

Innovative Product Development – Relational Product Development –

IBM PLM Solutions Apr.12th 2007

Agenda

- Industry Environment & RPD
- Why RPD?
- RPD Roadmap for Achieving the Vision

© 2007 IBM Corporation

CIOs and CTOs recognize innovation as the most important capability for growth

Source: March 2005 McKinsey Quarterly survey of 9,345 global executives

Improved innovation = Improved business results

Source: Aberdeen Group, September 2005

© 2007 IBM Corporation

Fundamental Shift: Craftsman to Knowledge Worker Improving the Innovation Ratio

Product Development capabilities have evolved as a source of competitive advantage...

	1970 - 1980	1980 - 2000	2000 beyond
Business Drivers	Productivity Improvement Task Automation	Design Reuse Cost Reduction Cycle Time Reduction	Globalization Profit Margins Rapid Response
Virtual Product Developmen t	2D CAD Ad Hoc Data Management No Org/Process Change	3D CAD PDM Org/Process Tweaking	Relational Design VPDM Org/Process Transformation
Business Value	Accuracy Product Quality	Time and Cost Improvement - Efficiency	Rapid Innovation Resource Optimization Shareholder Value

... and a response to Engineering requirements

Yesterday

- From a world where Engineers are working in single model files, which contain all the geometric information to define that model (3D, 2D etc.)
- Where there were no structural components to define real assemblies

 Where it was sufficient for the data management system to understand the relationships between CAD

Today

 To a world where Engineers are Working in the context of assemblies

- Where associativity and knowledge is spread across the geometry of the entire product - both inside and between parts
- Where data management systems now need to manage the <u>relationship</u> <u>between both geometry features, the</u> <u>associated models, and metadata</u>

Global PLM Capability Benchmark

PLM Capability Chasm

Medium to

Advanced

Existing

Existing

Processes

World Class PLM

Above Level 3

Medium to **Advanced** Technology

Optimized Processes

Optimized Organization "High Tech, High Touch" Tom Peters, <u>Re-Imagine!</u>

The Value of Enterprise Effectiveness

Organization and Process

World Class PLM is more than Technology

Relational Product Development – Definition Description

- Relational Product Development (RPD) is an advance PLM solution that consists of a relational information structure that is pervasive, configured, managed and deployed across the Product Creation Environment.
 - RPD represents a "state-of-the-art" methodology which leverages a company's product knowledge of geometric and non-geometric behavioral relationships to optimize delivery of products to market according to desired performance.
 - RPD is an applied science, where company specific business characteristics becomes the cornerstone to a new paradigm for optimized new product introduction.
 - RPD is an enabling environment for fostering Innovation

Agenda

Industry Environment & RPD

• Why RPD?

RPD Roadmap for Achieving the Vision

Authoring in Context – Relational Design Basics

RPD Concurrent and Derivative Process Value

RPD Concurrent Process

- Reduced Job Flow for Faster Completion
- Fosters De-Coupled Development
- Common Data Source: Enables Cross-Functional Relationships
- Virtual Production: Engineering, Design, Manufacturing, Support

Classes of Imbedded Knowledge

Knowledge Driven Relational Authoring

RPD Concurrent and Derivative Process Value

RPD Derivative Process

Spiral Development for Concurrent Engineering

Highly concurrent (Spiral Development)

Behavior Modeling – a Process View

- Design in Configured Context

Development activities can be performed simultaneously due to relational modeling within a common database. Creating linked/overlapping process steps can result in:

- Reduced Job Flow for Faster Completion
- Cause and effect relationships (visibility of change)

The Evolution Towards RPD is a Business Transformation...

The Relational Product

VPDM Storage System Relational BOD View

Product Configuration Management

Defining and managing corporate product definition

 Product Definition (PDC) provides functions for defining product family, product component, and product zone structures

- Define family of products
- Define products corporate dictionary of product variants
- Define product and models
- Define option packaging rules
- Define product specification, a configuration criteria to filter the product structure. For examples:
 - CCAR EX 2005- 4 doors US
 - Mountain Bike Sport Deluxe

Product diversity with optimized use of standard components

Design in Configured Context

- Direct and complete product access for all users
- Configured product structure for concurrent engineering
- Support complex product development processes: variant, milestone, engineering change, part versioning, product configuration

Benefits:

- Scale concurrent engineering within complex products
- Ensure configuration compliance and accuracy with enterprise and product rules
- Greater design accuracy, fewer design errors
- Lean and efficient design processes

Knowledge is the leverage point

Source: Institute for Defense Analysis

Agenda

Industry Environment & RPD

Why RPD?

RPD Roadmap for Achieving the Vision

RPD Solution Methodology

Enterprise Integration

RPD focuses on delivering Business Value

	RPD Key Benefits		
Business Management	Achieve key program business goals (Time, Cost, Quality, Weight, Fuel Efficiencies, etc.) in the most efficient and effective manner.		
Product Portfolio Management	Maximize market penetration opportunity by configuring optimal product definition mix. Actively manage the Portfolio against critical trade-offs.		
Product Architecture and Integration	Facilitate in-process architectural trade-offs and specification validation while maintaining integration control.		
Product Systems Engineering	Optimize the creation of new components while preserving architectural compliance. Effectively manage reuse and outsourcing trade-offs.		
Performance Analysis	Assure product behavior and performance characteristics meet all set goals for the duration of the product lifecycle.		
Assembly Analysis	Optimize assembly productivity, scalability and improve quality. Accelerate time to profit through launch ramp up fidelity.		

Relational Product Development Framework

RPD Practices Domains Work Streams	Product and Process Knowledge	Product Authoring	Product Management	Product and Process Verification
Business Management	Program Management	Program Notebook	Sales Configuration Control	Product Assurance
Product Portfolio Management	Product Architecture Specification	Market Driven Dimensional Specification	Options & Variant Management	Regulatory Compliance & Homologation
Product Architecture and Integration	Product Consolidation & Variation	Zone Definition & Product Specifications	Systems Integration & Management	Physical Integration Confirmation
Product Systems Engineering	Subsystem Outsourcing & Carryover	Component & System Definition	Functional Integration of Systems & Components	Component & System Confirmation
Performance Analysis	Certification Reuse	Analytical Modeling	Analytical BOM	Certification
Assembly Analysis	Flexible Manufacturing	Assembly Modeling	Manufacturing Process Management	Try-out & Prove-out Simulations

© 2007 IBM Corporation

Relational Product Development Summary

Relational Business and Process Logic

Business and process logic to provide consistent and cohesive thread to help weave together myriad of corporate assets relevant to Relational Product Development.

Behavioural Modeling and Methodology

Ensure a consistent PLM modelling process and methodology, to support the development composed of software, hardware, workers and information components

Organizational Transformation

Modular construct for education and training to support the RPD paradigm, processes and modeling methodology

Quality Deployment Process

Ensures RPD implementation for repeatability with minimal variation

Dassault Aviation

Physical prototype: eliminated

- 66% Tooling costs

Aircraft assembly time: -50%

"Thanks to PLM, we created an absolutely perfect definition of the aircraft, When we reached the assembly stage, from the first aircraft, we had the quality that previously took us several dozen aircrafts to achieve." Christian Decaix, Executive Vice-President, Operations

Pratt and Whitney

Elimination of maintenance prototypes: - \$500 K / engine program

Assembly design time: - 20%

Clashes resolved in early design: 70%

"With IBM and Dassault Systèmes PLM solutions, we can now perform advanced virtual maintenance simulations. We no longer need physical prototypes." Mario Modafferi, director Engine Design, Pratt & Whitney

Northrop Grumman

-15% : Cost to correct errors during production Change process execution costs: -15%* + 25% Performance to schedule

"In shipbuilding, all things positive begin with predictable business. We needed new processes and a Product Lifecycle Management (PLM) solution to help us minimize costs from the early bidding process to the servicing phase 25 years down the road." **Arnie Moore, Vice President of Engineering,**

Relational Product Development Summary of Benefits

- 25% and more process improvements from concurrency
- 40% and more process improvements for Derivatives
- Clashes resolved in early design have been increased to 70%.
- Engineering design physical prototypes have been eliminated.
- Change process execution costs have been reduced by 15-30%.

Thank You!