러너 298 직접 냉금 354 직접차분법 354 질량행렬 198 집중질량 199 찌그러진 요소 119   ㅊ 차분법 354 차분화 354 처리기 120 천이 메시 121 천이 온도 298 첨단 운전자 보조 시스템 122 체력 118 체적 메시 299 초기 조건 200 초소성 성형 334 초음속 239 초크 354 초탄성 재료 201 최대 비틀림 에너지 이론 202 최대 수직응력 이론 203 최대 전단응력 이론 204 최소자승법 118 최적설계 124 추천 성형 구간 299 축대칭 모델 125 충격손실 355 충격파 240 충전 355 충전 단계 300 충전 말단 300 충전 시간 301 충전 시작 301 충전성 355 충전제 301 충진 거동 355 충진 시간 355 취출 301 취출 온도 302 취출 핀 302 측면 압탕 355 측면 코어 303 층류 123 칠 벤트 355   ㅋ 캐비티 303 커널 함수 241 컴퓨터 이용 공학 80 케이-입실론(k-ε) 난류 모델  241 코란트 수 241 코란트 조건식 241 코어 304 코어 핀 304 콜드 슬러그 305 콜드 슬러그 웰 305 쿠션 306 쿨롱 마찰 126 크랭크-니컬슨 기법 126 클라우드 컴퓨팅 18   ㅌ 탄성계수 205 탄성-완전소성 모델 206 탄-소성 334 탕구 방안 356 탕구 설계 356 탕구 속도 356 탕구 형상 356 탕구계 356 탕구비 356 탕도 356 탕도 계산 356 탕도 유속 357 탕류 속도/주입 속도 357 탕류 주입컵 357 탕류 해석 357 탕주불량/ 주탕불량/미충진 357 탕흐름 357 테이퍼진 원형 게이트 306 테이퍼진 원형 러너 307 테이퍼진 원형 스프루 307 테이퍼진 원형 호 게이트 308 테일러 용접 판재 335 토털 라그랑지언 방법 127 통합최적설계 128 트러스 요소 207 특이요소 130 특징 형상 131   ㅍ 판재 335 판재 성형 335 판재 액압 성형 336 판재성형 해석 336 패치면 131 팬 게이트 308 퍼지 309 펀치 금형 336 편향 메시 132 평면 응력 문제 133 평면변형률 문제  336 포텐셜 유동 242 폭발 성형 337 폰미제스 응력 134 표면 메시 309 프란틀 수 243 프론탈 솔버 135 프루드 수 244 프리로드 208 프린지 출력 136 프와송 비 209 플래시 310 플랜지 성형 337 플랜징 금형 338 피로수명 210 피로해석 211 피어싱 338 핀 포인트 게이트 310 필렛 133   ㅎ 하중 스텝 212 핫스탬핑 338 항복 기준 338 항복 함수 339 항복응력 137 해의 수렴성 138 해의 안정성 139 허용응력 357 헤밍 339 형개 시간 311 형상 입력 358 형상 최적설계 213 형상계수 358 형상변화 인자 358 형상비 133 형상적응형 냉각 312 형체력 311 호퍼 313 혼합 격자 244 혼합률 244 홀딩 해석 339 화학적발포성형해석 314 확산  243 환상형 게이트 313 환상형 러너 315 후처리기 140 후크의 법칙 214   A  adaptive finite element method 106  ADAS; Advanced Driver Assistance Systems 122  Additive Manufacturing simulation 107  air trap  288  ALE coupling  83  allowable stress 357  amorphous polymers  275  analysis of variance, ANOVA 59  anisotropy 331  annular gate  313  annular runner  315  anti-symmetry model 84  approximate solution 23  aspect ratio 133, 261  auto mesh 99  axisymmetric model 125    B  baffle  266  balanced flow  251  barrel  265  barrel capacity  265  baushinger effect 325  beam element 178  beam end release 179  bending stress 157  Bernoulli equations  227  Bernoulli principle 345  BHF(Blank Holding Force) 326  Bi-Injection molding analysis 256  birefringence analysis 273  blank 326  blank holder 326  blind riser 344  body force 118  boss  271  boundary condition 15  boundary element method 14  boundary layer 216  boundary layer effect 217  boundary nonlinearity 13  boundary value problem 16  bubble  269  bubbler  269  buckling analysis 101  buckling load factor 193  buckling mode 194  bulk metal forming 325  burn mark  270    C  CAE 80  casting 353  casting analysis 353  casting software 353  casting strains 353  cavity  303  center gate  297  central difference method 117  CFD; computational Fluid Dynamics 236  Chemical blowing agent injection molding analysis 314  chill 343  chill size 343  chill vent 355  choke 354  Circular runner  289  Circular sprue  289  circular tapered arc gate  308  circular tapered runner  307  circular tapered sprue  307  clamp forced  311  closure 221  cloud computing 18  Co-Injection molding analysis 255  cold forming 320  cold slug  305  cold slug well  305  compressibility model  286  compressible flow  230  Conformal cooling 312  constitutive relation 20  contact analysis 113  contact pair 112  continuity equation 349  contour plots 224  control volume 217  convection coefficient  36  convective heat transfer 35  convergence rate 72  cooling channel 27  cooling stage  252  cooling time  253  core  304  core pin  304  coulomb friction 126  coupled analysis 84  Courant criterion  241  Courant number/CFL number  241  crack mode 159  crack tip 160  Crank-Nicolson scheme 126  critical load 191  crystalline polymers  248  crystallinity  249  crystallization  248  cure  17  cushion  306  cycle time  276  cyclic symmetry 73    D  damage 328  damage model 328  damping coefficient 145  damping ratio 146  dead head 351  deep drawing 323  degree of freedom 100  design history based CAD system 69  design of experiments 78  design variable 68  die compensation 320  difference method 354  diffusion 243  digital twin 40  direct chill 354  direction vector 54  disc or diaphragm gate  254  distorted element 119  divergence 227  draft 343  draft / pattern draft 62  draft angle  62  Draker-Prager yielding criterion 164  drawbead 321  dynamic analysis 163  dynamic pressure 222  dynamic similaritude  223    E  edge gate  261  effective strain 330  effective strain rate 330  effective stress 330  ejection  301  ejection temperature  302  ejector pins  302  elastic modulus 205  elastic-perfectly plastic model 206  elast-plastic 334  element  75  element degree of freedom 87  element division 351  element order 88  element size 89  embossing 330  EMF(electro magnetic forming) 333  E-N diagram 190  end of fill  300  energy equation 231  enforced displacement 147  equivalent strain 38  equivalent strain rate 39  equivalent stress 39  error estimation 85  Euler description  231  Euler equations  232  Euler-Lagrange coupling  233  excitation response analysis 144  explicit time integration 50  explosive forming 337  external chill 350  external chill design 350  external chill form 350  external flows 233    F  family abbreviation  281  family name  281  fan gate  308  fatigue analysis 211  fatigue life 210  feeding effect 349  fiber orientation  280  filler  301  fillet  133  filleting 324  filling 355  filling motion 355  filling stage  300  filling time  301, 355  finite difference method 94, 354  finite element 93  finite element method 93  finite volume method 95  flanging forming/flanging 337  flanging tool 338  flash  310  FLC(forming limit curve) 327  FLD(forming limit diagram) 327  flow analysis 351  flow control 351  flow line 351  flow path  290  flow separation  234  flow stress 330  fluid dynamics 351  fluid flow phenomena 351  fluidity 357  fluid-structure coupled analysis  185  forced vibration 148  forging simulation 321  form factor 358  forming simulation 327  Foundry 352  free surface  235  free vibration 152  frequency response analysis 195  friction model 324  fringe plot 136  frontal solver 135  Froude number 244    G  G √R method 353  gap element 151  Gas injection molding analysis 247  gas vent 342  gate  11  gate freeze  248  gating system 342, 356  GD&T; Geometric Dimensioning and Tolerancing 26  general-purpose FEM program 56  genetic algorithm 92  geometric stiffening 161  geometry nonlinearity 25  ghost particle 234  Goodman fatigue equation 158  governing equations 118  gradient mesh 132  gravity simulation 332  GUI; Graphical User Interface 21  guides 318    H  hardening 17  hardness 318  heat loss 350  heat recovery law 350  heat transfer 349  hemming  339  hesitation  295  holding simulation 339  holding stage  290  Hooke’s law 214  hopper  313  hot forming 330  hot stamping 338  HPC; High Performance Computing 18  hybrid grid 244  hydrodynamic pressure  239  hydroforming / aquadraw forming 329  hyperelastic material 201    I  immersed boundary method 236  implicit algorithm 320  implicit increment 26  incompatible mesh 61  incompressibility 326  incompressible flow  228  infinity element 46  ingate 352  initial condition 200  Injection compression molding analysis 277  injection location  278  injection mold  278  injection pressure  279  injection time  276  injection velocity  276  injection volume  279  interaction approach 229  Interactive Analysis 345  interface heat transfer 342  internal flow  219  intersecting mesh elements  246  inviscid flow  229  isosurface 166  isothermal analysis 323  isothermal transformation method 343  isotropic hardening 322  isotropic hardening rule 165  isotropic-kinematic hardening 322  iteration 226    J  Jacobi method 101  jetting  295  J-integral method 192    K  kernel function 241  kinematic hardening 331  kinematic hardening rule 189  kinematic viscosity  224    L  Lagrange contact 39  Lagrange multiplier method 41  laminar flow 123  laminar flow  123  Lanczos algorithm 42  latent heat calculation 352  lattice Boltzmann method 216  law of the wall 227  least square method 118  line element 66  linear analysis 67  load step 212  locator pin 319  log file 24  loss factor 346  lumped mass 199    M  Mach number  226  magnetohydrodynamics MHD 236  major/minor strain 334  major/minor stress 334  manifold edge  259  manual mesh 71  martensitic transformation 324  mass matrix 198  master element 46  material coordinate system 104  material nonlinearity 103  material properties 344  material property 102  maximum normal stress theory 203  maximum shear stress theory 204  maximum torsional energy theory 202  MDO; Multidisciplinary Design Optimization 128  meld line  260  melt temperature  288  membrane element 169  mesh  47  mesh density  260  mesh intersection  259  mesh refinement 48  mesh size 51  meshfree method 52  metal flow line 319  Micro cellular injection molding analysis 263  midplane mesh 262  Minor cumulative damage rule 168  misrun 357  mixture fraction 244  modal analysis 172  modal response analysis 170  mode cut-off 171  mode shape 173  mold design 344  mold open time  311  mold temperature  252  moment equation 233  momentum equation 344  monolithic approach 235  Moonley-Rivlin model 174  multi operation 321  multi ply material 321  multibody dynamics 162  multi-load case 34  multiobjective optimization 31  multiphase flow 221  multi-physics analysis 32  multi-scale analysis 33  multi-stage operation 320    N  natural frequency 153  Navier-Stokes equations  217  near symmetry 91  network runners  254  neural network 78  neutral plane offset 196  Newmark method 29  Newtonian fluid  220  Newton-Raphson method 30  niyama 343  nodal degree of freedom 110  node 109  no-flow temperature  290  nominal stress 155  Non-associated flow rule 327  non-isothermal analysis 326  nonlinear analysis 60  non-manifold edge  275  non-return valve  253  numerical integration 69  NURB surface 28    O  objective function 51  Ogden model 183  one-way coupling 221  optimum design 124  orientation  267  orthotropy 197  over constraint 19  over flow 349  overlapping mesh elements  249  overpacking  251    P  packing stage  271  packing time  271  parallel computing 58  particle 235  parting plane  275  patch surface 131  pathline 235  Paticle Dynamics 97  peculiar feature 131  penalty contact 55  penalty method 54  piercing 338  pin point gate  310  plane-strain problem 336  plane-stress problem 133  plastication  246  Poisson’s ratio 209  polymer  250  postprocessor 140  potential flow  242  pouring cup 357  pouring cup velocity 357  Powder injection molding analysis 274  Prandtl number  243  predictive engineering analysis 79  preferred molding window  299  preload 208  preprocessor 108  pressure controlled stage  284  pressure gradient  284  pressure profile  285  pressure-volume-temperature(pvt)  285  principal strain 333  principal stress 116  principle stress 116  process control  250  process parameters  250  processing conditions  281  processor 120  punch 336  purging  309    Q  quenching 320  query 115    R  racetrack effect  258  ram  257  RANS, Reynolds averaged Navier Stokes 224  Rayleigh number 225  rebar element 167  rectangular gate  297  rectangular runner  298  reduced integration 9  reflective symmetry 53  remeshing 49  resonance 154  restart function 105  restricted gate  296  Reynolds number 44  Reynolds number  43  Reynolds stress 226  rib  258  rigid body 318  rigid body motion 150  rigid element 149  riser calculation 347  riser design 347  riser sleeve 348  riserless 344  RMS output 81  roll forming 324  round-off error 226  rubber-pad forming  318  Runge-Kutta method 45  runner 344, 356  runner calculation 356  runner system  257  runner velocity of flow 357  runnerless 344    S  screw  282  segregated solver 229  semicircular gate  264  semicircular runner  264  semicrystalline  264  sensitivity analysis 175  shape optimization 213  shear  291  shear friction 332  shear heating  291  shear rate  293  shear strain  292  shear stress  292  sheet 335  sheet hydro forming 336  sheet metal forming simulation/stamping simulation 336  sheet metal forming/stamping 335  shell element 74  shock loss 355  shock wave  240  short shot  262  shrinkage  282  side core 303  side riser 355  silver surface 70  singular element 130  sink mark  283  SLM; Simulation Lifecycle Management 79  SMAC method 349  smoothed particle hydrodynamics, SPH 235  smoothing length 233  S-N diagram 181  SOLA-VOF 346  solid element 328  solidification analysis 352  solution convergence 138  solution stability 139  specific heat  59  spinning 329  spring element 180  springback 329  springs 328  sprue 283, 346  sprue design 356  sprue ratio 356  sprue shape 356  spure velocity 356  St Venant principle 65  stamping 328  start of fill  301  static analysis 114  steady flow 239  stiffness matrix 10  stop pin  282  strain 55  strain energy 177  strain hardening 176  strain tensor 55  streamlines 234  stress 95  stress analysis 352  stress concentration factor 188  stress recovery 187  stress relexation 331  stress tensor 95  stress-strain diagram 186  stretch forming  332  strip casting 346  stroke 75  stroke  75  strong coupling 216  structural analysis 21  structural damping 156  structured grid 239  subsonic 229  suck back  279  super convergence 22  superplastic forming 334  supersonic 239  surface mesh 309  switchover  293  symmetric boundary condition 37  symmetry plane 321    T  tailored blank 332  tangent stiffness matrix 111  tapered arc gate  306  temperature drop 349  temperature gradient 350  temperature gradient law 350  tetrahedron element 63  thermal analysis 182  thermal degradation 288  time increment 75  time integration 77  time step 76  tooling 320  top riser 345  topology optimization 184  total Lagrangian method 127  total pressure 236  transition mesh 121  transition temperature  298  transport equation 229  trapezoidal runner  276  triming curve 333  trimming 333  trimming tool / trimming die 333  TRIP(Transformation induced plasticity) 325  truss element 207  tube bending 319  tube hydroming 319  turbulent dissipation 217  turbulent eddy  218  turbulent flow  26  turbulent kinetic energy 218  TWB(tailor welded blank) 335  two-way coupling 230    U  undercut  287  unsteady flow 229  u-p mixed method 92  updated Lagrangian method 82  user coordinate system 64    V  valve gate  268  vector plot 57  velocity controlled stage  281  velocity of flow 351  velocity Profiles 229  velocity to pressure switchover  272  vent 342  verification 12  viscosity 237, 294  viscosity index  294  viscosity model  294  viscous flow  238  viscous sub layer 239  voids  272  volume mesh  299  von Mises stress 134  vorticity 230  VPD; Virtual Product Development 8    W  warm forming 330  warpage  270  water model 346  weak coupling 230  wear model 324  weld line  289  wire frame 86  wizard 90  wrinkling 334    Y  yield criterion 338  yield function 339  yield stress 137    Z  z-type spure 354   숫자 1D simulation 96  
작성일 : 2023-05-02
[핫윈도] 외부 충격에 의한 배터리 셀의 열폭주 예측 해석을 위한 연성 해석 기법 개발
이 글에서는 외부 충격 하중에 의한 배터리 셀의 내부 단락으로 인한 열폭주 현상을 예측할 수 있는 해석 기법의 선행 연구와 필자가 개발한 해석 기법을 간략하게 소개하고자 한다.   리튬이온 배터리의 충격 하중에 의한 열폭발 해석의 필요성 리튬이온 배터리(LIB)는 고에너지 밀도와 긴 수명의 장점으로 인하여 전기자동차(EV)와 에너지 저장 장치(ESS) 등에 널리 사용되고 있다. 특히, 하이브리드 자동차(HEV) 또는 전기 자동차에 사용되는 차량용 리튬이온 배터리의 수요가 증가하는 추세이다. 그러나 차량용 리튬이온 배터리의 수요가 증가하면서 외부 충격 하중에 의해 유발되는 리튬이온 배터리의 성능 감소 및 열폭주(thermal runaway) 문제가 대두되고 있다. 이를 해결하기 위해서는 외부 충격 하중에 의한 열폭주 메커니즘을 구현할 수 있는 해석 기법을 개발하고 적용하는 것이 중요하다.   그림 1. 리튬이온 배터리 수요 예측   차량 단위에서 외부 충격에 의해 발생하는 배터리 모듈/팩의 과도한 변형은 배터리 셀의 변형으로 이어진다. 배터리 셀의 변형은 셀 내부 양극과 음극의 접촉을 막고 리튬이온의 이동을 위해 구성된 분리막의 파손을 유발한다. 분리막의 파손은 양극과 음극을 맞닿게 하여 내부 단락(internal short circuit)을 야기한다. 내부 단락이 발생한 배터리 셀에서는 급격한 전압 강하와 온도 상승으로 인한 열폭주 현상이 발생한다. 내부 단락으로 인한 열폭주로 일어나는 차량 화재 사고는 큰 인명 피해를 유발할 수 있기 때문에, 이러한 위험을 예방하기 위해 SAE J2464, IEC-62133, UN0 R100, UN 38.3, GB/T 31485와 같은 전기 자동차용 리튬이온 배터리 시험 표준이 존재한다. 이러한 시험 표준을 통해 외부 충격 하중을 모사할 수 있는 충격, 충돌, 낙하 등의 다양한 기계적 하중 조건에 대한 안전성을 충족하도록 요구된다. 그러나 외부 충격 하중과 같은 기계적 오용(mechanical abuse)에 의해 셀 내부에서부터 발생하는 열폭주의 원인을 파악하거나 더 나아가 이를 예측하는 것은 매우 어렵다. 또한, 전기화학적 반응에 의해 작동하는 리튬이온 배터리의 기계적 오용에 의한 열폭주 발생 메커니즘을 파악하는 것에는 한계가 존재한다. 따라서 실험에서 파악되는 물리적 현상을 전산 수치 해석을 통해 모사하여 외부 충격 하중과 같은 기계적 오용에 의한 열폭주 메커니즘을 정확히 분석하고 예측할 수 있는 수치 해석 기법에 대한 연구가 중요하다.     그림 2. 리튬이온 배터리 셀 파손에 의한 EV 화재 사고   리튬이온 배터리 균질화 모델의 한계 리튬이온 배터리 셀의 화재나 열폭주는 분리막의 파손으로 인한 단락으로부터 시작되므로, 리튬이온 배터리 셀에 기계적 하중이 가해질 때의 단락 발생 시점과 위치를 예측하는 것이 중요하다. 따라서 배터리 셀 내부의 단락에 따른 기계적 거동을 예측할 수 있는 유한요소 모델(finite element model)을 개발하는 다양한 연구가 수행되고 있다. 초기에 Sahraei 연구진에 의해 배터리 셀의 균질화(homonized) 모델이 개발되었다. 그들은 소형 파우치 셀의 기계적 특성을 예측하기 위해 준 정적 하중 범위에서의 두께 방향 압축, 구형 펀치 압입, 면내 압축 및 삼점 굽힘의 기계적 실험을 수행하였다. 기계적 실험을 통해 시간에 따른 반력, 변위 및 전압을 측정하였고, 반력과 전압이 동시에 하락하는 시점을 단락의 발생 시점으로 정의하였다. 이후, 측정된 하중-변위 곡선과 crushable foam 재료를 이용하여 배터리 셀의 균질화된 유한요소 모델(homonized finite element model)을 구성하였다. 배터리 셀 균질화 모델은 구형 펀치에 대한 기계적 실험의 반력 수준과 내부 단락 시점을 정확하게 예측하였다. 이후 그들은 파우치 셀에 대한 단락을 집중적으로 분석하기 위해 소형, 중형, 대형 파우치 셀에 대한 다양한 지름의 구형 펀치 압입 시험과 시뮬레이션을 수행하였다. 그러나 배터리 셀 균질화 모델은 열 폭주와 관련된 셀의 기계적 수준의 단락 발생 시점을 정확하게 예측할 수 있지만, 단락 이후 전기와 열적 반응에 대한 예측은 어렵다.   그림 3. 균질화 배터리 셀 모델의 구성 및 구형 펀치 압입 해석   리튬이온 배터리 RS 모델의 한계 배터리 셀의 균질화 모델과 달리 약 165개의 레이어로 구성된 파우치 셀을 음극 집전체, 음극, 분리막, 양극, 양극 집전체인 5개의 레이어로 구성한 Representative Sandwich(RS) 모델이 Zhang의 연구진에 의해 개발되었다. Zhang 연구진은 일방향(one-way) 기계-전기-열 연성 해석 RS 배터리 셀 모델을 이용하여 파우치 셀에 대한 준정적 상태에서의 구형 펀치 압입 해석을 수행하였다. 파손 기준에 대해서는 최대 압축 변형률을 기준으로 분리막의 파손을 정의하였고, Sahraei 연구진의 실험 결과를 기반으로 RS 배터리 셀 모델을 검증하였다. RS 배터리 셀 모델은 기계적 변형에 따른 전류 밀도, 온도 분포 및 전기적 단락에 의한 열폭주 현상을 정확하게 예측할 수 있다. 이후, Zhang 연구진은 RS 배터리 셀 모델을 개선하여 다중물리 현상이 발생하는 리튬이온 배터리의 기계적 변형, 전기, 열 응답을 동시에 해석할 수 있는 양방향(two-way) 기계-전기-열 연성 해석 RS 모델을 개발하였다. 이를 통해 배터리 셀의 기계적 변형으로 인한 전기, 열해석을 동시에 수행하였다. 그들은 전극과 분리막의 재료 모델을 crushable foam에서 modified honeycomb으로 변경하였으며, 전극 사이의 거리를 기준으로 전기적 단락을 정의하여 기계적 하중에 의한 전기적, 열적 응답을 성공적으로 예측하였지만, 리튬이온 배터리의 화학적 용량은 고려하지 않았기 때문에 충전량에 따른 전기적, 열적 응답의 차이는 고려하지 못한다.   그림 4. RS 배터리 셀 모델의 구성 및 구형 펀치 압입 해석   리튬이온 배터리의 정확한 열폭주 예측 시점을 위한 NDL 모델 및 해석 기법 개발 이후, Lee와 Kim은 열폭주 및 용량 손실을 정확하게 구현할 수 있는 양방향으로 비선형 기계-전기화학-열 연성 해석이 가능한 Nonlinear Detailed Layered(NDL) 배터리 셀 모델을 개발하였다. 6, 7 NDL 배터리 셀 모델은 균질화 모델 및 RVE(Representative Volume Element) 배터리 셀 모델과 달리 배터리 셀의 레이어에 따른 세부적인 기계적 특성을 고려하여 기계적 응답에 대한 정확성의 한계를 극복하였으며, 이를 통하여 열폭주 및 용량 손실을 정확하게 구현하였다. NDL 배터리 셀 모델은 리튬이온 배터리 레이어의 개수와 두께를 실제와 동일하게 구성한다. 또한, 양극 집전체, 양극, 분리막, 음극, 음극 집전체 재료의 이방성과 변형 속도로 인한 경화 특성과 같은 재료 비선형 특성을 고려하여, 분리막 파손으로 유발되는 내부 단락으로 인한 전압 강하, 온도 상승을 정확하게 예측한다.   그림 5. 배터리 셀 모델의 비선형기계-전기화학-열 연성해석 프로세스   NDL 배터리 셀 모델의 비선형 기계 모델에서는 기계적 변형과 양극과 음극의 접촉으로 인한 내부 단락을 계산한다. 전기화학 모델은 Randle circuit들로 구성되며 전압과 전류뿐만 아니라 에너지 총량을 고려하여 내부 단락으로 인한 발열을 계산한다. 열 모델은 전기화학 모델에서 계산된 줄열, 가역, 비가역 화학 반응을 열원으로 시간에 따른 온도를 계산한다. 열 모델에서 계산된 온도 변화는 다시 화학 반응과 기계적 열팽창에 영향을 미친다. 이후, 연구진은 NDL 배터리 셀 모델을 이용하여 세 가지 압입 시험에 의한 하중-변위 곡선, 내부 단락 발생 순간 및 위치, 파손 형태를 시험과 비교하여 검증하였다. NDL 배터리 셀 모델은 기존의 균질화 및 RVE 배터리 셀 모델 대비 구형 압자의 지름이 증가함에 따른 V, W 형태의 파손 단면 형상을 보다 정확하게 예측하였으며, 기계적 변형과 분리막 파손 메커니즘을 매우 정확히 예측하였다.   맺음말 리튬이온 배터리의 외부 충격 하중은 배터리 셀에서의 내부 단락을 발생시킨다. 그리고 배터리 셀 내부에서 발생되는 단락은 결국 열폭주를 일으킨다. 내부 단락에 의한 열폭주를 예측하기 위한 다양한 해석 기법이 개발되었다. 초기에 개발된 것은 기계적 변형에 의한 내부 단락 시점을 예측할 수 있는 균질화 배터리 셀 모델이었다. 또한 기계적 변형에 의해 발생되는 내부 단락을 예측할 뿐만 아니라 전기, 열 응답을 분석할 수 있는 RS 배터리 셀 모델이 개발되었다. 이후, 기계적 비선형을 고려하여 내부 단락을 정확하게 예측하고 전기화학, 열 응답을 양방향으로 동시에 고려할 수 있는 NDL 셀 모델이 개발되었다. 이러한 배터리 셀의 해석 기법에 대한 연구를 통해 외부 충격 하중에 의해 발생할 수 있는 열폭주를 정확하게 예측함으로써, 위험한 실험을 최소화하면서 안전한 리튬이온 배터리를 설계 및 개발하고 전기 자동차의 외부 충격에 대한 안전성을 확보할 수 있다.   그림 6. NDL 배터리 셀 모델을 이용한 비선형 기계-전기화학-열 연성 해석. (a) 비선형 기계적 특성, (b) 전기화학적 특성, (c) 열적 특성   ■ 이 글의 내용은 2022년 11월 18일 진행된 ‘CAE 컨퍼런스 2022’의 발표 내용을 정리한 것이다.   참고문헌 Kim., C.W., Yang, H.I., Lee, S.G., Lee, D.C. Metamodel-Based Optimization of a Lithium-Ion Battery Cell for Maximization of Energy Density with Evolutionary Algorithm, J. Electrochem. Soc., 2019, 166(2), A211. Lee, D.C., Lee, K.J., Kim, C.W. Optimization of a lithium-ion battery for maximization of energy density with design of experiments and micro-genetic algorithm, Int. J. Precision Engineering and Manufacturing-Green Technology, 2020, 7(4), 829-836. Lee, D.C., Lee, J.J., Kim, J.S., Kim, C.W. Thermal behaviors analysis of 55 Ah large-format lithium-ion pouch cells with different cell aspect ratios, tab locations, and C-rates, App. Therm. Eng., 2020, 175, 115422. Kim, J.S., Lee, J.J., Lee, D.C., Kim, C.W. Optimization for maximum specific energy density of a lithium-ion battery using progressive quadratic response surface method and design of experiments, Scientific reports, 2020, 10(1), 1-11. Lee, J.J., Kim, J.S., Chang, H.K., Lee, D.C., Kim, C.W. The effect of tab attachment positions and cell aspect ratio on temperature difference in large-format libs using design of experiments, Energies, 2020, 14(1), 116. Lee, J.J., Kim, J.S., Lee, D.C., Chang, H.K., Kim, C.W. Design optimization of tab attachment positions and cell aspect ratio to minimize temperature difference in 45-Ah LFP large-format lithium-ion pouch cells, App. Therm. Eng., 2021, 182, 116143. Lee, D.C., Kim, C.W. Detailed Layered Nonlinear Finite Element Analysis for Lithium-Ion Battery Cells to Predict Internal Short Circuits Due to Separator Fractures under Hemisphere Indentation, J. Electrochem. Soc., 2020, 167, 120511. Lee, D.C., Kim, C.W. Two-way nonlinear mechanical-electrochemical-thermal coupled analysis method to predict thermal runaway of lithium-ion battery cells caused by quasi-static indentation, J. Power Sources, 2020, 228678. Kim, J.S., Lee, D.C., Lee, J.J., Kim, C.W. Optimization of Lithium-Ion Battery Pouch Cell for Maximization of Energy Density while Preventing Internal Short Circuit Caused by Separator Failure under Crush Load, J. Electrochem. Soc., 2021, 168, 030536. Yoo, D.H., Park, J.H., Moon, J.M., Kim, C.W. Reliability-Based Design Optimization for Reducing the Performance Failure and Maximizing the Specific Energy of Lithium-Ion Batteries Considering Manufacturing Uncertainty of Porous Electrodes, Energies, 2021, 14(19), 6100. Park, J.H., Yoo, D.H., Moon, J.M., Yoon, J.H., Park J.T., Lee, S.A., Lee, D.H., Kim, C.W. Reliability-Based Robust Design Optimization of Lithium-Ion Battery Cells for Maximizing the Energy Density by Increasing Reliability and Robustness, Energies, 2021, 14(19), 6236. Moon J.M., Chang H.K., Lee, J., Kim, C.W. Prediction of Internal Circuit and Mechanical-Electrical-Thermal Response of Lithium-Ion Battery Cell with Mechanical-Thermal Coupled Analysis, Energies, 2022, 15(3), 929. Chang, H.K., Lee J., Kim, C.W. A statistical analysis of thermal characteristics of 55-Ah large-format LIB pouch cell with different tab-type, tab size, and tab position, Case Studies in Therm. Eng., 2022, 30, 101777.   김창완 건국대학교 기계공학부 교수이다. 미국 Univ. of Texas at Austin에서 소음 진동에 대학 박사 학위를 취득하고, 다단계부분구조합성법을 이용한 NVH 해석 알고리즘 AMLS 기법을 개발했다. 다양한 산업제품에 대한 다중물리해석 및 최적설계 연구를 수행하였으며, 최근에는 전기모터에 대한 전자기-구조진동-다물체동역학 연성 해석 기법과 배터리에 대한 전기화학-열-비선형구조 연성 해석에 대한 연구에 집중하고 있다. (홈페이지)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2022-12-29
PCB 해석을 통한 결함 방지 및 자동 검증 솔루션을 소개하는 ATCx for ESD
  YouTube Live로 진행되는 ATCx for ESD에 여러분을 초대합니다! "신청하기" 버튼을 눌러서 신청하신 후, 발송되는 메일의 링크를 통해 참석해주세요.     14:00 ~ 14:25 DDR4 SI 시뮬레이션 후 실측과의 비교 DDR4 3,733Mbps 이상부터는 실측을 진행할 때 Interposer를 사용하기에 Eye-Diagram이 제대로 보이지 않는 현상이 발생할 수 있습니다. 이번 발표에서는 SI 시뮬레이션 결과와 실측 간의 많은 차이가 발생하게 되는 인자에 대한 실측을 진행하여, De-Embedding 기술을 활용한 최종 입력단의 측정과 SI 시뮬레이션을 비교하는 방법에 대하여 소개합니다. 14:25 ~ 14:50 Feko를 이용한 Transceiver의 Emission 해석과 정전기 방전 시뮬레이션 소개 본 발표에서는 간단한 회로 Artwork의 PCB에서부터 복잡한 회로까지 전자기 Emission에 대한 해석 방법을 소개합니다. Feko를 사용하여 간단한 EMC/EMI 해석을 하고 HDMI, USB, DDR3, Data, CLK 및 Address를 포함한 복잡한 구조에서 Excitation에 대한 PCB 전류 계산 및 솔루션 계수 생성과 복사 방출을 계산함으로써 전자기 Emission을 소개하고, Feko의 FDTD 솔버를 통한 효율적인 시뮬레이션을 소개하고자 합니다. 14:50 ~ 15:15 열에 의해 발생하는 PCB의 결함 예측을 위한 SimLab 활용 방안 알테어의 대표적인 멀티피직스 해석 툴인 SimLab은 기존 열해석 접근 방식에서 발생하는 에러와 많은 소요 시간을 개선 할 수 있는 다양한 기능을 탑재하여 작업 효율성을 높여줍니다. PCB의 정확한 형상 표현 및 Paraemtric 관리, 형상 간소화, 물성치 등가표현, 자동 메쉬, 자동화, 다양한 해석 타입(열전달 및 변형, 피로) 등을 제공합니다. 본 발표에서는 SimLab을 이용하여 PCB 결함의 주요 원인인 열해석 프로세스 및 사례에 대해 소개합니다. 15:15 ~ 15:40 UDE Library 관리 시스템과 설계 자동 검증 시스템 PCB 설계 시 UDE의 Part Library의 관리 방식에 따라 설계 표준화, 설계 품질의 균일화를 통한 생산 품질 개선이 가능합니다. UDE는 PollEx의 DFM/DFE/DFA를 통하여 자동 검증 시스템을 지원하고, 회사별 검증 기준을 설정하여 별도의 검증 서버를 통해 검증합니다. 검증 Data는 UDE 산출물 및 BOM을 통하여 확인할 수 있습니다. 본 발표에서는 UDE의 Library 시스템과 PCB 검증에 대해 소개하고자 합니다.       문의 사항은 ATC@altair.co.kr / 070-4050-9210 으로 연락주시기 바랍니다.
작성일 : 2022-11-16