

June 25 2010

CUSTOMER INSPIRED PRODUCT DESIGN FOR EMERGING MARKETS

APPLYING VOC AND S-QFD FOR NEW PRODUCT DEVELOPMENT

PLM BEST PRACTICE CONFERENCE, SEOUL, KOREA, 2010

Management Consultants

Where Innovation Operates

Note: Disclaimer

This presentation material includes and utilizes PRTM proprietary property which is confidential under the consulting agreement with the PRTM's clients.

CAD & Graphics agrees to limit its use of the property solely for PLM Best Practice Conference purposes and agrees to not disclose any property outside of the conference.

Methodology Overview

Voice of the Customer (VoC)

- The un-stated, observed customer needs
- Customer opportunity requirements

PRTM

Simplified Quality Function Deployment (S-QFD)

- Link customer requirements with product engineering requirements

Competitive Benchmarking of Customer Requirements

Defining a Winning Unique Selling Proposition (USP)

- Enhancing the product requirements that underscore the USP
- De-contenting the product requirements that do not support customer requirements

Customer Inspired Product Design For Emerging Markets - June 2010 | © 2010 PRTM Proprietary

Customer Inspired Product Development

Discover

- Stated & unstated needs
- Local market experience and context
- Customer requirements

<u>Assess</u>

- Competitor products
- Performance on customer requirements
- Performance and cost gaps on key systems

Identify

- Links between customer requirements & product attributes
- Product concept USPs
- Performance needed to deliver USPs

<u>Generate</u>

- Cost reduction ideas for non-USPs
- Design improvements for USPs
- Cost analysis and action plan

PRTM

Henneld Constant Cons

Identify Target Customers and Key Decision Makers

Assess Inputs from Routine Sources to Gain Further Customer Insight

 Internet
 Discourse Country
 Di

Routine inputs arise from ongoing operational engagement with customers

Customer Inspired Product Design For Emerging Markets - June 2010 | © 2010 PRTM Proprietary

Convert "Voices" Into Opportunity Customer Requirements

Benchmarking Approach to Assess Performance Capabilities and Cost Drivers

Clinics Provide Hands-on Competitive Intelligence Gathering

PRIM

Teardowns Help Understand Competitors' Design and Manufacturing Processes

Product and process experts use teardown results to compare designs:

- Which design and manufacturing aspects of the competitive product provide similar function at a lower cost?
- Which design and manufacturing aspects provide more functionality at similar cost?

.

A Simplified Quality Function Deployment (S-QFD) Uses Four Inputs

PRTM

Customer Inspired Product Design For Emerging Markets - June 2010 | © 2010 PRTM Proprietary

Cross-Functional Workshops With Suppliers Create Breakthrough Ideas

Benchmarking Identifies Where Competitors Do Not Satisfy Customers

One Market Offer Best Satisfies Requirements Related to Interior Color and Instr. Panel Design

Example

Design for Cost and Complexity Workshops Optimize Product Cost/Value 1 Select Sub-system and Workshop Intensity for Each Selected Component 2 **DFC & Complexity** Workshop **Conduct Workshops Methodology** Inputs **CRs/USPs** Subsystem benchmarking Process benchmarking S-QFD Model Function analysis Specification analysis **Bill of Material** Value analysis Material substitution **Benchmarking Data** Complexity reduction **Other Relevant Data** De-contenting

S-QFD Analysis Identifies Attributes that Can Solution Be De-contented Without Impacting Requirements

S-QFD Model ranks FA importance

Safety & Environment – FAs	Sco	ore		
Quality – FAs	S	core		
Cost of Ownership – FAs		Sco	re	
Driving Experience– FAs		Sc	ore	
Exterior Experience- FAs		S	Score	Э
Interior Experience- FAs			Sco	re
Information system				
Steering wheel				
Materials resistance to				
scuffs/dirt				
Controls & switch reach	abil	ity		
Storage capacity				
IP design & attractivene	SS			
Fit & finish - Interior				
Gauge visibility & position				
Color & trim - interior				
Entertainment system				
Quality of seating material				

Low ranking FAs to de-content

Interior Experience– FAs	Score
Quality of seating material	
Seats - Attractiveness	
Seat surface resistance to dirt	
Rear Passengers Entry/Exit	
Roominess - Cabin Front	
Engine Power	
Doors - Fit and Finish	
Roominess-Cabin Rear	
Front Hood - Ease of Open/Support	
Engine Sound	
Fit and Finish Exterior	
Seat Comfort - Seat Belt	
Seat Comfort - Rear	
Interior Assist Handle	
Ride Smoothness	

PRTM

Example

Highest Impact FAs

2nd Highest Impact FAs

3rd Highest Impact FAs

Customer Inspired Product Design For Emerging Markets - June 2010 | © 2010 PRTM Proprietary

Example DFC Methodology: Muffler Hanger

PRTM

A portion of the cost is in a non-supporting function and can be eliminated; another potion is supporting, but not critical and can be reduced

 Defines the functionality
of each part of the
product

- Estimates the cost to provide each function
- Allocates the cost of each component to each function
- Determines whether any functions can be eliminated w/o significantly degrading the product

Example—Muffler Hanger					
Parts / Components	Cost of components				
Hanger Strap					
Self-Tapping Bolt					
RubberInsulator		-			
Clamp					
Total					

Classification of functions				
Basic				
Critical				
Supporting				
Non-supporting				

Example Complexity Management: Interior Décor Moldings

Limit the subsystems to which moldings are applied, limit the part count, color choices and material choices of décor moldings

Complexity Costs of Interior Décor Molding Proliferation

Model includes Engineering, Material (for left graph), Logistics, Manufacturing and Overhead Cost

Customer Inspired Product Design For Emerging Markets - June 2010 | © 2010 PRTM Proprietary

PRTM

A CID Approach Targeted to Emerging Markets Integrates with PLM Solution Sets

PRTM ... Where Innovation Operates

Thank you!

